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Introduction
Epilepsy is one of the most dominant and devastating neurological 
disorders that affect people worldwide due to the abnormal and 
synchronous firing of the neuronal population in the brain. 
This disorder is a condition characterized by the spontaneous 
occurrence of multiple seizures. According to recent research, 
approximately 70 million people worldwide have epilepsy, with 
nearly 90% of them residing in developed countries[1]. As a 
result of the sudden and unpredictable onset of seizures, epileptic 
patients are at risk of suffering various types of severe injuries, 
including accidents, burns, falls, drownings, and possibly even 
impairment of the nervous system. These threats not only have a 
negative impact on their normal quality of life but can even lead 
to death in some cases. The Electroencephalogram (EEG) is a 
promising tool capable of recording electrical activity in the brain 
and providing a way to communicate with the external world to 
diagnose epilepsy [2]. The possibility of Nonlinear Time Series 
Analysis(NTSA) opens a new window for a better understanding 
of EEG signal dynamics, allowing us to gain insight into the 
pathological and physiological states of the brain.

Over the past few decades, several studies using non-linear methods 
have been addressed in biomedical applications, particularly in 
the brain, in order to unravel the hidden dynamics and prediction 
of various brain diseases [3]. As the human brain represents a 
complex and chaotic dynamical system, the EEG signals recorded 
from its cortex are chaotic, complex, nonlinear, and non-stationary 
[3,4]. With powerful NTSA, it could be possible to detect the 
changes in the EEG and obtain sufficient information about the 
state of the brain. The dynamics of the brain do not disclose all of 
the underlying parameters. It is common to observe the evolution 
of only one parameter as time-series data. The behavior of such 
a complex dynamical system can be analyzed by reconstructing 
the phase space of univariate EEG time series data, which can 
provide much better information about the state of the system 
regardless of the underlying governing laws. Several studies 
have shown that non-linear analysis of the EEG signals has been 
successfully applied for the detection and prediction of seizures. 
For instance, an estimation of the correlation dimension reveals a 
decreased activity during an episode of epileptic seizure compared 
with the healthy subjects, indicating low dimensional chaos and 
reduced complexity in the epileptic brain [5,6]. An exponential 
divergence between nearby trajectories in a dynamical system 
can be quantified by estimating the Lyapunov exponent. Studies 
reported a lowering of the Lyapunov exponent values during the 
onset of seizures, indicating a reduced amount of chaos in the brain 
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[6,7]. In a new wavelet chaos methodology was introduced to 
effectively detect seizures and epilepsy using nonlinear measures 
in the form of correlation dimension and the Largest Lyapunov 
exponent by extracting five subbands from the EEG signals [8]. 
One of the basic features of a time series has been its self-affine 
nature. As the name implies, self-affine time series cannot be 
distinguishable from a small portion when the appropriate factor 
scales them. Fractal time series have the property of being self- 
affine, so the dimension will always be a non-integer value. Fractal 
Dimension (FD) is a powerful nonlinear tool for determining the 
complexity and self-affinity of physiological signals. Several 
methods have been employed to compute the FD in the EEG for the 
detection of epileptic seizures. FD methods such as Katz FD and 
Higuchi FD were studied to compare the EEG signals of healthy 
and epilepsy groups [6]. The results show that both methods 
reduce FD values in epileptic groups. Similarly, an improved 
version of the Generalised FD was reported to distinguish between 
EEG signals of healthy and epileptic subjects [9]. Entropy- based 
nonlinear studies have been extensively employed help to assess 
the degree of complexity and the rate of information generation of 
the underlying dynamical system. Studies have reported significant 
changes in ApEn, SampEn and Kolmogorov entropy by lowering 
their values in the epileptic region compared to the nonepileptic 
region [6, 10-12]. The variations in the interictal and ictal phases 
of epileptic activity in patients with absence seizure EEG were 
recognized using Permutation entropy [13]. Various entropy-based 
measures were also implemented to discriminate between normal 
and epileptic EEG signals to enhance the accuracy of the model 
for automatic seizure classification [10].

The presence or absence of long-term memory in a time series can 
be evaluated using the Hurst exponent, a commonly used non-
linear measure to understand the complexity and predictability of 
physiological data. A method for predicting the onset of seizures 
several seconds prior to their occurrence has been proposed by 
analyzing variations in the Hurst exponent and fractal dimension 
of the EEG signal [14]. Several studies also proved the Hurst 
exponent as a non-linear tool for predicting the seizure onset and 
detecting seizures [15,16]. The ability to discriminate between 
healthy and epileptic groups was investigated, in which the EEG 
signals of both groups, especially the epileptic group, exhibit an 
antipersistent nature (H<0.5) [17]. On the contrary, the persistent 
nature (H>0.5) of EEG signals during the seizure has also been 
reported [15,18,19]. Recent developments in the theory of non-
linear dynamics have resulted in novel approaches to visualising 
and quantifying time series analysis. Over the past years, measures 
associated with the Recurrence plot (RP) and Recurrence 
Quantification Analysis (RQA) have been widely used in EEG 
analysis to provide information on the non- linearities, complexity, 
and recurrence of brain activity for a better understanding of the 
dynamical characteristics during an epileptic seizure [20,21]. 
Moreover, these measures can deal with short datasets with 
nonlinear, noisy and non-stationary signals. RQA measures 
have been used to classify the EEG signals between the normal, 
interictal and ictal groups [20] and to identify pre-seizure states 
from the invasive EEG recordings of five epileptic patients [22]. 
The dynamical changes in the RP of the EEG signals were studied 
on rats, showing different structures during the pre-ictal, inter-ictal 
and ictal phases [23]. Similarly, three RQA measures, namely 
Recurrence rate, Determinism and Entropy, were performed on rat 
EEG signals for predicting epileptic seizures [24]. Studies provide 
evidence that the electrical activity of the brain in the epileptogenic 
areas resembles a deterministic process, whereas a stochastic 
process was observed in non-epileptogenic areas [25]. These 

studies all emphasize the significance of the NTSA in the EEG 
signal, which reflects the dynamics of brain activity for detecting 
and improving the accuracy of predicting seizures in epileptic 
patients. However, we observed a scarcity of adequate literature 
describing the nonlinear analysis of the epileptogenic domain, 
particularly EEG signals from interictal, preictal, and ictal stages in 
epileptic patients. Although numerous studies have been conducted 
on seizure EEG signals using nonlinear methods, the focus of 
these studies has been limited to classification problems and 
comparisons between healthy and epileptic groups (interictal and 
ictal stages). It excludes the evaluation of preictal EEG recordings 
for recognising preictal stages, which aid in predicting seizure 
onset. Ignoring the preictal stage may result in an insufficient 
understanding of brain activity suitability for seizure prediction.

In this study, we focus on investigating the nonlinear characteristics 
of EEG signals from the interictal (time interval between two 
seizures), preictal (before the seizure), and ictal (during the 
seizure) stages of a seizure and quantifying them in the form of 
predictability and complexity of the epileptic brain. We used 150 
scalp EEG recordings collected from 10 epileptic patients, and then 
the three seizure stages were subjected to NTSA. The predictability 
and complexity of EEG signals are quantified by employing 
the Hurst exponent, Sample entropy, Lyapunov exponent and 
Fractal dimension. Furthermore, the dynamical changes at various 
stages were revealed by the RP and further quantified by three 
RQA measures, namely Determinism (DET), Average diagonal 
length(𝐿𝑎𝑣𝑔 ) and Recurrence time entropy (RTE). The DET and 𝐿𝑎𝑣𝑔 
helps to identify the deterministic dynamics, recurrent structures 
and predictability of EEG signals from epileptic brains. RTE is a 
complexity-based measure that captures the transitions between 
chaotic and periodic dynamics (and vice-versa) of EEG signals 
during the various seizure stages. The dynamical information of 
EEG signals from the epileptic brain could be extracted using 
NTSA by reconstructing the phase portrait analysis. An estimate 
of divergence rates between two trajectories in this space can 
be performed using the maximal Lyapunov exponent, which 
determines the predictability of a dynamical system. The Hurst 
exponent (H) determines the predictability and degree of long-term 
memory in time series data based on values ranging between 0 
and 1. A time series with H between 0 and 0.5 suggests a highly 
complex and antipersistent behavior. When H is close to 0.5, it is 
said to be Brownian motion, and thus it contains no information 
about the future, whereas when H is between 0.5 and 1, it shows the 
likelihood of forecast in persistent time series. The Sample entropy 
helps quantify the uncertainty and thus predictability of a time 
series. Fractal analysis of EEG signals reveals its self-similarity 
and complexity. FD is estimated using various methods, including 
box-counting, Kantz FD, Sevcik FD, epsilon bracket, Higuchi FD, 
power spectrum, and Petrosian C and D methods. We used Higuchi 
FD to characterise different structural properties of EEG signals in 
this paper because of its simplicity, high precision in results, and 
ability to estimate the dimension directly from the time domain. 
Adapting the Fourier transform technique to the EEG signal can 
provide a detailed description of the frequency components by 
converting the time domain signal into the frequency domain. The 
power spectrum is a straightforward method for distinguishing 
EEG signals between periodic and chaotic motion. Therefore, 
the power spectrum of a periodic motion has a discrete sharp 
delta peak, whereas the power spectrum of a chaotic motion 
has the continuous broadband nature of a noisy spectrum. The 
following structure is organized throughout the remainder of this 
paper. Section 2 describes the EEG data source and preprocessing 
procedure, as well as an overview of the nonlinear time series 
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analysis. The structure of RP and the three RQA measures for 
analysing dynamical differences at various stages of seizures are 
introduced. Section 3 contains the results and discussion, along 
with the limitations of this work. Finally, Section 4 concludes the 
paper by encapsulating the relevant points of this study.

Materials and Methods
EEG Data and Preprocessing
The EEG data for the present study were obtained from the 
publicly available dataset with the Neurology and Sleep Centre, 
Hauz Khas, New Delhi, India [26]. This dataset contains EEG 
time series segments recorded from ten epileptic patients using 
the Grass Telefactor Comet AS40 Amplification System, digitized 
at a sampling rate of 200 Hz and bandpass filtered between 0.5Hz 
and 70Hz. The recording is done by placing gold-plated electrodes 
on the surface of the scalp according to the International 10-20 
system. The EEG segments were carefully selected and cut out 
after being visually inspected by the clinical experts for various 
artifacts (eye blinks or muscle movements) from multiple channels 
of continuous EEG recording. The dataset is divided into three 
different folder sets based on the seizure stages, namely interictal, 
preictal and ictal stages. Each folder contains 50 EEG segments 
saved in MAT file format, with the duration of each segment lasting 
5.12s and having 1024 sample points. Thus, a total of 150 (50 × 
3) EEG samples are used for the analysis.

The electrical activity recorded from the cerebral cortex of the 
brain is often a challenging task to interpret, especially when 
the signal is contaminated with various artifacts like muscle 
movement, power lines and eye movements. In order to avoid 
spurious results, it is essential to denoise the EEG signals as 
much as possible to gain valuable information about the behavior
 
of each region of seizure. Typically, the human brain generates 
signals ranging from 0.1Hz to 100 Hz. In this study, frequencies 
up to 30 Hz are used to analyze the EEG signal, thus avoiding the 
power line (50Hz/60Hz) and high-frequency components that are 
regarded as noise. Therefore, as a step for preprocessing, the EEG 
segments are filtered using an IIR zero-phase 10th order low pass 
Butterworth filter at a cutoff frequency of 30 Hz.

Nonlinear Time Series Analysis
Nonlinear time series analysis (NTSA) consists of several methods 
for analysing and extracting dynamic information about the 
underlying system from the time-series data. This analysis provides 
insight into the behavior of brain dynamics in the present state and 
determines the future state, taking into account the complexity 
and predictability of the EEG time series. The following is a brief 
description of nonlinear methods used to examine the degree of 
complexity, predictability, and determinism associated with the 
EEG signals during various seizure stages in epileptic brains.

Phase Space Reconstruction
The analysis of any time series using non-linear dynamics theory 
begins with the reconstruction of phase space. This method allows 
the reconstruction of the whole dynamics of a complex non-linear 
system from a univariate time series to extract essential information 
from the underlying system [27]. Hence, we need to reconstruct 
the phase space of brain dynamics from one-dimensional EEG 
by using time delay and embedding dimension. Phase space 
reconstruction is usually achieved using the Takens time delay 
embedding theorem [28]. According to Takens theorem, the scalar 
time series of 𝑁 variables 𝑞1 , 𝑞2 ,𝑞3 ,…., 𝑞𝑁 from a dynamical 
system is embedded into an m-dimensional phase space vector 

𝑋(𝑡) can be formulated as

    
                                                                                       (1)

where 𝑡 = 1,2,…, 𝑁 − ( 𝑑 − 1)  𝜏. Here 𝜏 denotes the time delay, 𝑑 
denotes the embedding dimension, and 𝑁 represents the number 
of phase points in the reconstructed phase space. For a faithful 
representation of an attractor which is topologically similar to an 
attractor of an actual dynamical system, it is essential to specify 
an appropriate value of embedding dimension and time delay. 
In this work, the optimal time delay and embedding dimension 
are estimated by choosing the first local minimum of the Mutual 
Information function (MI) and the Caos method, respectively, for 
the phase-space reconstruction [29,30].

Lyapunov Exponent
The Lyapunov exponent (𝜆) or the Lyapunov characteristic 
exponent of a dynamical system is a measure that characterizes 
the average rate of separation of two nearby trajectories in the 
phase space. Let 𝛿  0  be the initial separation distance between 
the two trajectories 𝑍(𝑡) and 𝑍0(𝑡) at time 𝑡 = 0, then 𝛿  𝑡  at some 
time, 𝑡 = 𝑡 is given by the relation,

                                                                                 
                                                                              

(2)

where 𝜆 is known as the Lyapunov exponent [31]. The rate of 
separation between the nearby trajectories varies exponentially 
over time in the phase space, and so does the magnitude of the
𝜆. Therefore, if the value of 𝜆 is positive, this means that the 
nearby trajectories diverge over time, indicating that the system 
is chaotic, and if the value of 𝜆 is negative, the nearby trajectories 
converge over time, which points to the presence of a periodic 
regime in the system.

Complexity Analysis 
Hurst Exponent (H)
The Hurst exponent is a non-linear parameter for determining the 
predictability and degree of long-term memory in physiological 
time series data. It is also an indicator of roughness in a fractal 
time series based on the value, which ranges between 0 and 1. 
Moreover, the Hurst exponent gives better insight into analyzing 
the dynamics of the system and classifies the time series into 
different types such as persistent, antipersistent and random. When 
analyzing the dynamics of the cerebral process, if the value of H 
lies between 0 and 0.5, it indicates that the EEG time series exhibits 
an antipersistent behavior. In other words, it means that a rise in 
the trend of a process in the next period would be the opposite of 
what was in the previous period, i.e. a fall in the trend, indicating 
a strong long-range negative correlation. Further, if the value of 
H lies between 0.5 and 1, it indicates that the time series exhibits 
persistent behavior, which means that a rise in the process trend in 
the next period would be the same as the previous period, which 
indicates a strong long-range positive correlation providing more 
significant information about the past and the present, thereby a 
better prediction. Finally, if H=0.5, the processes are uncorrelated, 
and the present has no bearing on the future. As a result, the time
series can be considered random or Brownian motion. The 
calculation of the Hurst exponent using rescaled range analysis 
(R/S) method is expressed as:

                                                                            (3)
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Where     is the rescaled range, 𝑐 is a constant and 𝑁 is the number 

of observations [32]. The ability of H to classify the time series 
based on predictability suggests that it might provide a valuable 
tool for identifying variations in brain activity during different 
regions of seizures. Additionally, the Hurst exponent can be used 
to calculate the fractal dimension (D) using the relation:

                                     𝐷 = 2 − 𝐻                              (4)

Higuchi Fractal Dimension
Fractal dimension (FD) is a commonly used measure in non-linear 
dynamics to characterize the complexity and self-similarity of 
biological signals. The fractal object has the generic property 
that exhibits self-similarity across different time scales (scale-
invariant) and has a non-integer dimension. Typically, the greater 
the degree of self-similarity in the signal pattern, the higher the 
fractal dimension value and vice-versa. The EEG signal has 
the property of fractal nature as the dynamics of EEG exhibit 
statistical similarities across different time scales [32]. Unlike 
other measures, the Higuchi Fractal Dimension (HFD) is evaluated 
directly from the time domain without reconstructing the attractor 
in phase space, making it relatively simple to implement in the 
EEG signal. The dimension of HFD for a one-dimensional EEG 
signal is always between 1 and 2, which expresses the complexity 
of a two-dimensional curve representing a signal. A high value of 
HFD corresponds to a high degree of complexity or self- similarity 
in the signal.

The procedure for calculating HFD is as follows:
Consider an original time series having N number of sample 
points 𝑋1 ,𝑋2 ,𝑋3 ,…,𝑋𝑁. From this time series, 𝑘 new time series 
are constructed, which are represented by 𝑋𝑘 as:

𝑋m𝑘 = [𝑋  (𝑚)  , 𝑋  (𝑚 + 𝑘)  , 𝑋  (𝑚 + 2𝑘)  ,…𝑋(𝑚 + 𝑖𝑛𝑡(𝑁 − 𝑚)/𝑘)𝑘]

where 𝑚 = 1,2,3…𝑘 represents the initial time and 𝑘 represents 
the time interval between sample points. Then, the length 𝐿𝑚 (𝑘) 
of each curve 𝑋𝑘 is calculated as:

This calculation of 𝐿𝑚  𝑘  is repeated for each 𝑘 ranging from 1 
𝑡𝑜 𝑘𝑚𝑎𝑥. The length 𝐿(𝑘) of the curve is computed by taking the 
mean of the 𝑘 values of 𝐿𝑚 (𝑘) for 𝑚 = 1,2,3…𝑘 as indicated in:

                                                                           (5)
                                                                               

The FD of a curve is determined from the slope of the least-squares 
linear best-fitting procedure by plotting log(L(k)) against log(1/k) 
[33]. The only parameter required for the HFD algorithm is the 
optimal value of 𝑘𝑚𝑎𝑥. For this, we first calculated the average of 
the HFD values for different values of 𝑘𝑚𝑎𝑥 in all EEG segments 
(each segment having 1024 sample points) from each stage. 
Then we investigate the association between the HFD values in 
each stage (Interictal, Preictal, and Ictal) with different values of 
𝑘𝑚𝑎𝑥 by computing HFD for 𝑘𝑚𝑎𝑥= 2 to100. We observed that an 
association between the three stages remained consistent where 
the average HFD plateau reaches saturation once 𝑘𝑚𝑎𝑥 > 25. In 
the present study, we have chosen 𝑘𝑚𝑎𝑥 = 40, as this value clearly 

distinguishes the maximum separation between the three stages. 
The average HFD values for the interictal, preictal and ictal stages 
for different 𝑘𝑚𝑎𝑥 values are depicted in Figure 1. There is also 
a monotonous increase in HFD values with an increase in 𝑘𝑚𝑎𝑥.

Figure 1: The average HFD of the corresponding three stages 
(Interictal, Preictal and Ictal) for different values of 𝑘𝑚𝑎𝑥 ranging 
from 2 to 100. A dashed line at 𝑘𝑚𝑎𝑥 = 25 represents the starting 
point at which the HFD plateau reaches saturation. The dashed 
line at 𝑘𝑚𝑎𝑥 = 40 is the value chosen for this study.

Sample Entropy
Sample Entropy (SampEn) is a commonly used method in non-
linear dynamics for measuring the uncertainty and complexity 
of biological signals. Conceptually, SampEn has defined as the 
negative logarithm of the conditional probability that two similar 
successions over ‘m’ points will remain similar over the following 
‘m+1’ points within a tolerance ‘r’ while ignoring self- matches 
using the equation given by [33]:

                                                                                       (6)

where, L is the total number of sample points in a time series, m 
is the embedding dimension, 𝐴𝑚+1(𝑟) represents the likelihood 
that two points will match when they are m + 1, and 𝐵𝑚(𝑟) is 
the probability that two sequences will match when two points 
are m apart. Thus, a low value of SampEn corresponds to more 
regularity, predictability, self-similarity and less complexity in 
time series data. The ability of SampEn to classify biological 
signals into deterministic and stochastic signals on the basis of 
irregularity and persistence with a relatively short number of data 
points would be beneficial in representing the overall complexity 
and predictability of EEG signals during an epileptic seizure. 
Here, m and r are the two parameters that should be assigned for 
computing the SampEn. However, there is no specific solution for 
the appropriate selection of these values. Typically, the value of 
m is usually 2 or 3, and the value of r is usually between 0.1 and 
0.25 times the standard deviation of the original time series. Based 
on previous research, we have chosen m=2 and r=0.2 (20%) for 
the analysis since these parametric values indicate good statistical 
validity in estimating the SampEn [34].
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Recurrence Plot
In the real-world, many dynamical systems exhibit a fundamental 
property of revisiting the previously visited states (or recurrence). 
Recurrence Plot (RP) is a promising graphical tool in non-linear 
dynamics to visualize complex dynamics of systems on a 2D 
representation in phase space which shows the recurrences of 
states. Transforming the phase space from high to low dimension 
reveals the underlying dynamics and hidden periodicities that 
provide better insight into the behavior of a dynamical system. The 
recurrence of the region at time 𝑖 and at time 𝑗 is constructed by a 
𝑁 × 𝑁 symmetric square matrix 𝑅 with 0 and 1, which corresponds 
to black and white dots computed as:

                                                                                                        (7)

Where Θ(•) is the Heaviside function, 𝜖 is a predefined threshold 
radius of a sphere centred on              is the 𝐿2 norm (Euclidean 
distance between two points), and N is the total number of 
considered points [37]. A recurrence is said to have occurred if 
the point 𝑥𝑗 falls within the neighbourhood of radius 𝜖 of the sphere 
centred at 𝑥𝑖, then 𝑅𝑖𝑗 = 1 and a black dot would be displayed in 
the RP, otherwise 𝑅𝑖𝑗 = 0, which displays a white dot. A crucial 
parameter in the analysis of RP involves choosing an appropriate 
threshold value for 𝜖 for obtaining robust results. In this work, 
we determined the threshold value 𝜖 as the 4th percentile of the 
pairwise distance distribution of all points in the phase space in 
order to ensure the value of the global Recurrence Rate (RR) is 
always 0.04 [35].

Figure 2: Example for recurrence plot of three types of time 
series (a) Periodic signal generated from the 3Hz Sine wave (𝜏 
= 4 ,𝑑 = 5, 𝜖 = 0.18, 𝑅𝑅 = 0.04 ). (b) A chaotic signal from the 
𝑦 component of Lorentz attractor (𝜏 = 16, 𝑑 = 5,𝜖 = 6.78,𝑅𝑅 = 
0.04) and (c) White noise with mean=0 and variance =2 (𝜏 = 2, 
𝑑 = 3,𝜖 = 1.67,𝑅𝑅 = 0.04)

The typology and texture of the RP vary from one dynamical 
system to another. For example, the RP of periodic systems is 
characterized by longer diagonal lines parallel to the main diagonal 
compared to chaotic systems, which are typically exhibited by 
short diagonal lines along with isolated dots. The diagonal lines in 
the RP represent the trajectories passing through the same sphere 
of radius 𝜖 in the phase space multiple times, which indicates the 
deterministic or periodic behavior of the dynamical system. The 
RP for an uncorrelated random signal or stochastic process does 
not have any parallel diagonal lines; instead, it consists entirely 
of many black dots that are isolated from one another. These 
dynamical characteristics of the RP can provide a comprehensive 
picture of complexities in the brain dynamics at a glance as the 
seizure progresses through different stages. Figure 2 depicts the 
simulated examples of the RP of a periodic signal, chaotic signal 
and uncorrelated noisy signal, where both axes represent time.

Recurrence Quantification Analysis
Recurrence Quantification Analysis (RQA) is a non-linear method 
for quantifying the visual representation of the RP by means of 

structures based on diagonal and vertical lines by determining the 
number and duration of recurrences in order to obtain meaningful 
information about a complex dynamical system. The main 
advantage of RQA is its ability to analyze time- series data without 
making any assumptions about the signals underlying stationarity 
and non- stationarity. Furthermore, RQA can handle noisy as 
well as non-stationary time series with relatively short datasets, 
thereby allowing it to be suitable for quantifying the dynamics of 
brain activity, particularly for the detection of seizures. In order 
to investigate the complexity and determinism of the EEG signals 
from different stages of the seizure of this dataset, we will highlight 
three RQA quantifiers, namely the Determinism (DET), Average 
diagonal length (<L>) and the Recurrence time entropy (RTE) 
for the current study. In the following, the definitions of these 
RQA measures are briefly outlined. The first measure of RQA is 
the DET, defined as the fraction of recurrence points that have 
diagonal lines to all recurrence points in the RP [36]:

                                                                        (8)

where 𝑃(𝑙) is the histogram of the diagonally oriented line of length 
𝑙 in the RP and 𝑙𝑚𝑖𝑛 is the predefined minimum threshold length of 
a diagonal line (fixed as 𝑙𝑚𝑖𝑛 = 2 in this study). Thus, a correlated 
and periodic process is characterized by long diagonal lines in the 
RP, indicating a high DET value, whereas an uncorrelated and 
chaotic process can usually be recognized by short diagonal lines 
representing a low DET value. As a result, the RQA variable DET 
typically specifies the predictability or determinism of the system. 
Another measure in RQA is the 𝐿𝑎𝑣𝑔, defined as the average length 
of diagonal structures present in the RP and is interpreted as the 
mean prediction time of the system given by [36]:

                                                                         (9)

The last RQA measure is the RTE, defined as a measure of 
complexity based on the white vertical (non-recurrent) lines of 
lengths 𝑡𝑘 in the RP, which represents the recurrence time, is 
given by

                                                                                          (10)

Where 𝑝(𝑡𝑘 ) is the probability of a recurrence time 𝑡𝑘 and 𝑇𝑚𝑎𝑥 
is the largest recurrence time [35]. This measure is particularly 
well suited to capture the transitions between chaotic and 
periodic dynamics (and vice versa) due to its association with 
the Kolmogorov-Sinai entropy. Therefore, a periodic or regular 
process generally has a low RTE value, whereas a chaotic or 
irregular process has a high RTE value.

Spectral Analysis
EEG signals are the voltage variations of brain activity in the 
time domain. The Fourier transform can be used to reveal spectral 
information that is hidden in the time domain signals. With a 
simple and effective technique based on the Fast Fourier Transform 
(FFT), it is possible to convert time-domain signals to frequency 
domain signals and compute the real-valued power spectral density 
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(PSD) function, which gives the power distribution of the signal 
over the frequency range. The power spectrum is a simple way 
of distinguishing the periodic, quasiperiodic and chaotic behavior 
of dynamical systems [37]. Therefore, the power spectrum of a 
periodic motion with frequency f has a discrete sharp delta peak 
at f as well as peaks at its various harmonics. On the other hand, 
a chaotic motion is characterized by continuous broadband nature 
in the power spectrum.

Statistical Analysis
The statistical tests are imperative in the fact that the variations in 
these quantitative measures are typically relative in nature. In this 
study, a paired t-test was employed to compare the means of the 
non-linear measures and RQA measures between the interictal vs 
preictal, preictal vs ictal and interictal vs ictal stages of seizure at 
a 95% confidence level in order to determine whether there exists 
any significant difference.

Results and Discussion
This study aims to explore the nonlinear characteristics of EEG 
signals from the interictal, preictal, and ictal stages of a seizure 
using nonlinear time series analysis and quantify them in terms 
of predictability and complexity. We analysed 150 EEG samples 
collected from ten epileptic patients during the interictal, preictal, 
and ictal stages of the seizure. After preprocessing, the nonlinear 
characteristics of the EEG signals were examined and compared 
using nonlinear parameters such as Sample entropy, Lyapunov 
exponent, Higuchi fractal dimension, Hurst exponent, RP, and 
RQA. The analysis for this work was implemented by
 
utilizing two programming languages: Python and R studio. The 
nonlinear parameters such as SampEn and HFD are assessed 
using the “antropy” package in python, Hurst exponent using 
the nolds package, Recurrence plots and RQA measures with 
the open-source ‘Recurrence plot and quantification’ package 
and the estimation of maximum Lyapunov exponent using the 
‘nonlinearTseries’ package in R studio [38-40].

Nonlinear time series analysis is an effective method for 
comprehending the underlying dynamical system. As the EEG is 
a time-varying signal that reflects various physiological conditions 
in the brain, it can be subjected to nonlinear time series analysis. 
The EEG waveforms from the interictal preictal and ictal stages 
are shown in Figure 3(a-c). When we examine the EEG signals 
in these three stages, we can see that their amplitudes and shapes 
differ significantly. During the interictal stage, the EEG signal 
seems unpredictable with a small magnitude and an irregular 
shape (Figure 3a). As the brain transitions towards an ictal stage, 
the EEG signal takes on a more regular shape, with much higher 
amplitudes (Figure 3c). The spectral features of the EEG signal 
analysed through the PSD reveal frequency components, thereby 
characterizing the signal as periodic and chaotic motion. The 
PSD of the three seizure stages is illustrated in Figure 3(d-f). 
From the PSD of the ictal EEG signal shown in Figure 3(f), it is 
clearly visible that the frequency is almost narrowed to a single 
delta peak at 2.5Hz and its various harmonics at 5Hz, 7.5Hz and 
10Hz due to the enhanced regularity, which is typical behavior 
of a periodic system. However, the PSD of interictal and preictal 
EEG signals depicted in Figure 3(d-e) consists of a continuous 
broadband noisy spectrum with sharp delta peaks indicating the 
presence of unstable periodic orbits embedded in the attractor. 
The dynamical evolution of the epileptic brain can be adequately 
visualized by reconstructing an attractor in the phase space with 
an appropriate time lag and embedding dimension. Therefore, 

we determined the proper time lag by selecting the first local 
minimum of the Average Mutual Information (AMI) function 
and the embedding dimension using the algorithm proposed by 
Cao with the ‘nonlinearTseries’ package in R. The phase-space 
representation of the EEG signals during the interictal, preictal 
and ictal stages are shown in Figure 3 (g-i).

(a)                         	 (b)	                     (c)

Figure 3: Time series of (a) interictal, (b) preictal and (c) ictal 
EEG signal (first row), Power spectrum of (d) interictal, (e) preictal 
and (f) ictal EEG signal (second row) and Phase portrait of (g) 
interictal, (h) preictal and (i) ictal EEG signal (third row).

The dynamic properties of EEG signals from these three stages 
demonstrate significant changes in phase space trajectories as time 
progresses from the interictal to the ictal stage. When compared 
to the interictal and preictal stages, the morphology of geometric 
structure in the phase portrait appears more periodic at the time 
of seizure onset (Figure 3i), supporting the observation of an ictal 
EEG signal in the power spectrum. Furthermore, the trajectories 
of an interictal and preictal stage in the phase portrait appear to 
be a more complex and irregular motion that moves in and out 
(self-organize) within the attractor.

Complexity Analysis
An evaluation of the sample entropy, Hurst exponent, fractal 
dimension and Lyapunov exponent of the EEG signal provides 
quantitative information on the complexity, predictability and 
randomness. Sample entropy of EEG signals reveals information 
regarding the complexity and uncertainty of the epileptic brain. 
The estimated mean values of Sample entropy for the three stages 
are represented in a box plot, as shown in Figure 4a. Results show 
that the value of SampEn is substantially lower throughout the 
seizure period (ictal stage) than during the preictal and interictal 
periods. This means that when a seizure begins, large groups of 
neurons attempt to synchronise with one another, resulting in a 
tremendous electrical discharge that lowers the complexity of the 
brain. Therefore, as the brain transitions from an interictal to an 
ictal stage, the decreasing tendency in the SampEn values implies 
increasing regularity and decreased stochastic nature in the EEG 
signal, suggesting the deterministic and predictable nature of the 
brain. In order to ensure that the statistical differences between 
the different seizure stages are significant, a paired t-test was 
performed. Results suggest that the difference between the interictal 
and preictal (p-value = 9.94 × 10-5), preictal and ictal (p-value 
=1.92 × 10-7) and interictal and ictal (p-value =4.74 × 10-26) stages 
are statistically significant. Such small p-values can also ensure 
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that the observed difference between the sample means reflects 
the actual differences rather than a chance of random sampling 
of data. This finding is in accordance with the theoretical results 
performed between healthy and epileptic groups whose seizures 
EEG signals had significantly lower entropy values compared to 
the healthy EEG signals [6,10].

Figure 4: The estimates of (a) Sample entropy, (b) Lyapunov 
exponent, (c) Higuchi Fractal Dimension and (d) Hurst exponent 
for the interictal, preictal and ictal stages of a seizure.

The largest Lyapunov exponent (λ) is a measure that determines 
the predictability and long- term behavior of a dynamical system. 
A positive value of the λ indicates the presence of chaotic behavior 
in a system. The box plot of the λ for the interictal, preictal and 
ictal stages of a seizure is depicted in Figure 4b. It can be seen that 
the mean values of λ for all three stages turned out to be positive, 
which is a sign of chaos in the epileptic brain. Furthermore, the 
ictal stage has a smaller value of λ than the preictal and interictal 
stages. This smaller value of λ in the ictal stage shows that the 
amount of chaos in the brain is reduced during the seizure episode. 
Furthermore, this shows that EEG signals become more predictable 
and less random as seizure approaches. The high value of λ for 
the interictal stage is due to the irregularity in the EEG signal, 
which decreases when a seizure occurs, as observed by the phase 
portrait analysis and power spectrum. Results from the paired 
t-test suggested that the differences between the λ values for the 
interictal and preictal (p-value = 1.46 × 10-9), preictal and ictal 
(p-value = 0.009) and interictal and ictal (p-value =1.43 × 10-13) 
stages were statistically significant. Previous studies have reported 
similar results with the presence of chaos in the EEG of both 
healthy brains and epileptic brains, though the λ tends to be lower 
for epileptic ones [6,7]. Another study performed on intracranial 
EEG signals from ten rats with a genetic model of absence epilepsy 
showed the chaotic processes with positive values of λ during the 
interictal EEG and spike-wave discharges (SWDs) [41]. Several 
studies have been reported on mathematical models of seizure 
activity and SWDs. The theoretical models, such as the Neural 
mass model and Neural network model, were compared with the 
experimental analysis of SWDs using λ from the time series, and 
the results showed similar signal characteristics, with the value 
of λ being positive in both models [42].

Fractal analysis of EEG signals reveals information regarding 
the irregularity, dimensionality and complexity of various 
physiological conditions of the brain. In this study, the fractal 
dimension was evaluated using the Higuchi algorithm for 
quantifying the complexity of the different seizure stages. It can 
be realized from Figure 4c that the mean value of HFD shows 
a decreasing trend in the EEG dynamics as the brain transitions 
from the interictal to the ictal stage. The lowering of HFD values 
implies a reduced complexity and irregularity in the epileptic 
brain. This means that the seizure EEG signals are less complex 
and more predictable compared to the interictal and preictal 
EEG signals. Results from the paired t-test suggested that the 
differences between the HFD values for the interictal and preictal 
(p-value = 0.001), preictal and ictal (p-value =7.31 × 10-11) and 
interictal and ictal (p-value =3.17 × 10-22) stages were statistically 
significant. Previous studies have shown that patients with epilepsy 
had lower fractal dimension measures when compared to the 
healthy groups, thereby confirming the validity of our result 
[43]. The predictability and randomness of the time series can 
be measured by the Hurst exponent parameter. The average of 
the Hurst exponent values are computed for the different seizure 
events. It was observed that the values of the Hurst exponent 
show an increasing trend as the dynamics of the brain progress 
from the interictal to the ictal stage, as shown in Figure 4d. This 
rising trend of Hurst exponent values implies reduced randomness 
and greater predictability of EEG signals in the epileptic brain. 
Moreover, it should be noted that the Hurst exponent values 
obtained for all the stages of this dataset are between 0.5 and 1, 
suggesting that the EEG signals of these stages in the epileptic 
brain exhibit persistent behavior and long-term memory process 
(high correlation between the points) of time series. The paired 
t-test suggested a significant difference between the EEG signals of 
the Hurst exponent in the interictal and preictal (p-value = 0.028), 
preictal and ictal (p-value =1.73 × 10-12) and interictal and ictal 
(p-value =2.22 × 10-19) stages of a seizure. Similar results with a 
Hurst exponent value greater than 0.5 have been found in other 
studies [15,18,19]. In contrast, some studies have reported the 
opposite results, which showed an antipersistent behavior during 
seizures where the Hurst exponent value was less than between 
0 and 0.5 [17]. It is pretty understandable that epileptic activity 
is caused by the synchronized bursting of neuronal populations 
in the epileptogenic region, which results in spike discharge in 
the EEG waveform. More synchronization in the EEG results in 
a high Hurst exponent value. Our finding agrees with this process 
by registering high values of the Hurst exponent during seizure 
activity in the EEG. Furthermore, the fractal dimension (FD) can 
be derived from the Hurst parameter (H) by the equation (4). From 
this relation, the average FD values of the corresponding H value 
can be calculated for the interictal, preictal and ictal stages as 1.24, 
1.22 and 1.13, respectively. Interestingly, we find a decreasing 
trend of FD values from this relation during the evolution of 
seizures. This finding is in consonance with our earlier observation 
of FD values evaluated using the Higuchi algorithm. Consequently, 
these findings emphasize the fact that epileptic seizures tend to 
be associated with lower complexity, which is evident from low 
values of fractal dimension and sample entropy, as well as higher 
predictability and less randomness, which is evident from high 
values of the Hurst exponent. In order to ensure the complexity, 
predictability and whether or not the epileptic brain during the 
seizure stages follows deterministic nature, we further analyzed 
the dynamic characteristics of recurrence plots and performed 
recurrence quantification analyses.
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Recurrence Plot and Recurrence Quantification Analysis
The visual representation through the structural patterns in the 
RP reveals hints about the underlying dynamical behavior of an 
epileptic brain during the different stages of the seizure. The RP 
of an interictal stage seems to exhibit very short diagonal lines 
with isolated black dots and rectangle-like structures formed by 
horizontal and vertical lines (Figure 5a). The rectangle- shaped 
structure represents the brain as being in an intermittent state 
or a transient process between stochasticity and determinism. 
The pattern in the RP during the preictal stage alters by the 
emergence of several short diagonal lines which runs parallel to 
the main diagonal, signifying that the system is considerably more 
deterministic, predictable and less chaotic than in the interictal 
stage (Figure 5b).

Figure 5: Recurrence plot of (a) interictal, (b) preictal and (c) 
ictal EEG signal. Here, the threshold value of 𝜖 for the RPs are 
chosen as the 4𝑡ℎ percentile of distance distribution of all points 
in the phase space by ensuring the global Recurrence rate=0.04.

Compared to the interictal and preictal stages, the RP of an ictal 
stage is identified by the enhancement of several diagonal lines 
having different lengths that closely resemble the RP structure of 
the periodic signal as shown in Figure. (2a). The presence of long 
diagonal line patterns in the RP is a signature of determinism, 
periodicity and predictability of a dynamical system. Further 
evidence can be seen in the time series of an ictal EEG signal 
(Figure. 5c) that exhibits certain repetitive patterns over time, and 
the phase portrait and the PSD clearly demonstrate its periodicity 
as well due to the synchronous firing of a cluster of neurons in 
the epileptic focus. In order to further explore the complexity and 
determinism of the interictal, preictal and ictal from the small-
scale structures in the RP, three RQA measures are performed, 
namely DET, 𝐿𝑎𝑣𝑔 and RTE.

The diagonal structures of the RP are quantified by defining the 
RQA variable DET, which vividly defines the recurring behavior. 
The more extended diagonal structure is characterized by a higher 
value of DET (closer to 1) and higher predictability of the system. 
Figure. (6a) depicts the box plot of the DETs for the various seizure 
stages of ten epileptic patients. It can be seen that the DETs in the 
preictal and ictal stages were generally higher compared with the 
interictal stage. Moreover, the DETs for the interictal, preictal and 
ictal stages are greater than 0.94. Higher DET values imply that the 
dynamical characteristics of the brain during the various phases of 
seizure are governed by deterministic mechanisms associated with 
high predictability of the brain. This evidence of the deterministic 
nature can also be seen in the RP of EEG signals transitioning 
from interictal to ictal stages by increasing the emergence of long 
diagonal lines, clearly indicating recurrent behavior (Figure 5). 
The paired t-test reveals a significant difference in the EEG signals 
of the DET for the stages between interictal and preictal (p-value 
= 0.024) and interictal and ictal (p-value = 0.008). However, the 
DET does not appear to significantly differ between the preictal and 
ictal (p-value =0.849) stages. This finding is supported by previous 

research where they observed an increase in the determinism of the 
EEG data during the seizure state [44]. Similar to DET, the RQA 
variable 𝐿𝑎𝑣𝑔 measures the average result of the length of diagonal 
line structure in the RP, considered as the mean prediction time of 
the system. The high value of 𝐿𝑎𝑣𝑔 points out that the dynamics of 
the system tend to become more regular and deterministic. From 
Figure. (6b), we observe that the 𝐿𝑎𝑣𝑔 shows an increasing trend in 
the evolution of seizures from interictal to ictal stages. This result 
suggests that during the onset of a seizure, the dynamics of the 
brain become more regular, with higher deterministic recurrent 
properties and an increased mean prediction time than during the 
preictal and interictal stages.

Figure 6: Box plot of (a) Determinism (b) Average diagonal 
length and (c) Recurrence time entropy for the interictal, preictal 
and ictal stages of a seizure.

The statistical test suggested that there was a significant difference 
between the EEG signals of the 𝐿𝑎𝑣𝑔 in the interictal and preictal 
(p-value = 0.003), preictal and ictal (p-value =0.005) and 
interictal and ictal (p-value =2.05 × 10-8) stages of a seizure. This 
observation is on the same path as former studies recognizing the 
presence of more extended diagonally oriented structures in the 
preictal and ictal stages compared to the interictal stage and had 
higher 𝐿𝑎𝑣𝑔 for the EEG signal of an ictal stage than the interictal 
stage [20,25].

Unlike DET and 𝐿𝑎𝑣𝑔, the RQA variable Recurrence time entropy 
(RTE) measures the length of white vertical lines between each 
pair of recurrence points in the RP, which can be used to detect 
periodicity and determine the degree of complexity of the signal, 
with values ranging from 0 to 1. A perfectly periodic process has an 
RTE value close to 0, whereas a chaotic or stochastic process has 
an RTE value close to 1. The box plot of the RTE measures for the 
three seizure phases is shown in Figure (6c). It can be seen that the 
RTE shows a decreasing trend from the interictal stage to the ictal 
stage. In other words, the RTE for the ictal stage was significantly 
lower than those in the interictal and preictal stages. Low RTE 
indicates that the signal is less complex and more periodic. This 
finding suggests that the onset of a seizure is associated with lower 
complexity, implying a decrease in active neuronal processes in the 
epileptic brain. The paired t-test suggested a significant difference 
in the EEG signals of the RTE between the preictal and ictal (p-value 
= 3.2 × 10-9) and interictal and ictal (p-value = 6.61 × 10-10), whereas 
no statistically significant difference was observed for the interictal 
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and preictal (p-value = 0.024) stages. Thus, the RQA measures 
DET, 𝐿𝑎𝑣𝑔, and RTE were able to detect significant differences in 
the dynamics of EEG signals to differentiate interictal, preictal, 
and ictal stages of epileptic patients. The increasing values of DET 
and 𝐿𝑎𝑣𝑔 in the epileptogenic region indicate that their activities 
were more deterministic and recurrent, whereas decreasing values 
of RTE indicate a lower degree of complexity in this region. In 
fact, epileptogenic regions play a significant role in developing 
seizures. Their presence would likely change the characteristics 
of EEG dynamics in the epileptic brain and increase the frequency 
of seizures in patients.

In addition to the experimental EEG signal analysis, we have 
quantified the DET, 𝐿𝑎𝑣𝑔 and RTE measures from the three 
simulated signals (periodic, chaotic, and random) in order to 
compare their determinism and complexity with the results of 
RQA measures observed from the EEG signals of an epileptic 
brain. This was achieved by generating the Periodic signal using 
a 3Hz Sine wave, a chaotic signal using the y-component of the 
Lorentz attractor, and a Gaussian white noise signal with a mean 
of zero and variance of 2. Table 1 compares the RQA measures 
for the periodic, chaotic and noisy signals

Table 1: Comparison of RQA Measures for the Periodic, 
Chaotic and Noisy Signals.
RQA 
measures

Periodic 
signal
 (Sinusoidal)

Chaotic signal
(Lorentz)

Noisy signal
(Gaussian)

DET 1 0.99 0.05

𝐿𝑎𝑣𝑔 39.89 17.208 2.125

RTE 0.146 0.638 0.7105

It is clear that the DET for a perfectly periodic signal of a 
dynamical system is 1, as expected. As a result, the periodic 
system is completely deterministic in the sense that the future 
can be determined with certainty. However, the DET of the 
signal from a nonlinear chaotic Lorentz attractor has also been 
closer to 1, indicating the deterministic nature of the dynamical 
system, and it is known that a specific set of equations governs 
the underlying dynamics of the system. Even though it has the 
property of determinism, the presence of chaos makes long-term 
predictions impossible. On the other hand, the DET is very low 
for an uncorrelated noisy signal, making it impossible to predict 
even for short terms. The 𝐿𝑎𝑣𝑔 of a periodic signal is significantly 
higher than that of a chaotic signal due to the presence of more 
diagonal lines in the RP, indicating the predictability of the signal. 
Similarly, the RTE of a periodic signal is also significantly lower 
than that of noisy and chaotic signals. In this study, the RQA 
variable DET evaluated from the EEG signals during the three 
seizure stages of epileptic brains was found to be greater than 0.94. 
As previously stated, the DET value closer to 1 emphasises the 
deterministic behaviour of the brain. Furthermore, the calculation 
of the Lyapunov exponent reveals the presence of a chaotic regime 
during these stages, with the exponent value decreasing during 
the ictal stage. The EEG represents the overall dynamics of the 
brain as a result of numerous processes superimposed on each 
other. The existence of chaotic properties would imply that the 
epileptic brain is extremely sensitive to slight alterations in the 
initial inputs of the brain process, making it difficult for long-term 
prediction. The deterministic nature suggests that in the epileptic 
brain, short-term prediction of seizures is possible. When the 
brain is purely chaotic, even minor changes to the initial state of 
brain functions can have a significant impact on its behaviour. 

On the other hand, if the brain is purely deterministic, the onset 
of seizures can be predicted with certainty, and neither of these 
things occurs in general.

Despite all the above facts that this study has some limitations. 
Primarily, the nonlinear analysis of EEG from epileptic patients 
was considered using a database that was not sufficiently large. 
Second, each EEG segment from this database is selected based on 
the continuous signals of different channels by the clinical experts 
that are almost free from various artifacts (eye blinks, muscle 
movements, line noise and electrode movements). In contrast, 
artifact-free EEG signals cannot be achieved in diagnosing and 
predicting epileptic activity in a real-time scenario. Hence, this 
study does not draw definite conclusions concerning the complexity, 
degree of determinism and particularly the synchronization 
phenomena in the other electrode locations of the brain region as 
the seizure progresses over time. However, our results provide 
indications that the EEG signal during the seizure periods of an 
epileptic brain exhibits a higher degree of determinism and less 
complexity in addition to the chaotic behavior. Considering all of 
the issues raised above, our future goal will focus on evaluating 
these nonlinear measures on real- time continuous EEG signals 
of epileptic patients using several large databases. It will help 
generalize these findings into a mathematical model for predicting 
the behavior of the epileptic brain.

Conclusion
Brain seizures are severe neurological disorders that can impair 
the mental and physical functioning of epileptic patients. The 
application of nonlinear dynamics applied to EEG signals provides 
insight into the nature of the underlying dynamics of seizures, 
allowing for a better understanding of complex brain activity. This 
study used nonlinear time series analysis methods to investigate 
the dynamical characteristics of EEG signals recorded during the 
interictal, preictal and ictal stages of seizure from 10 epileptic 
patients. The nonlinear measures such as Lyapunov exponent, 
Sample entropy, Fractal dimension, Hurst exponent, Recurrence
plot and RQA measures like DET, 𝐿𝑎𝑣𝑔 and RTE were performed 
to reveal significant differences in the nonlinear characteristics 
and recurrent structures of EEG signals during the different 
seizure stages. Results suggest that the nonlinear measures such 
as SampEn, HFD, and the RQA measure RTE significantly 
decreased as the brain transitioned from the interictal to the ictal 
stages, implying a reduction in complexity owing to a decrease 
in active neuronal processes in the epileptic brain. On the other 
hand, the Hurst exponent shows an increasing trend from the 
interictal to the ictal stages, indicating predictability and persistent 
behavior of the brain. When a seizure begins, large groups of 
neurons attempt to synchronize with one another, resulting in a 
massive electrical discharge that causes more regularity and high 
amplitude in the EEG signal. This regularity nature was visualized 
through the analysis of time series, power spectrum, and phase 
portrait. However, the regularity of the seizure EEG signal does 
not imply the absence of chaos in the brain. The presence of a 
chaotic regime in the brain was confirmed during the three seizure 
stages by the Lyapunov exponent. It can be concluded that even 
though the regularity of the EEG signal increases as the brain 
progress from interictal to ictal stages, the brain remains in a 
chaotic regime throughout all seizure stages. The RQA measure 
DET has significantly high values with greater than 0.94 in all 
seizure stages and 𝐿𝑎𝑣𝑔 shows an increasing trend from the interictal 
to the ictal stage, indicating the more deterministic nature and less 
complexity of the epileptic brain. Similarly, the ictal stage was 
identified by the long diagonal line structure in the RP, which 



Citation: Shervin Skaria, Jinchu I, Sunsu Kurien Thottil,  Sreelatha KS (2025) Unveiling the Dynamics of Epileptic Seizures Through Nonlinear EEG Analysis . Journal 
of Neurology Research Reviews & Reports. SRC/JNRRR-271. DOI: doi.org/10.47363/JNRRR/2025(7)213

Volume 7(4): 10-11J Neurol Res Rev Rep, 2025

emphasize the regularity and deterministic behavior of the brain, 
which shows the consistency of our observations. These valuable 
findings highlight the fact that the underlying dynamics of the 
epileptic brain is not only a chaotic complex dynamical system 
during these phases, but it is also deterministic in the sense that 
short-term prediction of seizure activity is possible for a certain 
period. Moreover, the aforementioned non-linear measures could 
effectively detect the changes in the EEG signals and differentiate 
between the interictal, preictal and ictal stages of a seizure in 
epileptic patients. Thus, the methods using Nonlinear time series 
analysis are found to be promising tools that reveal the underlying 
dynamical differences of EEG in diagnosing and predicting the 
onset of epileptic seizures.
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Highlights
•	 We investigate the nonlinear characteristics of EEG signals 

from the interictal, preictal, and ictal stages of a seizure 
using nonlinear methods and quantify them in the form of 
predictability and complexity.

•	 The Hurst exponent values exceed 0.5 in all stages, signifying 
the predictability of the EEG signals in the epileptic brain.

•	 The RQA measure DET exhibits high levels of determinism 
in all seizure stages.

•	 The epileptic brain is found to be both chaotic and highly 
deterministic.
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