Introduction
According to current bibliography and substantial growth of medical depiction many cases of controversial reflection are capable of being proper diagnosed and assiduously treated.

Uterine sarcomas (US) consist a rare malignant entity originated of mesenchymal parenchyma estimated about 8% of uterine malignancies [1].

Uterine sarcomas classification depends on tissue origin and is being divided into four subcategories.

Leiomyosarcomas arising from smooth muscle in myometrium, endometrial stroma sarcomas from endometrial stroma divided into high and low grade, undifferentiated endometrial sarcomas and mixed tumors such as Mixed Mullerial tumors or adenosarcomas [2].

Ultimate scope concerning proper diagnosis and treatment is strongly accompanied with assiduous imaging findings depiction and histologic evaluation of the lesion.

Series of chemotherapy, radiotherapy or hormonal therapy consist corner stone of postoperative treatment in cases of advanced stages with depicted metastatic lesions.

Keywords: Uterine Sarcomas, Chemotherapy, Radiotherapy, Hormonal Therapy

In many cases diagnostic curettage increases the diagnostic potential and confirms the lesion staging. Age of the patient, histologic type, grading and staging of the lesion, obesity, smoking and lymph vascular infiltration reflect as most important predisposition factors concerning ultimate therapeutic mapping, especially in women of reproductive age.

After histologic establishment of lesion staging, multidisciplinary approach seems mandatory in order to discover postoperative pathways.

Series of chemotherapy, radiotherapy or hormonal therapy consist corner stone of postoperative treatment in cases of advanced stages with depicted metastatic lesions.

Aim of our study reflects assiduous presentation and depiction of pathophysiologic pathways of such lesions strongly accompanied with proper therapeutic strategy.
Table 1: MRI Features of Uterine Sarcomas, Leiomyoma and Endometrial Sarcoma

<table>
<thead>
<tr>
<th></th>
<th>LMS</th>
<th>ESS</th>
<th>UES</th>
<th>AS</th>
<th>Leiomyoma</th>
<th>Endometrial Sarcoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localization</td>
<td>Myometrium</td>
<td>Generally endometrium; can be located in myometrium</td>
<td>Endometrium</td>
<td>Myometrium</td>
<td>Endometrium</td>
<td></td>
</tr>
<tr>
<td>Margins</td>
<td>Irregular and ill-defined</td>
<td>Irregular and nodular</td>
<td>Markedly irregular and nodular</td>
<td>Regular and well demarcated</td>
<td>Regular</td>
<td>Regular or irregular</td>
</tr>
<tr>
<td>T1 signal</td>
<td>Hypointense and heterogeneous (hemorrhage, calcifications)</td>
<td>Hypointense</td>
<td>Homogeneous</td>
<td>Predominantly hypointense, high signal foci - hemorrhagic degeneration</td>
<td>Hypointense</td>
<td></td>
</tr>
<tr>
<td>T2 signal</td>
<td>Intermediate-to-high signal</td>
<td>Hyperintense and heterogeneous (bands of low signal corresponding to preserved myometrium)</td>
<td>Homogeneous (extensive hemorrhage and necrosis)</td>
<td>Multisegmented cystic appearance; can show multiple small hyperintense foci</td>
<td>Low signal (non-degenerated); high signal - cystic, myxoid degeneration</td>
<td></td>
</tr>
<tr>
<td>Contrast enhancement</td>
<td>Early and heterogeneous</td>
<td>Moderate (more intense than endometrial carcinoma) and heterogeneous</td>
<td>Marked (generally more intense than normal myometrium) and heterogeneous</td>
<td>Marked (generally isointense compared to normal myometrium) and heterogeneous</td>
<td>Variable</td>
<td>Hypointense compared to normal myometrium</td>
</tr>
<tr>
<td>DWI</td>
<td>Generally more restriction (lower ADC values) than leiomyomas</td>
<td>High signal and low ADC</td>
<td>High signal and low ADC</td>
<td>Low signal (low grade nature)</td>
<td>Variable; generally higher ADC values than LMS</td>
<td>High signal and low ADC</td>
</tr>
</tbody>
</table>

LMS, leiomyosarcoma; ESS, endometrial stromal sarcoma; UES, and differentiated endometrial sarcoma; AS, adenosarcoma; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient.

On the contrary, in cases of degenerated myomas, concerning depiction of T2 sequences, many hyper signal spots have been detected [8]. Signs of potential malignancy and sarcomatous transformation depicted in abdominal MRI estimated central necrosis, formation of angiogenesis and cellular capability [9].

To the best of our knowledge, many cases are extremely controversial and histologic establishment, probably through diagnostic curettage consists final evaluation.

Material and Method

Assiduous systematic review concerning the classification, predisposition factors and pathophysiological mechanisms of uterine sarcomas. Many conducted studies have been sampled through specific data bases such as PubMed and Cochrane data base.

Future challenges have been registered as well, focusing on patients of reproductive age with potential, concerning the lesion staging, fertility preservation. New therapeutic protocols which have been implemented, did not indicate promising results.

In such controversial issues, multidisciplinary approach seems in many cases mandatory, in order to establish proper therapeutic mapping.

Discussion

Myomas represent the most common benign entity in women of reproductive age [10]. Classification of uterine myomas is focusing

Figure 1: Classification of uterine myomas. Indman P, Contemporary OB/GYN, July 8, 2011.
Clinical features of uterine myomas reflect vaginal bleeding, abdominal pain with episodes of cystitis or severe bladder infection and defecation due to colon and rectum pressure [12]. All types of uterine myomas arise from smooth uterine muscle with benign origin.

On the contrary, in cases of rapid myomas growth, obesity, diabetes mellitus, malignant transformation, cystic necrosis and degeneration lead to sarcomatous transformation with configuration changes concerning proper therapeutic mapping.

Uterine sarcomas consist rare entity accounting about 10% of uterine malignancies exhibit poor prognosis [13]. After histologic establishment of the lesion, optimal treatment consists surgical intervention with total hysterectomy and bilateral salpigoopherectomy accompanied with series of chemotherapy and radiotherapy.

Many studies have been conducted in order to find molecular pathways such as genomic profiling leading to assiduous information concerning precision achievement, optimal treatment and therapeutic selection [14].

Many histologic types of uterine sarcomas, especially those with severe and extremely poor prognosis are examples of potential genetic mutations.

Along with atomic history, physical examination and imaging findings especially depiction from abdominal MRI, genetic profiling can solve many controversial issues regarding optimal diagnosis and treatment.

Many conducted studies have been indicated cases of loss or function mutations or homozygous establishment of TP53, RB1 and ATRX alterations [15].

On the other hand, increased incidence of BRCA 2 has been detected in cases of uterine sarcomas, pointing the significance of screening tests [16].

Hyperthermic intraperitoneal chemotherapy (HIPEC) represents an alternative noninvasive method approaching advanced stages of ovarian cancer or uterine sarcomas, especially cases of multiple recurrence [17].

Diffusion of peritoneal cavity with chemotherapeutic agents in increased temperature, can lead to satisfactory decrease of residual cancer volume. Hormonal therapy consists ultimate scope in postsurgical mapping in several types of uterine sarcomas [18].

In cases of low grade endometrial stroma sarcomas (LGESS), progestins reflect proper hormonal therapy.

Due to positive progesterone receptors, progestins such as megestrol acetate and medroxyprogesterone depict hormonal mapping in cases of recurrent disease or metastatic lesions of LGESS, regarding their antioestrogenic activity and increase of stroma proliferation [19].

mTOR/AKT/PI3K consists a very important signal regarding the transcription and proliferation of cancer cells.

Focusing on this entity, many studies managed to isolate the control protein responsible for all these activities and produce its inhibitor. Most well know m TOR inhibitor represents rapamycin or better Sirolimus, adjusting and inhibiting the protein transcription [20].

Unfortunately, in many cases of uterine sarcomas long term studies did not point promising results depicting controversial issues.

On the contrary, many clinical trials haven conducted in order to investigate pathologic response signals concerning adjuvant therapy in cases of metastatic lesions or recurrent malignant entities. (Table II)
To the best of our knowledge, uterine sarcomas consist a controversial and in many cases very difficult entity, being depicted only through histopathologic evaluation.

Definitely, more studies must be conducted in order to establish primary diagnosis and assiduous therapeutic strategy.

Disclosure of Interest
Author declares any financial interest with respect to this manuscript.

Conclusion
Uterine sarcomas represent a rare entity, which in many cases can lead to poor prognosis affecting overall survival and patient’s quality of life.

Optimal treatment depends on imaging findings depiction, especially abdominal MRI. Multidisciplinary approach seems mandatory in order to establish proper therapeutic mapping. Future therapeutic management reflects promising signals towards optimal target therapy.
References

Copyright: ©2022 Chrisostomos Sofoudis. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.