Journal of Physics & Optics Sciences

Research Article

Open d Access

The Crystal in the Ether VII

Paul T E Cusack

BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada

*Corresponding author

Paul T E Cusack, BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada, Email: St-michael@hotmail.com

Received: April 26, 2020; Accepted: May 12, 2020; Published: May 15, 2020

ABSTRACT

In this paper, we base our work on Wall's work on Fluorocarbons, particularly polytetrafluoroethylene – better known as Teflon. Previous papers by this author have established that the ether is made up of crystals of PTFE. This paper provides further support to this thesis. A lot is known about PTFE already. Experiments will have to be devised to prove the ether is Teflon.

Keywords: Ether; Crystals, Fluorocarbons, PTFE, Polytetrafluorethylene

Introduction

As we wind down Astrothoelogy theory, we provide a few sport calculations using well known equations and variable from previous papers on the theory. We consider the crystals that form in the Ether; how they are made up. This paper relies heavily on reference [2].

Figure 1: Helical Molecule PTFE

Helical Shape for the PTFE molecule.

 $\begin{array}{l} 109^{\circ}\times7=763^{\circ}=0.1335\ rads=s\ @300K\ 15\ carbons\ in\ the\ backbone.\\ 14x\ 109^{\circ}=1526^{\circ}=2.66\ rads=S.F.\\ 15\ @50\ gm/mole=75\ x\ 6.023=451.7\ gm\\ 451.7/15=3.01=c\\ 15\ x\ (sin\ 1)=126.2\ \sim\rho\\ 15\ x\ 100\ gm/mol\ x\ 6.023=0.90345\ Pascals\ @76.6\%\ crystallinity\\ 0.90345\ x\ 1/\sqrt{2m/s^2}=6.388=1/1565\sim1/Moment\\ Polar\ moment\ of\ Inertia\ for\ a\ cylinder:\\ J=ML^2/12\ (15)(50\ gm/mol)(6.023)(15\ \times147)^2/12=18.23\\ \end{array}$

Deflection

y=M/EI = [1-sin1]/(0.4233)(182) =205 205 x 76.666% crystallization=1571 117 psi=0.806 MPa

PV=nRT (0.806)(19905)=1604 nRT = 1604

n=1604 / (0.8314x 300K) =643 1/50 (10⁻¹¹) =2000Mpa MG=2000(10⁶) x 6.67(10⁻¹¹) =1334=s

Internal Dampening: $\Delta W = \pi \sigma 0^2 J'' = \pi [(8/3)/\pi]^2 (34473)$ =248.36 =1/402.6 =1/Re The following equations were taken from reference [2] page 385. $Q_n \rightarrow R_i + R_{n:i}$ $90 \rightarrow R_i + 276$ $R_i = 186$ $2k_1 n Q_n$ =2(k) (10) (15x 6.023)

 $\begin{array}{l}=\!2.71k\\\sim\!e^{\imath}k\end{array}$

 $\begin{array}{l} Rn \rightarrow R_{n-1} + M \\ R_{15} \rightarrow R_{14} + (6.023 \text{ x } 50 \text{ gm/mol}) \\ (6.023 \text{ x } 4) \rightarrow R_{14} + 300 \\ R_{14} = 276 \end{array}$

 $k_1 R_{15} = 24k_2$ 1/e¹k=24k_2 k=24 (2.71k2) =65.28k Citation: Paul T E Cusack (2020) The Crystal in the Ether VII. Journal of Physics & Optics Sciences. SRC/JPSOS/117. DOI: doi.org/10.47363/JPSOS/2020(2)110

$=G_0 k$ $= \pi/Ln \ 1.618)k$	$\begin{array}{c} R_{i} + R_{j} \rightarrow Q_{i} + Q_{j} \\ 186 + 228 \rightarrow 186 \ (6.023) + Q_{j} \\ Q_{i} = 1368 \end{array}$
$2k_1 n Q_n = 2(65.28)(15)(90)$	$R_i = 228 \Rightarrow 228/6.023 = 38 = 19 \text{ x } 2 \Rightarrow \text{Fluorine}$
=176931 =1/5651	$ \begin{array}{l} 2k_4R^2 \\ =2(338) (228) \\ =350.8 \end{array} $
5651x 4.233 =1334	$R_i + R_i \rightarrow Q_{i_{i_i}}$
S	186+228=414 Q ₁₄₁ =414 x 6.023
$M = k_2 R_n M = (50 \text{ x } 6.023) = 300$	=249.35 ~250=Period T 1/249.35=401=Reynold's Number
$300 = (2.71)R_n$ Rn=110.7	$dQ/dt = k_1 W(t)/m [k_{4d}/k_4 + \sigma]$
dM / dt = k2R 2=65.28R	$=65.28(338)/50[k_{4d}/1+(8/3/\pi)]$ =44129[k_{4d}+0.8488]
R=32.64	$2000=441.29k_{4d}+374.5 k_{4d}=0.3689=1/2.7148=1/e^{1}$
R=2J''=2/G0 =2J''=2 π/Ln 1.618 J''=G0	k4c=1-0,3689=0.6311=1/0.1585=1/Moment
$2(19 \ge 6.023) = R$	300K x 76.666% crystal=230 230 -273.15=1/23.169=1/Ln π
R=2(114) R=228	x=Ln x
2J''=2(228)=456	x'=1/x=1/Ln x M=Ln t
$\begin{array}{l} R_{n}+Q_{m} \rightarrow Q_{n}+Q_{n-e} + R_{e} \\ R_{15}+Q_{300} \rightarrow Q_{15}+Q_{300-e} + R_{e} \\ (15)(6.023) + 300 \rightarrow 90 + Q300 - 114 + Re \end{array}$	dM/dt = 1/t = E
$\begin{array}{c} 100(0.022) + R_{e} \\ 300 = Q_{300-114} + R_{e} \\ 300 \rightarrow 300-114 + R_{e} \end{array}$	$\int dM/dt = \int 1/\pi$ = M/\pi
R = 114 = 19 x 6.023	$=4.482/\pi$ =14.26
Fluorine	=Cusack's Critical Percentage
k ₃ R _n mQ _m =65.2 x 24 x 50 x 300 =235	dM/dt=1/t=k ₂ R=2.718R=E 186 +228=2240 x 6.023=2484 2484-1618=0.866=sin 60°
$Q_{186} + R_{186}$ =2(186 x 6.023) =2240	Conclusion So we see some interesting results from out calculations on the crystal in the Ether [1].
$2k_{1}\Sigma nQ_{n}(t)=2k_{4}R^{2}(t)/V(t)$ 2(65.28) (15)(90)=2k_{4}(228)^{2}/352 1=k4	 References 1. Wall, Leo (1972) Fluoropolymers. Wiley-Inter-science. 2. Benenson, W (2002) Handbook of Physics Springer, NY.
2kR4 ² =2(339.058) (228) ² =352.512	
$k_1W(t)/m=k_1\rho(t)/m$ $k_1=24k_2$ $R=24k_2(33744)/50=440237$	
$Vol=4/3\pi R^3$	Copyright: ©2020 Paul T E Cusack. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
$=\frac{4}{3}(\pi) (44)^{3}$ =3373 ~338	unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.