
J Arti Inte & Cloud Comp, 2022 Volume 1(1): 1-5

Review Article Open Access

Utilizing the Facade Design Pattern in Practical Phone Application
Scenario

1Sr. Director – Enterprise Architecture, Fortune Brands Home & Security, USA

2Sr. Manager - Digital Applications, , Fortune Brands Home & Security, USA

Nilesh D Kulkarni1* and Saurav Bansal2

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Nilesh D Kulkarni, Sr. Director – Enterprise Architecture, Fortune Brands Home & Security, USA.

Received: January 08, 2022; Accepted: January 10, 2022; Published: January 30, 2022

Keywords: Design Patterns, Facade, Object, .Net, Software
Maintainability

Introduction
The importance of design experience is widely recognized. How
often have you encountered a familiar problem during design,
sensing that you've tackled something similar in the past, yet
struggling to recall the specifics of where and how it was resolved?
If you were able to recall the nuances of that past challenge and
the strategy you employed to overcome it, you could leverage
that previous experience instead of having to re-explore the
solution from scratch. A design pattern represents a universally
recognized solution, widely observed in various cases, that
effectively addresses a specific problem in a context that may
not be predefined.

It offers a highly efficient approach to developing object-
oriented software that is not only flexible and elegant but also
reusable. The utilization of design patterns facilitates the reuse
of successful designs and architectural models. By translating
proven technologies and methodologies into design patterns,
they become more easily accessible to developers building new
systems. Design patterns guide developers in selecting design
options that enhance the reusability of a system, while steering
clear of choices that could hinder it. Moreover, design patterns
can significantly enhance the documentation and maintenance
of existing systems by providing a clear and explicit description
of class and object interactions, along with their fundamental

purposes. In essence, design patterns empower designers to
achieve a more effective design more swiftly.

Typically, a design method comprises a set of synthetic notations
usually graphical and a set of rules that govern how and when
we use each notation. It will also describe problems that occur in
a design, how to fix them, and how to evaluate the design. Each
pattern describes a problem which occurs over and over again
in the environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a
million times over without ever doing it the same way twice [1].

Design patterns describe problems that occur repeatedly, and
describe the core of the solution to that problem, in such a way
that the solution can be used many times in different contexts
and applications. A good design should always be independent
of the technology and the design should help both experience
and the novice designer to recognize situation in which these
designs can be used and reused. Eric gamma at el in their book
Design Patterns, discussed total 23 design patterns clarified by
two criteria figure 1. The first criterion, called purpose, reflects
what a pattern does. Patterns can have either creational, structural,
or behavioral purpose. Creational patterns concern the purpose
of object creation. Structural pattern deals with the composition
of classes or objects. Behavioral pattern characterizes the ways
in which classes or objects interact and distribute responsibility
[2]. The second criteria called scope, specifies whether the pattern
applies primarily to the class or to the object.

ISSN: 2754-6659

ABSTRACT
In this paper, we explored the utilization of the Facade design pattern within the realm of software engineering, with a specific focus on its application in a
real-world business context for a phone application. We elucidate how the Facade pattern simplifies intricate subsystems by presenting a unified interface,
thereby improving both usability and maintainability. The paper includes an in-depth case study that exemplifies the seamless integration of a new service
into an existing phone system, highlighting the tangible advantages of employing the Facade pattern in practical situations. Furthermore, the study delves
into the influence of design patterns on software maintainability, underscoring their pivotal role in effective software design and architecture.

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Utilizing the Facade Design Pattern in Practical Phone Application Scenario. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-194. DOI: doi.org/10.47363/JAICC/2022(1)180

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 2-5

Scope Purpose
Creational Structural Behavioral

Class Factory
Method

Adapter Interpreter
Template
Method

Object Abstract
Factory
Builder
Prototype
Singleton

Adapter
Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Chain of
Responsibility
Command
Iterator
Mediator
Memento
Observer
State
Strategy
Visitor

Figure 1: Design Patterns

UML Basics
The first versions of UML were created by “Three Amigos” —
Grady Booch at el defines “The Unified Modeling Language
(UML), is a standardized visual language for specifying,
constructing, and documenting the artifacts of software systems.
It provides a set of diagrams and notations to represent various
aspects of software design and architecture, allowing software
engineers to communicate, visualize, and model complex systems
effectively.”

Three Types of Relations Between The Classes
Association relationship: When classes are connected together
conceptually, that connection is called an association. As shown in
the Figure 2, let’s examine the association between passenger and
airplane. A passenger can sit in an airplane or multiple passengers
can sit in an airplane.

Figure 2: Association Relationship

Aggregation relationship: This is a special type of relationship,
used to model situations where one class (the whole) contains or is
composed of other classes or objects (the parts), and the parts have
a lifecycle that is independent of the whole. As shown in the figure
3, next examine the aggregation relationship, an engine (whole)
can have many Pistons (parts) similarly an airplane (whole) can
have multiple engines (parts) as well as an airplane can have
multiple wheels (parts).

Figure 3: Aggregation Relationship

Composition relationship: a composition is a strong type of
aggregation where each component in the composite can belong
to just one whole. As shown in figure 4, a dog can have a tail,
four legs, two ears, and two eyes, but eyes, legs, tail, and ears
cannot exist on its own.

Figure 4: Composition Relationship

Inheritance / Generalization
In this relationship one class (the child class or subclass) can
inherit attributes and operations from another (the parent class
or superclass). The generalization allows for polymorphism. In
generalization, a child is substitutable for parent. That is anywhere
the parent appears, the child may appear. The reverse isn’t true [3].
As shown in the Figure 5, signifies that "Bus," "Car," and "Truck"
inherit from "Vehicle." They are expected to share common
characteristics or behaviors that are defined in "Vehicle." For
instance, if "Vehicle" has attributes like 'number of wheels' and
'fuel type' and operations like 'start engine ()', then "Bus," "Car,"
and "Truck" would inherit these operations and attributes.

Figure 5: Generalization

Programming Technologies
We will using the basic programming tools to show the
implementation of the Facade design pattern.

.NET Framework
The .NET Framework, is a software development framework
designed and supported by Microsoft. It provides a controlled
environment for developing and running applications on Windows.
Few features listed below

Windows-Specific
The .NET Framework is designed to work on Windows operating
systems.

Base Class Library (BCL)
It includes a large class library known as the Framework Class
Library (FCL), providing user interface, data access, database
connectivity, cryptography, web application development, numeric
algorithms, and network communications.

Common Language Runtime (CLR)
Programs written for the .NET Framework execute in a software
environment named the Common Language Runtime, which
provides services such as security, memory management, and
exception handling.

Languages
The .NET Framework supports multiple programming languages,
such as C#, VB.NET, and F#.

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Utilizing the Facade Design Pattern in Practical Phone Application Scenario. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-194. DOI: doi.org/10.47363/JAICC/2022(1)180

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 3-5

CLI
Console programming refers to the process of writing software
applications that interact with the user through a text-based
interface. These applications run in a console or a command-line
interface (CLI), where the user inputs text commands and the
program provide output in text form.

Visual Studio Code (VS Code) For .NET Development
Visual Studio Code is a lightweight, open-source, and cross-
platform code editor developed by Microsoft. It's not specific
to any one programming language or framework. With the help
of extensions, it can support a wide variety of languages and
frameworks, including those of the .NET ecosystem. Few features
listed below

Cross-Platform
VS Code runs on Windows, Linux, and macOS.

Extensions
The C# extension by Omni Sharp adds support for .NET
development, including features like IntelliSense, debugging,
project file navigation, and run tasks.

Lightweight Editor
VS Code is designed to be a fast and lightweight editor, with a
smaller footprint than a full IDE like Visual Studio.

Integrated Terminal
Developers can use the integrated terminal to execute .NET CLI
commands, enabling them to create, build, run, and test .NET
applications.

Git Integration
VS Code has built-in Git support, which is essential for modern
software development workflows.

Language Features
VS Code with the C# extension supports advanced language
features like code refactoring, unit testing, and code snippets
for .NET.

Structural Pattern – Facade
Structural design patterns within the realm of software engineering
offer effective solutions for addressing design challenges that
revolve around the arrangement of classes or objects. These
patterns excel in the creation of software systems that are both
flexible and amenable to extension. They do so by prescribing
methodologies for the assembly of objects and classes, enabling
seamless modification of object composition without impinging
on their individual implementations.

Moreover, these design patterns advocate for the judicious reuse
of pre-existing classes and objects. This practice facilitates the
development of software through the harmonization of existing
components in diverse configurations. Furthermore, they enhance
the overall lucidity and organizational structure of the codebase by
delineating explicit relationships and hierarchies among classes
and objects.

In addition, structural design patterns effectively encapsulate the
intricacies associated with object composition. This encapsulation
simplifies the management and upkeep of large-scale software
systems. Furthermore, these patterns place emphasis on
minimizing the coupling between classes and objects, thereby

fostering modularity and maintainability in the codebase...

The Facade Pattern, a structural design patterns in software
engineering, offers a solution to a persistent challenge on how to
provide a streamlined interface to intricate subsystems composed of
classes, interfaces, or objects. This pattern serves as an invaluable
tool for hiding the intricate workings of a system, presenting clients
with a cohesive, uncomplicated interface. Its biggest objective is
to elevate system usability and comprehensibility by diminishing
the convolutions that often permeate complex software systems.
Key components and characteristics of the Façade pattern are-

Façade
This entity, whether it be a class or an interface, functions as
the solitary ingress point to a convoluted subsystem. Its role
encompasses the encapsulation of interactions and operations
involving myriad classes or objects nested within the subsystem.

Subsystem
The subsystem embodies an assembly of classes, objects, or
components, collaboratively engaged in the execution of diverse
tasks. Frequently, these classes are intricately interlinked,
engendering complex relationships among them.

Client
Within the system's framework, the client assumes the role of the
entity that interfaces with the Facade, thereby gaining access to
the functionalities embedded within the subsystem.

Phone Application - Use Case
“Rooftop Windows” a window manufacturing local business
establishment, install a factory-made window for home and
commercial office buildings. The Rooftop Windows is a brick-and-
mortar shop, operating from the store, website and a phone system.
To allow a seamless customer experience, Rooftop windows
has developed a phone application with seven different phone
numbers (shown in figure 6) which allows the customers to order
on phone, get delivery update, pay on phone, request packaging,
order supplies, find out the taxes, estimated warehouse delivery
dates.

Figure 6: Phone Application

After operating the business for approximately one year and
considering the consistent requests from customers to physically
inspect the windows before making a purchase, the owner of this
local establishment has made the decision to introduce a new
service called "Schedule Showroom Appointment." This addition
presents a significant challenge for the application developer, as
it involves incorporating a new functionality into the existing
phone system.

The developer has two options to choose from-
•	 Create a new phone number dedicated to scheduling

showroom appointments.

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Utilizing the Facade Design Pattern in Practical Phone Application Scenario. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-194. DOI: doi.org/10.47363/JAICC/2022(1)180

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 4-5

•	 Implement a "Facade" design pattern (figure 7) within the
phone system, wherein the developer modifies the system
to act as an intermediary for all services and departments of
the shop. This means that when a customer calls the phone
application to schedule a showroom appointment, the system
can seamlessly guide them through any of the other seven
services or connect them with various departments of the
shop.

In essence, the phone application offers a user-friendly voice
interface for accessing the ordering system, payment gateways, and
the newly introduced appointment scheduling service, ensuring a
smooth and convenient experience for customers.

Figure 7: Apply façade to phone system

Design Pattern Application
Design pattern that provides a facade (1) for interfacing with the
subsystems (2) and hides the complexity within the subsystems
from the client (3) – see figure 8.

1. The Facade provides convenient access to a particular part
of the subsystem’s functionality. It knows where to direct
the client’s request and how to operate all the moving
parts. The Facade class plays a pivotal role in this design
pattern, acting as an intermediary between the client and
the subsystem classes. The client interacts with the Facade,
which in turn communicates with the various subsystem
classes. This interaction is symbolized by the solid lines
from the Facade to the subsystem classes. The dashed lines
encircling the subsystem classes illustrate the idea that the
Facade encapsulates the complexity of the subsystem.

2. The Complex Subsystem consists of dozens of various
objects. To make them all do something meaningful, your code
will have to dive deep into the subsystem’s implementation
details. Subsystem classes aren’t aware of the facade’s
existence. They operate within the system and work with
each other directly. The attributes within the Facade, such as
-LinksToSubsystemObjects and -optionalAdditionalFacade,
imply that the Facade maintains references to the subsystem
objects, and potentially to other facades, thereby facilitating
the delegation of client requests. The +subsystemOperation()
method represents the unified interface through which the
clients can perform operations, where the Facade translates
these requests into a set of interactions with the subsystem
classes.

3. The Client uses the facade instead of calling the subsystem
objects directly and would not need to navigate these
complexities directly.

Figure 8: Facade Design Pattern

Code Construction
The representation of the code using C# , Visual Studio Code and
.Net Framework shown below-
using System;
// Define subsystems
public class OrderEntrySystem
{
 public void AcceptOrder()
 {
 Console.WriteLine("Order accepted.");
 }
}
public class PaymentSystem
{
 public void ProcessPayment()
 {
 Console.WriteLine("Payment processed.");
 }
}
public class DeliverySystem
{
 public void ScheduleDelivery()
 {
 Console.WriteLine("Delivery scheduled.");
 }
}

//Add new subsystems called ShowroomAppointmentSystem
public class ShowroomAppointmentSystem
{
 public void ScheduleAppointment()
 {
 Console.WriteLine("Showroom Appointment Scheduling done.");
 }
}
// Define facade
public class Facade
{
 private OrderEntrySystem order;
 private PaymentSystem payment;
 private DeliverySystem delivery;

 //Add new subsystems called ShowroomAppointmentSystem
 private ShowroomAppointmentSystem showroomAppointment;
 public Facade()
 {

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) Utilizing the Facade Design Pattern in Practical Phone Application Scenario. Journal of Artificial Intelligence &
Cloud Computing. SRC/JAICC-194. DOI: doi.org/10.47363/JAICC/2022(1)180

J Arti Inte & Cloud Comp, 2022 Volume 1(1): 5-5

Copyright: ©2022 Nilesh D Kulkarni. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

 order = new OrderEntrySystem();
 payment = new PaymentSystem();
 delivery = new DeliverySystem();
 }
 public void AcceptNewOrder()
 {
 order.AcceptOrder();
 }
 public void PayAndScheduleDelivery()
 {
 payment.ProcessPayment();
 delivery.ScheduleDelivery();
 }
 public void ReceiveExistingOrderPayment()
 {
 payment.ProcessPayment();
 }
// Add new method to call ShowroomAppointmentSystem
 public void ScheduleShowroomAppointment()
 {
 ShowroomAppointmentSystem showroomAppointment = new
ShowroomAppointmentSystem();
 showroomAppointment.ScheduleAppointment();
 }
}
public class Program
{
 public static void Main(string[] args)
 {
Facade facade = new Facade();

Console.WriteLine("Select \"A\" for New Order, Select \"B\" for
Payment and Delivery, Select \"C\" for Existing Order Payment,
Select \"S\" for Showroom Appointment Scheduling");
ConsoleKeyInfo cki;
do
{
 cki = Console.ReadKey(true);
 if (cki.Key == ConsoleKey.A)
 {
 facade.AcceptNewOrder();
 }
 else if (cki.Key == ConsoleKey.B)
 {
 facade.PayAndScheduleDelivery();
 }
 else if (cki.Key == ConsoleKey.C)
 {
 facade.ReceiveExistingOrderPayment();
 }
 //Add new else if condition for Showroom Appointment
Scheduling
 else if (cki.Key == ConsoleKey.S)
 {
 facade.ScheduleShowroomAppointment();
 }
 else
 {
 Console.WriteLine("Invalid Input, press esc to
exit !");
 }
} while (cki.Key != ConsoleKey.Escape);
 }
}

Design Pattern and Software Maintainability
The original study to evaluate the impact of design patterns
on software maintenance was applied by [4]. They conducted
an experiment call PatMain by comparing the maintainability
of two implementations of an application, one using a design
pattern and the other using a simple alternative. They used four
different subject systems in the same programming language.
They addressed five patterns - decorator, composite, abstract
factory, observer and visitor. The researchers measure the time
and correctness of the given maintenance task for professional
participants. They found that it was useful to use a design pattern
but in case where simple solution is preferred, it is good to follow
the software engineer common sense about whether to use a pattern
or not, and in case of uncertainty it is better to use a pattern as a
default approach.

Conclusion
A design pattern is a generalized reusable solution two commonly
occurring problem in a software design. It can be defined as
a description or template for how to solve a problem that can
be used in many different situations [5]. In this paper, we aim
to demonstrate the practical application of the facade design
pattern in a specific use case. Design patterns serve as invaluable
communication tools and expedite the design process. They
empower solution providers to focus on solving the business
problem while promoting reusability in the design. Reusability
extends not only to individual components but also to the entire
design process, from problem-solving to the final solution. The
ability to apply patterns that offer repeatable solutions is well worth
the time invested in learning them. There are promising results
indicating that the utilization of design patterns enhances quality
and contributes to maintainability. The proportion of source code
lines involved in design patterns within a system shows a strong
correlation with maintainability. However, it's important to note
that these findings represent just a small step in the empirical
analysis of software quality concerning design patterns. Design
patterns should facilitate the reuse of software architecture across
different application domains and promote the reuse of flexible
components.

References
1. Alexander C, Ishikawa S, Silverstein M, Jacobson M,

Fiksdahl-King I, et al. (1977) A Pattern Language. Oxford
University Press, New York.

2. Gamma H (1995) Design Patterns Elements of Reusable
Object-Oriented Software https://www.cs.uni.edu/~wallingf/
teaching/062/sessions/support/pattern-examples.pdf.

3. Schmuller J (1999) Sams Teach Yourself Uml in 24 Hours
https://nibmehub.com/opac-service/pdf/read/Sams%20
teach%20yourself%20UML%20in%2024%20hours%20
by%20Joseph%20Schmuller%20-A.pdf.

4. Prechelt L, Unger B, Tichy WF, Brossler P, Votta LG (2001)
A controlled experiment in maintenance: comparing design
patterns to simpler solutions. IEEE Transactions on Software
Engineering 27: 1134-1144.

5. Zhang C, Budgen D (2012) What Do We Know about
the Effectiveness of Software Design Patterns?. IEEE
Transactions on Software Engineering 38: 1213-1231.

