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Introduction
Water utilities worldwide are challenged by the continuous 
degradation of aging infrastructure, which often leads to 
inefficiencies such as non-revenue water (NRW), increased 
leakage incidents, and unscheduled maintenance. In response to 
these challenges, there is a growing trend toward leveraging digital 
twin technology—a virtual representation of physical assets—to 
support predictive maintenance and operational optimization.

The project addresses these challenges by creating an interactive 
web-based application that integrates multiple data streams. The 
application not only visualizes sensor data from tanks, valves, and 
pumps but also explores customer water usage and pipe metadata. 
The digital twin framework allows for both descriptive analytics 
(e.g., historical analysis of sensor readings) and predictive 
analytics (e.g., forecasting pipe breaks). This paper describes the 
architecture, methodology, and experimental results associated 
with the project, and demonstrates how such a system can aid 
water utilities in making data-driven decisions.

Related Work
Digital twin technology has rapidly gained prominence in the water 
sector, particularly as utilities seek to manage complex, distributed 
networks of aging assets. Prior work by Bentley Systems Inc. 
and Autodesk Inc. has underscored the importance of integrating 
hydraulic modeling, SCADA data, and GIS information into a 
unified framework for real-time monitoring and decision support. 
Applications such as Bentley OpenFlows WaterSight provide a 
robust platform for the operational management of water networks 
by integrating remote sensing data with hydraulic models.

Recent research in asset management has demonstrated that 
data-driven approaches can improve maintenance scheduling 
and reduce costs. Machine learning techniques, including decision 
tree regressors and clustering algorithms, have been applied to 
predict infrastructure failures and classify assets based on risk 
profiles. The Watertown City project builds upon these insights by 
combining state-of-the-art visualization methods with predictive 
analytics to form a digital twin that offers both operational insights 
and strategic guidance.

Data Sources and Preprocessing
Data Sources
The application leverages three primary datasets:
Sensor Data: This includes continuous readings from various 
sensors placed across the water network. Key parameters include:
•	 Water Tank Levels: Measurements of water volume in 

storage tanks.
•	 Flow Readings: Flow rates in pipes, valves, and pumps.
•	 Pressure Readings: Pressure measurements at critical points 

in the network.

Customer Consumption Records: Monthly water usage data 
from city residents are segmented by zone. This data is critical 
for understanding consumption patterns and detecting anomalies 
that might indicate leakages or system inefficiencies.

Pipe Metadata: Detailed information about the physical 
characteristics of the water network’s pipes, such as:
•	 Diameter and Length: Key geometric attributes.
•	 Material Type: Typically Ductile Iron or Cast Iron.
•	 Installation Year: Which aids in assessing pipe aging.
•	 Number of Reported Breaks: Historical records of failures.
•	 Bed-Soil pH, Discharge, and Pressure: Environmental and 

operational factors affecting pipe longevity.
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Data Preprocessing
Given the heterogeneity of the data, a comprehensive preprocessing 
pipeline was developed:
•	 Filtering and Aggregation: Sensor data is filtered by time 

range and aggregated using statistical metrics such as the 
mean and standard deviation to smooth out noise.

•	 Unit Conversion: The application supports dynamic 
switching between US Customary and SI units to enhance 
interpretability for different user groups.

•	 Outlier Treatment: For the pipe metadata, outlier values are 
“snapped” to bounds determined by the interquartile range 
(IQR). This helps mitigate the influence of extreme values 
when visualizing and modeling.

•	 Normalization: All features used for clustering and machine 
learning are scaled between 0 and 1. This normalization 
is essential for distance-based algorithms such as KMeans 
clustering.

•	 Data Partitioning: For predictive analytics, the pipe metadata 
is partitioned into training (75%) and testing (25%) sets. The 
training set is further split into training and validation subsets 
to optimize model parameters.

Methodology
Application Architecture
The digital twin application is implemented using Streamlit, 
a Python-based framework that supports rapid prototyping of 
interactive web applications. The application is structured into 
five primary tabs:
•	 Water Network Exploration: Visualizes raw and filtered 

sensor data over time.
•	 Water Usage Exploration: Displays customer water usage 

trends using line charts, bar graphs, and pie charts.
•	 Pipe Data Exploration: Allows interactive exploration 

of pipe metadata, including correlations between different 
features.

•	 Pipe-Break Prediction: Utilizes a Decision Tree Regressor 
to predict future pipe breaks based on user-selected features.

•	 Water Network Management: Applies KMeans clustering 
to classify pipes into distinct risk groups for targeted 
maintenance.

Visualization Strategies
Interactive visualizations are central to the application’s design. 
The following approaches were implemented:

Time Series and Distribution Charts: For sensor data, time 
series plots are combined with histograms to provide insights into 
both temporal trends and data distribution.

Figure 1: Sensor Data Time Series Visualization

Figure 2: Bar Chart Showing Average Sensor Readings

Zone-Based Analysis: Customer water usage is visualized using 
color-coded charts that segment data by city zones. This multi-
faceted approach enables the identification of anomalies that may 
indicate leakage or demand spikes.

Figure 3: Monthly Water Usage Visualization by Zone

Figure 4: Scatter Plot of Customer Water Usage

Interactive Sidebar and Data Tables: For pipe data exploration, 
an interactive sidebar allows users to switch between units and 
select specific pipe attributes for in-depth analysis.

Figure 5: Pipe Data Exploration Settings Sidebar

Machine Learning: Pipe-Break Prediction
The predictive model uses a Decision Tree Regressor to forecast 
the number of pipe breaks. The key aspects include:
•	 Feature Selection: Users can interactively select from a range 

of predictor variables including pipe diameter, length, bed-soil 
pH, number of customers, discharge, pressure, and pipe age.

•	 Model Training: The data is split into training (75%) and 
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testing (25%) datasets, with further subdivision for validation. 
This hierarchical split ensures that the model’s performance 
is robustly evaluated.

•	 Performance Metrics: The model achieves a prediction 
accuracy of approximately 68.5% on the testing dataset 
when all features are included. Additional metrics such as 
precision, recall, and f1-score are computed to gauge model 
performance.

•	 Dynamic Prediction: The application features an input 
interface for entering custom values. This “what-if” analysis 
tool allows users to simulate changes in pipe conditions and 
immediately observe the predicted number of breaks.

Figure 6: Pipe-Break Prediction Settings Sidebar

Figure 7: Dynamic Prediction of Pipe Breaks

Clustering
KMeans clustering is applied to classify pipes into distinct groups 
based on their attributes. The process involves:
•	 Preprocessing: Data scaling and outlier correction are 

performed prior to clustering. This step ensures that all 
features contribute equally to the distance calculations used 
by the KMeans algorithm.

•	 Determination of Cluster Count: The Elbow Method is 
used to identify the optimal number of clusters, which is 
determined to be three for the current dataset.

•	 Interpretation: The clustering results are visualized using 
box plots that compare key pipe attributes across clusters. 
One particular cluster (denoted in orange) is characterized 
by longer pipes, higher break counts, and lower bed-soil pH 
values, which are indicative of higher risk.

Figure 8: Clustering Settings Sidebar for Water Network 
Management

Figure 9: KMeans Clustering Results

Experimental Results and Discussion
Pipe Data Analysis
Exploratory analysis of the pipe metadata revealed several 
important trends. Visualizations comparing pipe diameter, 
installation year, and the number of breaks indicated that the 
majority of the pipes in the network are Ductile Iron and Cast Iron 
types installed over 70 years ago. This observation is critical as 
it suggests that a significant portion of the network is nearing or 
has exceeded its theoretical life expectancy.

For instance, the chart displaying “Diameter vs. Year of 
Installation” clearly shows that many of the older pipes fall within 
the age bracket where deterioration is most pronounced.

Figure 10: Diameter vs. Year of Installation

Additionally, the “Year of Installation vs. Sum of Pipe Breaks” 
visualization indicates that pipes installed prior to 1955 account 
for the majority of reported failures. This finding aligns with 
engineering expectations regarding material degradation over time.
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Figure 11: Installation Year vs. Sum of Pipe Breaks

Impact of Operational and Environmental Factors
The analysis further extends to operational parameters such as 
discharge and pressure. The “Discharge vs. Installation Year” 
chart reveals that pipes installed before 1955 not only exhibit 
a higher frequency of breaks but also carry larger volumes of 
discharge. This implies that a failure in these older pipes could 
have a widespread impact on network reliability and service 
continuity.

Figure 12: Discharge vs. Installation Year

Environmental factors are also considered in the analysis. The “Bed 
Soil pH vs. Sum of Pipe Breaks” visualization demonstrates that 
pipes buried in soils with a pH below 6 (indicative of high acidity) 
are more susceptible to corrosion and failure. This correlation is 
critical for maintenance planning, as it highlights the need for 
targeted inspections in areas with adverse soil conditions.

Figure 13: Bed Soil pH vs. Sum of Pipe Breaks

Machine Learning Model Performance
The Decision Tree Regressor used for predicting pipe breaks 
demonstrated a testing accuracy of approximately 68.5% when 
all predictor variables are included. This moderate level of 
performance suggests that while the model captures key trends 
in the data, there remains scope for improvement—potentially 
through the incorporation of additional features or the exploration 
of alternative modeling approaches such as Random Forests.

The interactive nature of the predictive module allows utility 
managers to experiment with different combinations of features and 
observe corresponding changes in prediction performance. This 
“what-if” analysis is invaluable for understanding the sensitivity 
of the model to various input parameters and for identifying the 
most influential factors driving pipe breakage.

Figure 14: ML Model Building Interface

Clustering and Network Management
KMeans clustering of the pipe metadata yielded three distinct 
clusters. The optimal number of clusters was determined using the 
Elbow Method, which indicated diminishing returns beyond three 
clusters. The clusters were analyzed based on key features such 
as pipe length, number of breaks, discharge, and environmental 
factors like soil pH. One cluster, characterized by longer pipes with 
a high incidence of breaks and low soil pH, was identified as being 
at particularly high risk. This insight is critical for prioritizing 
inspections and scheduling proactive maintenance.

Figure 15: Clustering Visualization

Discussion
Integration of Data and Analytics
The digital twin approach exemplified in this project successfully 
integrates diverse data streams into a cohesive framework for water 
infrastructure management. By combining sensor data, customer 
consumption records, and pipe metadata, the application provides 
a holistic view of network performance. The interactive dashboards 
and visualizations empower stakeholders to identify trends, detect 
anomalies, and make informed decisions regarding maintenance and 
asset replacement.

Practical Implications for Utilities
The findings of this study have several practical implications:
•	 Preventive Maintenance: The predictive model can serve as 

an early warning system, flagging pipes that are likely to fail. 
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This enables utilities to prioritize repairs before catastrophic 
failures occur.

•	 Resource Allocation: The clustering analysis aids in segmenting 
the water network into risk categories. High-risk clusters can 
be targeted for immediate inspection and repair, optimizing the 
allocation of limited resources.

•	 Operational	Efficiency: The integration of real-time sensor 
data with historical records offers a dynamic view of network 
performance. This supports timely interventions and adaptive 
operational strategies.

Limitations and Future Enhancements
While the current framework demonstrates significant promise, 
several limitations must be acknowledged:
•	 Model Accuracy: The pipe-break prediction model, while 

effective, has an accuracy of 68.5%. Future work may involve 
expanding the dataset, incorporating additional features (e.g., 
real-time environmental factors), and testing alternative 
algorithms such as ensemble methods.

•	 Real-Time Data Integration: Currently, the system is based 
on historical data snapshots. Integrating real-time data streams 
from SCADA systems would greatly enhance the operational 
utility of the digital twin.

•	 Scalability: The framework, while robust for Watertown City, 
needs to be evaluated for scalability across larger and more 
complex water networks.

Future Work
Several avenues exist for enhancing the digital twin framework:
•	 Real-Time Monitoring and SCADA Integration: Integrating 

live data feeds from SCADA systems will enable continuous 
monitoring and dynamic response. This real-time integration 
would further bridge the gap between predictive analytics and 
operational decision-making.

•	 Enhanced Predictive Modeling: Exploring alternative 
machine learning algorithms, such as Random Forests or 
Gradient Boosting Machines, may improve prediction accuracy. 
Additionally, incorporating temporal models (e.g., time-series 
forecasting) could capture evolving network conditions more 
effectively.

•	 Expanded Data Sources: Future iterations could integrate 
additional data sources such as customer billing records, weather 
data, and geographic information systems (GIS). This would 
allow for a more comprehensive analysis of water demand, 
environmental stressors, and asset performance.

•	 User Interface Enhancements: Although the current Streamlit-
based interface is functional, further improvements in usability 
and visualization—such as incorporating 3D network models and 
augmented reality (AR) overlays—could enhance stakeholder 
engagement and decision support.

•	 Predictive Maintenance Strategies: Integrating the insights 
from the predictive and clustering modules into a broader asset 
management framework can facilitate proactive maintenance 
scheduling. Decision-support algorithms could be developed 
to automatically recommend inspection and repair schedules 
based on real-time risk assessments.

Conclusion
This paper has presented a detailed technical overview of the digital 
twin framework designed to support the proactive management 
of water infrastructure assets. Through the integration of sensor 
data, customer consumption records, and detailed pipe metadata, the 
application delivers a multifaceted analytical platform that enables 
both descriptive and predictive insights.
Key contributions include:

• The development of an interactive web-based application 
that enables real-time visualization and filtering of sensor 
and consumption data.

• The implementation of a machine learning model (Decision 
Tree Regressor) for predicting pipe breaks, along with a 
dynamic interface for “what-if” analysis.

• The application of KMeans clustering to segment the network 
into risk-based categories, supporting targeted maintenance 
and resource allocation.

• A comprehensive data preprocessing pipeline that addresses 
unit conversion, outlier treatment, and normalization—
ensuring robust analysis and visualization.

The experimental results underscore the importance of integrating 
diverse datasets and leveraging modern analytics to manage 
aging water infrastructure. While the current model provides a 
strong foundation, further work in real-time integration, enhanced 
predictive modeling, and expanded data sources is necessary to 
fully realize the potential of a digital twin for water networks [1,2].

The insights derived from this project are directly applicable to the 
strategic planning and maintenance scheduling challenges faced 
by urban water utilities. By harnessing the power of interactive 
visualization and machine learning, the digital twin framework not 
only facilitates operational efficiency but also lays the groundwork 
for a more resilient and sustainable water infrastructure.
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