Journal of Physics \& Optics Sciences

The Crystal in the Ether VII

Paul T E Cusack

BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada
*Corresponding author
Paul T E Cusack, BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada Email: St-michael@hotmail.com

Received: April 26, 2020; Accepted: May 12, 2020; Published: May 15, 2020

Abstract

In this paper, we base our work on Wall's work on Fluorocarbons, particularly polytetrafluoroethylene - better known as Teflon. Previous papers by this author have established that the ether is made up of crystals of PTFE. This paper provides further support to this thesis. A lot is known about PTFE already Experiments will have to be devised to prove the ether is Teflon.

Keywords: Ether; Crystals; Fluorocarbons; PTFE; Polytetrafluorethylene

Introduction

As we wind down Astrothoelogy theory, we provide a few sport calculations using well known equations and variable from previous papers on the theory. We consider the crystals that form in the Ether; how they are made up. This paper relies heavily on reference [2].

Figure 1: Helical Molecule PTFE
Helical Shape for the PTFE molecule.
$109^{\circ} \times 7=763^{\circ}=0.1335 \mathrm{rads}=\mathrm{s} @ 300 \mathrm{~K} 15$ carbons in the backbone.
$14 \mathrm{x} 109^{\circ}=1526^{\circ}=2.66 \mathrm{rads}=$ S.F.
$15 @ 50 \mathrm{gm} / \mathrm{mole}=75 \times 6.023=451.7 \mathrm{gm}$
$451.7 / 15=3.01=c$
$15 \mathrm{x}(\sin 1)=126.2 \sim \rho$
$15 \times 100 \mathrm{gm} / \mathrm{mol} \times 6.023=0.90345$ Pascals @ 76.6% crystallinity
$0.90345 \times 1 / \sqrt{ } 2 \mathrm{~m} / \mathrm{s}^{2}=6.388=1 / 1565 \sim 1 /$ Moment
Polar moment of Inertia for a cylinder:
$\mathrm{J}=\mathrm{ML}^{2} / 12(15)(50 \mathrm{gm} / \mathrm{mol})(6.023)(15 \times 147)^{2} / 12=18.23$

Deflection

$\mathrm{y}=\mathrm{M} / \mathrm{EI}=[1-\sin 1] /(0.4233)(182)=205$
$205 \times 76.666 \%$ crystallization=1571
$117 \mathrm{psi}=0.806 \mathrm{MPa}$
$\mathrm{PV}=\mathrm{nRT}$
$(0.806)(19905)=1604$
$\mathrm{nRT}=1604$
$\mathrm{n}=1604 /(0.8314 \mathrm{x} 300 \mathrm{~K})=643$
$1 / 50\left(10^{-11}\right)=2000 \mathrm{Mpa}$
$\mathrm{MG}=2000\left(10^{6}\right) \times 6.67\left(10^{-11}\right)=1334=\mathrm{s}$
Internal Dampening:
$\Delta \mathrm{W}=\pi \sigma 0^{2} \mathrm{~J} "=\pi[(8 / 3) / \pi]^{2}(34473)$
$=248.36$
$=1 / 402.6$
$=1 / \mathrm{Re}$
The following equations were taken from reference [2] page 385.
$\mathrm{Q}_{\mathrm{n}} \rightarrow \mathrm{R}+\mathrm{R}$
$90 \rightarrow \mathrm{R}_{\mathrm{i}}+276$
$\mathrm{R}_{\mathrm{i}}=186$
$2 \mathrm{k}_{1} \mathrm{nQ}_{\mathrm{n}}$
$=2(\mathrm{k})(10)(15 \mathrm{x} 6.023)$
$=2.71 \mathrm{k}$
$\sim e^{1} k$
$\mathrm{Rn} \rightarrow \mathrm{R}_{\mathrm{n}-1}+\mathrm{M}$
$\mathrm{R}_{15} \rightarrow \mathrm{R}_{14}^{\mathrm{n}-1}+(6.023 \times 50 \mathrm{gm} / \mathrm{mol})$
$(6.023 \times 4) \rightarrow R_{14}+300$
$\mathrm{R}_{14}=276$
$\mathrm{k}_{1} \mathrm{R}_{15}=24 \mathrm{k}_{2}$
$1 / \mathrm{e}^{1} \mathrm{k}=24 \mathrm{k}^{2}$
$\mathrm{k}=24(2.71 \mathrm{k} 2)$
$=65.28 \mathrm{k}$

```
=G}\mp@subsup{0}{0}{}\textrm{k
=\pi/Ln 1.618)k
2k,nQ 
=2(65.28)(15)(90)
=176931
=1/5651
5651x 4.233
=1334
S
M=k
M=(50 x 6.023)
=300
300=(2.71)R }\mp@subsup{\textrm{n}}{n}{
Rn=110.7
dM / dt= k2R
2=65.28R
R=32.64
R=2J"=2/G0
=2J"=2\pi/Ln 1.618
J"=G0
2(19 x 6.023)=R
R=2(114)
R=228
2J"=2(228)=456
```



```
(15)(6.023)+300->90 +Q300-114+Re
```



```
300->300-114+Re
\(\mathrm{R}_{\mathrm{e}}=114\)
\(=19 \times 6.023\)
Fluorine
\(\mathrm{k}_{3} \mathrm{R}_{\mathrm{n}} \mathrm{mQ} \mathrm{m}_{\mathrm{m}}\)
\(=65.2 \times 24 \times 50 \times 300\)
\(=235\)
\(\mathrm{Q}_{186}+\mathrm{R}_{186}\)
\(=2(186 \times 6.023)\)
\(=2240\)
\(2 \mathrm{k}_{1} \Sigma \mathrm{nQ}_{\mathrm{n}}(\mathrm{t})=2 \mathrm{k}_{4} \mathrm{R}^{2}(\mathrm{t}) / \mathrm{V}(\mathrm{t})\)
\(2(65.28)(15)(90)=2 \mathrm{k}_{4}(228)^{2} / 352\)
\(1=\mathrm{k} 4\)
2kR4 \({ }^{2}\)
\(=2(339.058)(228)^{2}\)
\(=352.512\)
\(\mathrm{k}_{1} \mathrm{~W}(\mathrm{t}) / \mathrm{m}=\mathrm{k}_{1} \rho(\mathrm{t}) / \mathrm{m}\)
\(\mathrm{k} 1=24 \mathrm{k}\),
\(\mathrm{R}=24 \mathrm{k}_{2}(33744) / 50=440237\)
\(\mathrm{Vol}=4 / 3 \pi \mathrm{R}^{3}\)
\(=4 / 3(\pi)(44)^{3}\)
\(=3373\)
~338
```

```
\(\mathrm{R}_{\mathrm{i}}+\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{Q}_{\mathrm{i}}+\mathrm{Q}\)
    \(186+228 \rightarrow 186(6.023)+Q_{j}\)
    \(Q_{J}=1368\)
    \(\mathrm{R}_{\mathrm{i}}=228 \Rightarrow 228 / 6.023=38=19 \times 2 \Rightarrow\) Fluorine
\(2 \mathrm{k}_{4} \mathrm{R}^{2}\)
\(=2(338)(228)\)
\(=350.8\)
\(\mathrm{R}_{\mathrm{i}}+\mathrm{R}_{\mathrm{i}} \rightarrow \mathrm{Q}_{\mathrm{i}+{ }^{+}}\)
\(186+228=414\)
\(\mathrm{Q}_{\mathrm{i}+\mathrm{j}}=414 \times 6.023\)
\(=249.35\)
\(\sim 250=\) Period T
1/249.35=401=Reynold's Number
\(\mathrm{dQ} / \mathrm{dt}=\mathrm{k}_{1} \mathrm{~W}(\mathrm{t}) / \mathrm{m}\left[\mathrm{k}_{4 \mathrm{~d}} / \mathrm{k}_{4}+\sigma\right]\)
\(=65.28(338) / 50\left[\mathrm{k}_{4 \mathrm{~d}} / 1+(8 / 3 / \pi)\right]\)
\(=44129\left[\mathrm{k}_{4 \mathrm{~d}}+0.8488\right]\)
\(2000=441.29 \mathrm{k}_{4 \mathrm{~d}}+374.5\)
\(\mathrm{k}_{4 \mathrm{~d}}=0.3689=1 / 2.7148=1 / \mathrm{e}^{1}\)
\(\mathrm{k} 4 \mathrm{c}=1-0,3689=0.6311=1 / 0.1585=1 /\) Moment
\(300 \mathrm{~K} \times 76.666 \%\) crystal \(=230\)
\(230-273.15=1 / 23.169=1 / \operatorname{Ln} \pi\)
\(\mathrm{x}=\operatorname{Ln} \mathrm{x}\)
\(x^{\prime}=1 / \mathrm{x}=1 / \operatorname{Ln} \mathrm{x}\)
\(\mathrm{M}=\mathrm{Ln} \mathrm{t}\)
\(\mathrm{dM} / \mathrm{dt}=1 / \mathrm{t}=\mathrm{E}\)
\(\int \mathrm{dM} / \mathrm{dt}=\int 1 / \pi\)
\(=\mathrm{M} / \pi\)
\(=4.482 / \pi\)
\(=14.26\)
\(=\) Cusack's Critical Percentage
\(\mathrm{dM} / \mathrm{dt}=1 / \mathrm{t}=\mathrm{k}_{2} \mathrm{R}=2.718 \mathrm{R}=\mathrm{E}\)
\(186+228=2240 \times 6.023=2484\)
\(2484-1618=0.866=\sin 60^{\circ}\)
```


Conclusion

So we see some interesting results from out calculations on the crystal in the Ether [1].

References

1. Wall, Leo (1972) Fluoropolymers. Wiley-Inter-science.
2. Benenson, W (2002) Handbook of Physics Springer, NY.

Copyright: ©2020 Paul T E Cusack. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

