
Research Article Open    Access

Turbulent Kinetic Energy and Budget of Heterogeneous Open 
Channel with Gravel and Vegetated Beds

Department of Civil Engineering, Ekiti State University, Ado Ekiti, Nigeria

OP Folorunso

*Corresponding author
OP Folorunso, Department of Civil Engineering, Ekiti State University, Ado Ekiti, Nigeria. E-Mail: ftobex@ymail.com

Received: April 12, 2021; Accepted: April 16, 2021; Published: April 21, 2021

Journal of Civil Engineering 
Research & Technology

Keywords: Turbulent Kinetic Energy, Vegetation, Gravel, 
Heterogeneous, Hydraulic, Open Channel, Flexible, Rigid

Introduction
The modified turbulent kinetic energy (K) in vegetated flow 
assumed to be steady can be expressed as [1]:  

                                                                                     (1)

where Ps, is the shear production, Pw, the wake production, Tt, 
turbulent transport, Tp, pressure transport, and ε the dissipation. 
In a fully developed flow, the largest terms are the shear turbulent 
production Ps and dissipation ε. Under equilibrium conditions, 
these terms tends to be in balance and under non-equilibrium 
conditions, turbulent kinetic energy is transported either through 
turbulent transport Tt, or pressure transport Tp. Example of 
turbulent kinetic energy budget is showing in Figure 1 [1].

Figure 1: Turbulent Kinetic Energy for Emergent and Submerged 

Conditions [1].

Turbulent Intensity and Kinetic Energy
The magnitude of turbulence can be quantified using the turbulence 
intensity, i.e,

                                                                                       (2)

Where σ is the standard deviation of the velocity fluctuation. 
Experimental observations in open channel flows have shown that 
the turbulence intensity will be greater near the channel boundary 
where turbulence is being generated, and decrease with depth 
away from the boundary towards the free surface [2]

Turbulence Kinetic Energy (K)
With turbulence being transferred by the turbulent kinetic energy 
(K), the K relates the mean kinetic energy per unit mass of fluid 
with the turbulent eddies; this is characterized by the three 
dimensional turbulence intensities. The turbulent kinetic energy  
K = 1/2 (                                 
                               was obtained on the basis of the turbulence 

intensity values along the streamwise, lateral, and vertical 
directions.

Material and Methods
The experiments were conducted in 22mm long rectangular 
re-circulating flume of width B=614mm at the University of 
Birmingham. The channel is supplied from a constant head 
tank with a capacity of 45,500l in the laboratory roof. A flow 
discharges (Q) (30.0 l/s) with corresponding flow depth (H) of 
130mm width to depth ratio (B ⁄ H) of 4.7 achieve subcritical flow 
condition was investigated. In what follows these experimental 
conditions are referred to as EXPT1 and EXPT2 respectively. 
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Detailed velocity measurements were made at three cross sections 
(CRS1, CRS2 and CRS3) at distances of 17.5m, 17.85m and 18.2m 
respectively downstream from the channel inlet. In the results that 
follow, the gravel region of the bed extends over (0≤y⁄B≤0.5), the 
interface occurs at (y⁄B=0.5), and the vegetated region extends 
over (0.5≤y⁄B≤1.0), wherey is the lateral distance from the left 
hand side looking downstream and B is the channel width. The 
streamwise direction x is in the direction of flow. The transverse 
direction y is perpendicular to x in the lateral direction, while 
the vertical direction is denoted by z and is perpendicular to the 
xy plane (positive upwards). The corresponding time average 
velocity components are U,V,W respectively. Figure 2 shows the 
bed configuration for EXPT1 and EXPT2 [4-10].

Figure 2: Bed Configuration for EXPT1 and EXPT2

Results and Discussion
Figures 3 and 4 show the lateral distribution of the turbulent 
kinetic energy for CRS3. Figure 3 shows that the maximum 
value of turbulent kinetic energy (K) occurs near bed (z⁄H≤0.2) 
over the vegetated zone. For depths greater thanz⁄H≅0.2, the 
turbulent kinetic energy value reduces towards the free surface. 
However, the TKE value over gravel region in EXPT2 remains 
approximately constant with flow depth (Figure 4). The highest 
turbulent kinetic energy was calculated for flexible vegetation 
arrangement compared to the rigid vegetation [11-20]. 

Figure 3: Lateral Disribution of Turbulent Kinetic Energy (K) 
at CRS3 EXPT1

Figure 4: Lateral Disribution of Turbulent Kinetic Energy (K) 
CRS3 (bottom) EXPT2

Turbulent Energy Budget 
To clarify further the structure of turbulence in the flow, the 
turbulent energy terms were explored using the velocity data to 
explain the relative significance of the processes that control the 
turbulent flow. The turbulence kinetic energy was obtained as 
described in the introduction, the vertical turbulence transport 

(vertical flux) was obtained as                       the turbulence production

                      and dissipation                    where v is the kinematic 

viscosity [3]. Figure 5 and Figure 6 show the turbulence terms for 
the flow, with the values normalized by the depth of flow. Both the 
turbulence production and the turbulence kinetic energy attained 
maxima near the bed, and decrease towards the free surface (Figure 
5 and Figure 6). In contrast, the turbulence transport Tr tends to 
increase towards the free surface when compared with other 
turbulence terms; this indicates the transport of the near bed 
turbulent energy towards the free surface. Similar mechanisms 
have been observed by others [3]. Hence, in this region, Tr serves 
as source of turbulence compensating for reduced turbulence 
production at the free surface. However, it should be noted that 
the high turbulence intensity near the bed over the vegetated 
region (Result not presented) in EXPT1 indicates an inflection 
point; this becomes an essential source of turbulence generation 
hence enhancing turbulence production and kinetic energy over 
the vegetated bed relative to gravel bed. It can be observed that 
the higher values of turbulence production are recorded over the 
vegetated bed in EXPT1 (Figure 5b). However, comparison with 
turbulent intensity shows that this is enhanced by the vertical 
velocity fluctuating component of the flow. Turbulence production 
over the vegetated bed in EXPT2 is comparable to the turbulence 
production over the gravel bed with similar magnitude of 
production terms (Figure 6a and 6b). The dissipation rate exhibits 
faster decay of turbulence kinetic energy over the vegetated bed 
in comparison to the gravel bed (Figure5and6) [21-40].
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Figure 5: Vertical Distribution of the Turbulent Energy Terms 
(EXPT1): (a): Gravel Bed (b): Vegetated Bed

Figure 6: Vertical Distribution of the Turbulent Energy Terms 
(EXPT2): (a): Gravel Bed (b): Vegetated Bed

Conclusion
It is concluded from the current research work that the maximum 
turbulence production and kinetic energy attained maxima near the 
bed due to shear, and decreases towards the free surface. However, 
the near bed turbulent energy is transported towards the free 
surface hence tends to increase turbulent transport Tr towards the 
free surface when compared with other turbulence terms [41-51].
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