
Volume 1(4): 1-4J Arti Inte & Cloud Comp, 2022

Open Access

Journal of Artificial Intelligence &
Cloud Computing

ISSN: 2754-6659

Review Article

Traditional Techniques and Emerging Technologies in Observability

USA

Sriram Pollachi Subburaman* and Srividhya Chandrasekaran

*Corresponding author
Sriram Pollachi Subburaman, USA.

Received: December 05, 2022; Accepted: December 13, 2022; Published: December 19, 2022

Keywords: Distributed Infrastructures, Monolithic Architecture,
Microservices Architecture, Quality of Service (QOS), Monitoring,
Telemetry

Introduction
The evolution of distributed infrastructures, characterized by
multiple components spread across networked computers that
communicate and coordinate through message passing, has been
significantly influenced by the imperative to attain exceptional
Quality of Service (QoS). This pursuit of superior QoS is essential
for fostering optimal Quality of Experience (QoE), driving notable
advancements in distributed systems [1]. The advent of cloud
computing ushered in the era of cloud-native development,
where developers prioritize creating, deploying, and maintaining
applications at hyper-scale over physical deployment locations
[2,3]. This approach enables developers to focus entirely on
continuous, agile software delivery, assuming that infrastructure
is readily available. However, the rapid advancement of these
paradigms is also causing a proliferation of new applications and
services, stretching the capabilities of Ops teams to monitor and
manage effectively. In recent years, the landscape of software
architecture has undergone significant changes. One major change
is the move away from large monolithic applications to smaller,
more finely grained deployment units called microservices.
These microservices communicate mostly through synchronous
Representational State Transfer (REST) and asynchronous events,

departing from the previous trend of larger and less flexible
applications [4].

In static monolithic architecture, a database, UI and the backend
are deployed as a single unit. Any change in the component,
requires a build and deploy of entire application. In this case,
the application developer is mainly responsible for collecting
observability data.

Contrastingly, microservices architecture organizes components
as a set of loosely coupled services deployable independently and
managed by Ops teams. As developers decompose applications into
microservices, transporting them in containers across distributed
cloud providers and consistently redeploying them under DevOps
supervision, the demand for meticulous observability becomes
increasingly imperative. The evolving techniques for designing
and managing distributed systems underscore the importance
of observing services and infrastructure to ensure seamless
operations.

Distinguishing Monitoring from Observability
Observability is defined as a measure of how well the internal state
of a system can be inferred from its external outputs [5]. Telemetry
data, including logs, traces, and metrics, are key external outputs
for distributed systems like microservices. They encompass details
such as machine resource usage and application-generated log-

ABSTRACT
Identity and access management is the bedrock of cybersecurity. Identity access to digital resources is governed by its techniques, procedures, and rules,
which also define the breadth of identity permission over those resources. Some new cyberattack or data breach pops up in the news every week. Many
data breaches occur due to inadequate security measures, software flaws, human mistake, malevolent insiders, or the abuse of access and privileges. An
improved access control system is possible with the use of AI methods. In order for organisations to better handle authentication and access control in order
to reduce cyber risks and other IAM difficulties, studies into artificial intelligence in IAM are necessary. With an eye towards AI’s potential uses in identity
and access management - more especially in the areas of privilege monitoring, administration, and control - this research investigates the nature of the
connection between AMIS and AI. To better understand how AI works in minimising recognised IAM issues, this study aimed to present evidence from the
relevant literature. This study’s results show how AI reinforces identity and access management, which helps with automating procedures, keeping up with
technology advances, and reducing the prevalence of cyber threats. One way to accomplish this is by using a binary classification system for security access
control, which takes the PDP problem and turns it into a yes/no question. In order to create a distributed, effective, and accurate policy decision point
(PDP), a vector decision classifier is also built using the supervised machine learning technique. Kaggle-Amazon access control policy dataset evaluated
performance by comparing the proposed mechanism to previous research standards in terms of performance, duration, and flexibility. Given that the PDP
is not in direct contact with the PAP, the proposed approach accomplishes a high level of secrecy in relation to access control requirements. In conclusion,
PDP-based ML can manage massive access requests, execute many major policies simultaneously, and have a 95% accuracy rate, all without policy conflicts,
with a response time of about 0.15 s. The security of access control can be enhanced by making it more responsive, flexible, dynamic, and dispersed.

Citation: Sriram Pollachi Subburaman, Srividhya Chandrasekaran (2022) Traditional Techniques and Emerging Technologies in Observability. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-255. DOI: doi.org/10.47363/JAICC/2022(1)238

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 2-4

level data. Observability offers both high-level system health
overviews and detailed insights into implicit failure modes.

Monitoring is the process of collecting data and generating reports
on different metrics that define system health monitoring and
observability are often discussed together as they both contribute
to maintaining system reliability [6]. While they share a common
goal, there exists a nuanced difference between them, and they are,
in fact, interconnected. To put it simply, observability does not
replace monitoring, nor does it render monitoring unnecessary;
rather, they complement each other and work in tandem. Monitoring
notifies operators of operational failures, while observability helps
identify the location, cause, and trigger of the failure.

Figure 1: Observability vs Monitoring [7]

Industry Contributions to Observability and Monitoring
Monasca an open-source monitoring service, seamlessly integrates
with OpenStack. It is designed to be multi-tenant, scalable,
and fault-tolerant, providing a Representational State Transfer
(RESTful) API for efficient metrics processing and querying.
Additionally, it offers streaming alarm and notification engines
[8]. Another widely used tool is Open Telemetry, employed to
collect telemetry data from cloud-native applications and their
underlying infrastructure. This enables the monitoring of their
overall health and performance. Grafana Labs contributes an
open-source monitoring and observability platform that facilitates
querying, viewing, and alerting based on metrics [9,10]. The ELK
stack, comprising Elasticsearch, Logstash, and Kibana, provides
centralized logging, aiding in the discovery of application issues
from a unified location [11].

For microservices monitoring, Apache Skywalking is an open-
source observability tool engineered to assist operators in
identifying issues, receiving critical alerts, and monitoring system
health. Consul, a service mesh solution, offers a comprehensive
control plane, encompassing service discovery, configuration, and
segmentation capabilities [12,13]. Cilium, an open-source solution
based on extended Berkeley Packet Filter (eBPF) technology,
ensures secure network connectivity between services deployed
on Linux container management platforms such as Docker and
Kubernetes [14].

Prometheus, a Cloud Native Computing Foundation (CNCF)
project, is a system that provides multi-dimensional time-series
monitoring for resources and services. It collects metrics, evaluates
rules, displays results, and issues alerts [15].

Among cloud-based vendors, Microsoft Azure Monitor collects and
analyzes telemetry data from Azure and on-premises environments

[16]. It monitors web application availability, performance, usage,
and optimizes infrastructure performance. Amazon CloudWatch is
utilized for monitoring AWS resources and applications, offering
visibility into resource utilization, application performance, and
operational health across the entire stack, from applications to
supporting infrastructure [17]. Google Cloud Operations Suite
encompasses various components such as Cloud Monitoring,
Cloud Trace, and Cloud Logging, covering multiple observability
dimensions [18].

Observability Datatypes
The three important observability data types are logs, metrics,
and traces. Logs comprise structured and unstructured text lines
generated by a system during the execution of specific code
segments. Log monitoring is emphasized in [19]. Metrics are
numeric representations of data utilized by Ops teams to assess the
long-term behavior of a system, service, or network component.
Metrics monitoring is emphasized in [20]. Traces illustrate the
complete path of a request or action as it traverses different
components within a distributed system. Trace monitoring is
emphasized in [21].

Figure 2: The Three pillars of observability [22]

Observability System Functionalities and Characteristics
Connection
 Identify the potential anomaly from other anomalies. For instance,
a modern observability system should collect and analyze data
every second, presenting correlated information alongside
anomalies for users to quickly identify potential root causes of
issues.

Structure
With the dependency graphs in the tools, the system should be
able to inject the right instrumentation automatically.

Response
The observability system should handle the issues dynamically.
Granularity is a key characteristic of an observability system.

Interrelated Context
When operators review metrics regarding the health of a
microservice, they should be capable of observing its impact on
other services or components within the distributed system, as
well as how those workloads are influenced by the Kubernetes
cluster hosting them, and vice versa.

Simplify and Expedite Exploration
Imagine accessing all telemetry data in a single, near real-time
view from any location. This innovative design should provide
intuitive visualizations, requiring no configuration, enabling Ops
teams to efficiently navigate large, intricate, distributed systems,
and promptly identify and prioritize performance issues.

Unified Repository
This involves storing, alerting, and analyzing telemetry data using
cohesive APIs, regardless of its distributed placement across

Citation: Sriram Pollachi Subburaman, Srividhya Chandrasekaran (2022) Traditional Techniques and Emerging Technologies in Observability. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-255. DOI: doi.org/10.47363/JAICC/2022(1)238

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 3-4

multiple nodes in an edge cluster. Typically, operators seek a
platform capable of ingesting metrics, events, logs, and traces
from various sources, including proprietary and open-source
agents, APIs, and built-in instrumentation. However, accessing
data through such unified APIs must be scalable to accommodate
high ingest loads during peak periods.

Separate data sources from destinations: By decoupling sources
and sinks, it should be simple to introduce or modify tools and
redirect data without affecting production systems. For example,
integrating a messaging bus into the observability system should
fully separate the source and sink, eliminating direct interaction
between them.

Observability Challenges
Based on the observability requirements and some of the best
practices, we summarize some of the challenges in building
observability tools concerning cloud architecture [23].

Microservice
Microservice architecture presents unique observability challenges
due to its distributed nature. Each microservice operates on an
isolated computing platform, such as a container, leading to
interdependencies. Failures in one microservice can cascade
throughout the system, impacting overall functionality. Therefore,
beyond internal observability, understanding complex relationships
among microservices is essential for a comprehensive view of the
deployed system [24].

Serverless
Serverless platforms, typically furnish basic dashboards to monitor
ongoing processes. However, these dashboards have limited
capabilities, such as workload visualization and resource utilization
reports, as they lack root access to the underlying operating system,
making installation and configuration of additional observability
tools impossible [25].

Containers
Collecting and analyzing telemetry from distributed containers
is challenging, especially considering the dynamic nature of
container deployments. Therefore, practitioners often prefer
observability solutions integrated with container orchestration
platforms like Kubernetes [26].

Heterogenous Data
Analyzing the diverse observability data poses challenges,
requiring cleaning, formatting, and cross-referencing with time
as the common factor.

Infrastructure
Merging logs, metrics, and traces gathered from infrastructure
components like networks, servers, VMs, containers, and
serverless functions with other telemetry such as application and
OS data is essential for obtaining a comprehensive view. The
complexities of infrastructure monitoring have been addressed
in our prior research [27,28].

Conclusion
This paper has explored various strategies for achieving
comprehensive observability in both applications and infrastructure
within modern software systems. By leveraging a combination of
traditional monitoring techniques and emerging technologies such
as distributed tracing and service mesh architectures, organizations
can enhance their operational visibility and troubleshooting

capabilities. Through practical case studies and implementation
guidelines, we have demonstrated the importance of observability
in ensuring the reliability and performance of software systems
in diverse environments. Moving forward, continued research
and adoption of observability best practices will be essential for
meeting the evolving needs of complex and dynamic software
ecosystems [29].

References
1. Alimi IA, Patel RK, Zaouga A, Muga NJ, Xin Q, et al.

(2021) Trends Cloud Computing Paradigms: Fundamental
Issues Recent Advances and Research Directions Toward
6G Fog Networks. Rijeka, Croatia:IntechOpen https://www.
intechopen.com/chapters/77006.

2. Hurwitz JS (2020) Cloud Computing for Dummies.
Indianapolis, IN, USA:Wiley http://www.it-docs.net/
ddata/372.pdf.

3. Gannon D, Barga R, Sundaresan N (2017) Cloud-native
applications. IEEE Cloud Comput 4: 16-21.

4. Lauretis L (2019) From monolithic architecture to
microservices architecture. Proc IEEE Int Symp Softw Rel
Eng Workshops (ISSREW) 93-96.

5. What Is Observability. O’Reilly Online Learning
https://www.oreilly.com/library/view/observability-
engineering/9781492076438/ch01.html.

6. Observability vs Monitoring - Difference Between Data-
Based Processes – AWS. Amazon Web Services, Inc.

7. Usman M, Ferlin S, Brunstrom A, Taheri J (2022) A Survey
on Observability of Distributed Edge & Container-Based
Microservices. IEEE Access 10: 86904-86919.

8. (2022) Monasca. OpenStack https://wiki.openstack.org/wiki/
Monasca.

9. (2022) High-quality, ubiquitous, and portable telemetry
to enable effective observability. OpenTelemetry https://
opentelemetry.io/.

10. (2022) Grafana Loki. Grafana Labs https://grafana.com/oss/
loki/.

11. (2022) Logstash: Collect Parse Transform Logs. Elastic
https://www.elastic.co/logstash.

12. (2022) Apache SkyWalking. SkyWalking https://skywalking.
apache.org/.

13. (2022) Identity-based networking with Consul. HashiCorp.
https://www.consul.io/.

14. (2022) Introduction to Cilium & Hubble. Cilium https://docs.
cilium.io/en/stable/overview/intro/.

15. (2022) From metrics to insight Power your metrics and
alerting with the leading. open-source monitoring solution.
Prometheus https://prometheus.io/.

16. Sahay R, Sahay R (2020) Azure monitoring. Microsoft
Azure Architect Technologies Study Companion: Hands-on
Preparation and Practice for Exam AZ-300 and AZ-303,
Berkeley, CA, USA:Apress 139-167.

17. What is Amazon CloudWatch? AWS https://docs.aws.
amazon.com/AmazonCloudWatch/latest/monitoring/
WhatIsCloudWatch.html.

18. (2022) Google Cloud’s operations suite (formerly Stackdriver).
Google Cloud https://cloud.google.com/products/operations.

19. Cinque M, Della Corte R, Pecchia A (2019) Advancing
monitoring in microservices systems. Proc IEEE Int Symp
Softw Rel Eng Workshops (ISSREW) 122-123.

20. Brandón A, Pérez MS, Montes J, Sanchez A (2018) FMonE:
A flexible monitoring solution at the edge. Wireless Commun
Mobile Comput 2018: 1-15.

21. Fonseca R, Porter G, Katz RH, Shenker S, Stoica I (2004)

Citation: Sriram Pollachi Subburaman, Srividhya Chandrasekaran (2022) Traditional Techniques and Emerging Technologies in Observability. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-255. DOI: doi.org/10.47363/JAICC/2022(1)238

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 4-4

Copyright: ©2022 Sriram Pollachi Subburaman. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

X-Trace: A pervasive network tracing framework. Proc 4th
USENIX Symp Netw Syst Design Implement 14.

22. (2021) Unified observability and security. Dynatrace https://
www.dynatrace.com/.

23. Pourmajidi W, Zhang L, Steinbacher J, Erwin T, MiranskyyA
(2023) A Reference Architecture for Observability and
Compliance of Cloud Native Applications. Arxiv https://
arxiv.org/pdf/2302.11617.pdf.

24. Levin J, Benson TA (2020) Viperprobe: Rethinking
microservice observability with ebpf. 2020 IEEE 9th
International Conference on Cloud Networking (CloudNet)
1-8.

25. Cordingly R, Heydari N, Yu H, Hoang V, Sadeghi Z, et al.
(2021) Enhancing observability of serverless computing with
the serverless application analytics framework. Companion of
16 the ACM/SPEC International Conference on Performance
Engineering 161-164.

26. Moradi F, Flinta C, Johnsson A, Meirosu C (2017) Conmon: An
automated container based network performance monitoring
system. 2017 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM) 54-Z62.

27. Pourmajidi W, Steinbacher J, Erwin T, Miranskyy A (2017)
On challenges of cloud monitoring. Proceedings of the 27th
Annual International Conference on Computer Science and
Software Engineering 259-265.

28. Pourmajidi W, Zhang L, Miranskyy A, Steinbacher J,
Godwin D, at al. (2021) The challenging landscape of cloud
monitoring. Knowledge Management in the Development of
Data-Intensive Systems 157-189.

29. (2018) Lessons from Building Observability Tools at Netflix.
Medium https://netflixtechblog.com/lessons-from-building-
observability-tools-at-netflix-7cfafed6ab17.

