
J Arti Inte & Cloud Comp, 2022 Volume 1(2): 1-6

Review Article Open Access

System Analysis to UML – Restaurant Case Study

1Sr. Director – Enterprise Architecture, Fortune Brands Home & Security, USA

2Sr. Manager - Digital Applications, Fortune Brands Home & Security, USA

Nilesh D Kulkarni1* and Saurav Bansal2

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Nilesh D Kulkarni, Sr. Director – Enterprise Architecture, Fortune Brands Home & Security, USA.

Received: May 02, 2022; Accepted: May 07, 2022; Published: May 15, 2022

Keywords: User Story, User Requirements, UML, Classes, Use
case diagram, Activity diagram, State diagram

Introduction
Requirements engineering (RE) is a discipline that defines a
common vision and understanding of socio-technical systems
among the involved stakeholders and throughout their life cycle
[1,2].

A system requirements specification, often referred to simply
as a "requirements specification," is a technical document that
delineates and structures the aspects and considerations of these
systems from the perspective of requirements engineering (RE).
An effective requirements specification brings forth numerous
advantages, as documented in the literature [2-4]. These include –
•	 Facilitating the creation of an agreement and a business

contract between customers and suppliers.
•	 Establishing a shared foundation for aiding in project

budgeting, scheduling, and planning.
•	 Assisting in the validation and verification of the project's

scope.
•	 Potentially supporting deployment and future maintenance

activities.

The software development process commences with requirements
engineering, a phase of paramount significance. In the seamless
progression of software development, the effective gathering of
requirements assumes a pivotal role, as emphasized in reference
[5]. Efficient requirements not only lead to the development of
a streamlined system but also contribute to cost-effectiveness in
the final product.

Requirement elicitation marks the inaugural phase of requirements
engineering, wherein all relevant users and stakeholders of the
system convene to extract fundamental system requirements
[6]. This process of requirement elicitation encompasses
another pivotal aspect of requirements engineering, which is
requirement gathering. Requirement gathering consists of specific
steps outlined in reference, including requirement elicitation,
requirement analysis, requirement documentation, requirement
validation, and requirement management [5].

Requirements gathering serve the dual purpose of catering to
both technical and business stakeholders, and as a result, they
are typically crafted in natural languages. Natural languages are
indeed chosen for this purpose because they offer a high level of
communicative flexibility and universality. Humans are proficient
in employing natural languages for communication, which makes
them resistant to adoption issues as a technique for documenting
requirements.

Methodology
The data for this paper was sourced from well-regarded academic
databases, such as Google Scholar, IEEE Xplore, journals, and
studies. We performed thorough searches using keywords like
‘User Story, ‘Use Case’, ‘UML notations and 'UML diagrams'.
This method enabled us to uncover a wide array of sources that
could potentially contribute to our study.

Agile
Agile is an iterative and flexible approach to software development
and project management that emphasizes collaboration, customer
feedback, and the ability to adapt to changing requirements.

ISSN: 2754-6659

ABSTRACT
The paper presents a detailed examination of the application of Unified Modeling Language (UML) for system analysis within the context of a restaurant
business case study. It begins with the articulation of business requirements through user journey understanding and user story definition. The importance of
a good user story is emphasized, with a particular focus on the INVEST characteristics that ensure a user story's effectiveness. The paper further delves into
the basics of UML, exploring fundamental concepts such as classes, and the various relationships within class structures including association, aggregation,
and composition. Additionally, it discusses the significance of polymorphism and interface design in object-oriented programming. The paper also highlights
Object-oriented design (OOD) heuristics, which provide developers with a set of guidelines for making informed design decisions. A comprehensive user
story, constructed from the restaurant use case, demonstrates the practical application of these concepts. This is followed by the development of corresponding
UML diagrams, including a use case diagram, an activity diagram, and a state diagram, which collectively showcase the robust modeling capabilities of
UML in capturing complex system requirements and providing a clear pathway for system design and implementation.

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) System Analysis to UML – Restaurant Case Study. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-214. DOI: doi.org/10.47363/JAICC/2022(1)196

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 2-6

Agile is the ability to create and respond to change. It is a way
of dealing with, and ultimately succeeding in, an uncertain and
turbulent environment. The authors of the Agile Manifesto
chose “Agile” as the label for this whole idea because that word
represented the adaptiveness and response to change which was
so important to their approach [2,7].

User Story
A user story, is a way of expressing a software requirement from the
perspective of an end-user or customer [8]. User stories are short,
simple descriptions of a feature told from the perspective of the
person who desires the new capability, usually a user or customer
of the system. Kent Beck, creator of extreme programming (a
software development methodology) developed the concept of
stories. Kent’s simple ideas was to stop – stop working so hard
on writing perfect document, and to get together to tell stories.
In early 2000, Rachel Davies at Connextra build a story telling
template after multiple experiments 'AS a <Role>, I want <Goal>,
so that <Benefit>, which was later named as User Story Template.

•	 Role: A user story describes a specific role or persona who
interacts with the software. This helps in understanding who
will benefit from the feature.

•	 Goal: Each user story outlines a goal or objective that the user
wants to achieve with the software. It focuses on the "what"
and "why" of a feature rather than the "how."

•	 Benefit: User stories also highlight the value or benefit that
the user will gain from the feature. This helps in prioritizing
and understanding the importance of the user story.

Jeff Patton emphasizes the importance of ongoing conversations
and collaboration between development teams and stakeholders
to clarify and refine user stories. This iterative process ensures a
shared understanding of the business requirements [8].

Characteristics of a good user story are explained with an acronym
INVEST which represents a set of criteria used to evaluate and
write effective user stories in Agile software development.

Independent: User stories should be independent of each other.
This means that they should be self-contained and not rely on the
completion of other stories. Independence allows for flexibility
in prioritizing and sequencing stories.

Negotiable: User stories should be negotiable, meaning that they
are open to discussion and can be refined through collaboration
between the development team and stakeholders. They should not
be overly prescriptive or rigid.

Valuable: Each user story should deliver value to the end-users or
customers. It should focus on solving a real problem or meeting a
specific need. Value helps prioritize stories based on their impact.

Estimable: User stories should be estimable, meaning that the
development team can reasonably estimate the effort required to
implement them. This helps with planning and resource allocation.

Small: User stories should be small or appropriately sized. They
should not be too large or complex. Small stories are easier to
understand, implement, and test. They also allow for more frequent
delivery of functionality.

Testable: User stories should be testable, which means that there
should be clear and measurable acceptance criteria associated

with each story. These criteria define when the story is considered
complete and working as intended.

UML Basics
The first versions of UML were created by “Three Amigos” —
Grady Booch at el defines “The Unified Modeling Language
(UML), is a standardized visual language for specifying,
constructing, and documenting the artifacts of software systems.
It provides a set of diagrams and notations to represent various
aspects of software design and architecture, allowing software
engineers to communicate, visualize, and model complex systems
effectively.”

Class
A class is a blueprint for creating objects. It defines a set of
properties and behaviors that the instantiated objects (instances)
will have. A class encapsulates data for the object and methods to
manipulate that data. The Figure 1, shows the UML standards for
representation of a Bike class, with the name of the class shown
in the first block, properties like brad, wheel size, color shown in
the second block and the operations that a bike class can perform
like standstill, run and spin in the third block. Classes can be
categorized based on their purpose and functionality in the system:

Concrete Class: These are classes that can be instantiated into
objects. They provide a full implementation of all methods and
properties declared within them.

Abstract Class: An abstract class cannot be instantiated on its own
and is intended to be subclassed. It may contain abstract methods
with no implementation. These methods must be implemented by
non-abstract subclasses.

Utility Class: A class that contains a set of static methods and is
not intended to be instantiated. It usually provides helper functions.

Figure 1: Class representation with UML

Three Types of Relations between the Classes
Association relationship: When classes are connected together
conceptually, that connection is called an association. As shown in
the Figure 2, let’s examine the association between passenger and
airplane. A passenger can sit in an airplane or multiple passengers
can sit in an airplane.

Figure 2: Association Relationship

Aggregation Relationship: This is a special type of relationship,
used to model situations where one class (the whole) contains
or is composed of other classes or objects (the parts), and the

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) System Analysis to UML – Restaurant Case Study. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-214. DOI: doi.org/10.47363/JAICC/2022(1)196

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 3-6

parts have a lifecycle that is independent of the whole. As shown
in the Figure 3, next examine the aggregation relationship, an
engine (whole) can have many Pistons (parts) similarly an airplane
(whole) can have multiple engines (parts) as well as an airplane
can have multiple wheels (parts).

Figure 3: Aggregation Relationship

Composition relationship: A composition is a strong type of
aggregation where each component in the composite can belong
to just one whole. As shown in Figure 4, a dog can have a tail,
four legs, two ears, and two eyes, but eyes, legs, tail, and ears
cannot exist on its own.

Figure 4: Composition Relationship

Inheritance / Generalization
In this relationship one class (the child class or subclass) can
inherit attributes and operations from another (the parent class
or superclass). The generalization allows for polymorphism. In
generalization, a child is substitutable for parent. That is anywhere
the parent appears, the child may appear. The reverse isn’t true [9].
As shown in the Figure 5, signifies that "Bus," "Car," and "Truck"
inherit from "Vehicle." They are expected to share common
characteristics or behaviors that are defined in "Vehicle." For
instance, if "Vehicle" has attributes like 'number of wheels' and
'fuel type' and operations like 'start engine ()', then "Bus," "Car,"
and "Truck" would inherit these operations and attributes.

Figure 5: Generalization

Interface
An interface is a set of operation that specifies some aspect
of classes behavior, and it’s set of operation class presents to
other classes [9]. As shown in Figure 6, the "Electric System" is
considered an interface between the light bulb and the light switch.
The "Electric System" serves as a contract between the light bulb
and the light switch, stipulating that when the switch is turned
on, the bulb should light up. Interfaces are used to decouple the
implementation and the abstract design, allowing for changes
in implementation without affecting the system that uses the
interface. Similarly, the light switch and bulb are decoupled from
each other, you could replace either the bulb or the switch without

needing to change the other, as long as they both adhere to the
same electrical system standards. Interface also allows different
classes to be treated through a single interface type, the electric
system could work with any device that conforms to its standards,
not just a light bulb. This could include a fan, a heater, or any
other electric device that can be turned on or off.

Figure 6: Interface Representation

Design Heuristic
Object-oriented design (OOD) heuristics are guidelines or best
practices that aid developers in making design decisions during
the object-oriented software development process. These heuristics
are not strict rules but are based on the collective experience of
seasoned software engineers. They help in creating designs that
are modular, reusable, maintainable, and understandable [10].
Some well-known OOD heuristics include -

•	 Encapsulation: Keep data and the methods that manipulate
that data together.

•	 Modularity: Design systems that have well-defined,
independent, and interchangeable modules.

•	 Hierarchy: Utilize inheritance and composition to promote
reusability and scalability.

•	 Low Coupling: Ensure that objects or classes are independent
of each other, minimizing the impact of changes.

•	 High Cohesion: Keep related and similar functionalities
grouped together, ensuring that each class has a single purpose
or responsibility.

•	 Polymorphism over Conditional Statements: Use
polymorphism rather than conditional statements to handle
different types based on the same interface.

•	 Design for Extension: Design components so that they can be
extended, rather than modified, to accommodate new features.

Putting it all together
The Figure 7, shows all the concepts discussed in the previous
section, as explained below –
•	 Classes and Attributes: There are several classes such as

Book, Author, Account, Library, Patron, Catalog, and two
interfaces Search and Manage. Each class has attributes
that define its properties. For example, the Book class has
attributes like ISBN, title, summary, etc.

•	 Abstract Class: The Book class is an abstract class, indicated
by the italicized name. This means it is not instantiated
directly but serves as a template for other classes.

•	 Stereotyped Class: Book Item is a stereotyped class,
specialized as an «entity», which means it is an object that will
be stored and managed in the system. It inherits from Book.

•	 Generalization: The arrow from Book Item to Book indicates
inheritance or "is-a" relationship, meaning that Book Item
is a type of Book.

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) System Analysis to UML – Restaurant Case Study. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-214. DOI: doi.org/10.47363/JAICC/2022(1)196

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 4-6

•	 Associations: There are associations between classes,
depicted by solid lines. For example, a Book is associated
with an Author, and an Account is associated with a Library.

•	 Multiplicity: The numbers near the association lines indicate
the multiplicity of the relationship. For instance, an Author
can write multiple Books (1 to many), but a Book Item can
be borrowed by only 0 to 12 Accounts.

•	 Aggregation and Composition: Library to Catalog represents
aggregation (a weak) association, while Catalog to Book Item
represents composition, a composition (strong) association.

•	 Interfaces: The Search and Manage are interfaces, as
indicated by the «interface» stereotype, which the Library
class realizes (implements). This is depicted by dashed arrows.

•	 Dependency: The dashed arrow with the «use» stereotype
indicates that Patron and Librarian use the Search and Manage
interfaces, implying a usage dependency without inheritance
or aggregation.

•	 Enumeration: The AccountState is an enumeration data type,
meaning it has a predefined set of constant values (Active,
Frozen, Closed) that represent the state of an Account.

Figure 7: Representation of Classes and Relationships

A User Story
Building a user Journey
Bradley enjoys Thai cuisine and frequents Simple Thai restaurant.
"Simple Thai" is located downtown and is owned by the young
restaurateur, Ms. Lisa. Every Friday, Bradley makes it a point
to visit Simple Thai for lunch, where he indulges in his favorite
dishes, "Pad Thai" and "Egg Rolls."

On a particular Friday, Bradley arrived at the restaurant, and
Steve, a waiter at the establishment, warmly welcomed him. Steve
seated Bradley at his regular spot, Table #12 by the window, and
handed him the menu card. Bradley glanced at the menu, but he
already knew what he wanted to order. He beckoned Steve over
and placed an order for "Pad Thai," "Egg Rolls," and decided to
try something new, requesting a "Crystal Soup" as well.

Steve promptly took the order and entered it into the system. In

the kitchen, Chris, the talented Thai cook who is known for his
culinary skills, monitored all incoming orders and received the
one for Table #12.

It took Chris just over 15 minutes to prepare the order for Table
#12, and he then signaled Steve to pick it up and serve it. In less
than a minute after Chris rang the ready bell, Steve brought the
freshly prepared dishes to Bradley's table.

Bradley began with the soup and then switched to his beloved Pad
Thai. As he needed to leave early, he signaled Steve and requested
the check. Steve promptly went to the POS (Point of Sale) system
and printed the bill, placing it on Bradley's table. Bradley placed
his credit card on top of the bill, and Steve collected the card and
the bill, handing them over to Nicole for payment processing.

Nicole swiped the card through the machine and handed the
receipt back to Steve. Steve placed the receipt on Table #12. By
this time, Bradley had finished his meal, and he thanked the staff
for the excellent food before leaving the restaurant.

Idetification of Actors and Personas
The story shows multiple actors: Customer - Bradley, Waiter -
Steve, Cook - Chris, Cashier – Nicole
These actors are performing multiple actions or operations within
the story:
Customer- Order food, eat food, pay for the food.
Waiter - Serves food.
Cook - Cooks food.
Cashier - Collects payment.

Journey to User Story
After identification of the actors, next steps is to write the user
stories, below the sample user stories identified from the given
user journey:
Customer - As a Customer, I want to Order a food so that I can
eat what I like to eat.
Waiter- As a Waiter, I want to collect a food order from the table
so that I can send it to kitchen to get cooked.
Cook - As a Cook, I want to cook the food order for table#12 so
that Customer can enjoy their meal.

UML DIAGRAMS
Use case Diagram
Use case diagram is a way to shown as a graphic depiction of
interactions among system and the users, below are the components
of the use case diagram (Figure 8)
Use Cases are:
•	 A Verb + Noun
•	 System function
•	 It does something
System:
•	 A boundary for a use case(s)
Actors:
•	 Something (human/system) that acts.
•	 A user’s role with respect to the system.
•	 Are involved in an interaction.
Association
•	 The relationships between and among the actors and the

use cases

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) System Analysis to UML – Restaurant Case Study. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-214. DOI: doi.org/10.47363/JAICC/2022(1)196

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 5-6

Figure 8: Use Case Diagram Represntation in UML

A Restaurant Use case diagram is shown in Figure 9, where each
of the components of the use case diagrams explained below –
Use Case: A Verb + Noun [Order + Food]
System: A boundary for a use case(s) [Restaurant]
Actors: A user’s role [Customer, Waiter, Chef, Cashier]

Figure 9: Use Case Diagrm for Restaurant

Activity Diagram
An Activity Diagram is a graphical representation used to model
the flow of activities or actions within a system or process. Activity
Diagrams are particularly useful for modeling the dynamic aspects
of a system, focusing on the behavior of various components and
their interactions. Key components of an Activity Diagram (Figure
10) in UML include:

Start and End Nodes: Start node (filled circle) marks the starting
point of the activity diagram, while an End node (encircled solid
dot) indicates the end or termination of the process.
Actions: Actions represent specific tasks that are performed within
the system or process. These can include computations, decisions,
data processing, or any other discrete operation.
Swimlane: Swimlane are used to organize activities by assigning
them to specific actors, roles, or system components. They provide
clarity regarding which entity is responsible for executing each
activity.
Transitions: Transitions, represented by arrows, show the flow
or sequencing of activities. They indicate how one activity leads
to another, typically based on conditions or triggers.

Control Nodes: Control nodes, such as decision points (diamond
shapes) and merge points, are used to control the flow of activities.
Decision points allow for branching paths based on conditions,
while merge points combine diverging paths back into a single
path.
Forks and Joins: Forks (horizontal bars) represent points in the
diagram where multiple activities can occur simultaneously. Joins
(hollow bars) indicate synchronization points where multiple paths
converge into a single path.

Figure 10: Activity Diagram Representation in UML

The Figure 11, shows the activity diagram based on the user stories
created where each one of the dynamic activities occurs in the
specific user story related to restaurant.

Figure 11: Activity Diagram Represnetation for Restaurant use
Case

State Diagram
A State Diagram is a graphical representation used to model the
dynamic behavior of a system or object over time. State Diagrams
(Figure 12) are particularly useful for depicting the various states
that an object or system can be in and how it transitions between
those states in response to events or conditions.

States: States represent the distinct conditions or situations that an
object or system can exist in at any given time. States are typically

Citation: Nilesh D Kulkarni, Saurav Bansal (2022) System Analysis to UML – Restaurant Case Study. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-214. DOI: doi.org/10.47363/JAICC/2022(1)196

J Arti Inte & Cloud Comp, 2022 Volume 1(2): 6-6

Copyright: ©2022 Nilesh D Kulkarni. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

depicted as rounded rectangles with meaningful names, such as
"Idle," "Active," or "Error."

Events: Events are external occurrences or stimuli that trigger
state transitions. Events can include user actions, system inputs,
timers, or other triggers that cause a change in the system's state.
Events are typically labeled next to the transition arrow.

Actions: Actions are actions or activities associated with a state
or a transition. They specify what happens when an object or
system enters or exits a particular state or when a transition occurs.
Actions can be represented as text or symbols inside states or
next to transitions.

Initial State: An initial state, often depicted as a filled circle,
indicates the initial state of the object or system when it is first
created or starts its operation.

Final State: A final state, represented by an encircled solid
dot, signifies the end of the object's or system's lifecycle or a
termination point within the state machine.

Figure 12: State diagram represenation in UML

The Figure 13, shows the state diagram based on the user stories
created where each one of the state changes in the states that
happens in a specific user story related to restaurant.

Figure 13: State Diagram Represnetation for Restaurant use Case

Conclusion
In conclusion, this paper has navigate through the intricacies of
employing Unified Modeling Language (UML) notations and
diagrams to elucidate a business use case within the restaurant
industry. We explored business requirement engineering,
providing a window into the user's experience and translating
this understanding into actionable user stories. The utility of a
well-crafted user story was underscored, employing the INVEST
acronym to delineate the essential characteristics that ensure clarity
and effectiveness.

As we delved deeper into the foundational elements of UML, paper
sheds a light on its constituent components such as classes and
the nuanced relationships between them—including association,
aggregation, and composition. It extended to the conceptual

underpinnings of polymorphism and interfaces, essential pillars
in the realm of object-oriented programming that foster flexibility
and extensibility in system design.

Beyond the basics, we navigated the realm of Object-Oriented
Design (OOD) heuristics, which serve as a compass for
developers, steering them through the myriad decisions that
shape the architecture and design of robust software systems.
These guidelines crystallize the collective wisdom of seasoned
developers, providing a framework for creating systems that are
not only functional but also maintainable and scalable.

The culmination of this theoretical groundwork was the
construction of a comprehensive user story rooted in the restaurant
use case. This narrative was then brought to life through the
creation of corresponding UML diagrams—a use case diagram
to capture the interactions within the system, an activity diagram
to chronicle the dynamic flow of operations, and a state diagram
to visualize the system's various states and transitions.

In synthesizing theory and practice, this paper has not only
illuminated the path to effective system design using UML but
has also demonstrated its practical application in a real-world
context. It stands as a testament to the capability of UML as a
transformative tool in the domain of software engineering, offering
a blueprint for translating complex business requirements into
tangible, operational systems.

References
1. K Pohl (2010) Requirements Engineering: Fundamentals,

Principles, and Techniques. Berlin, Germany: Springer-Verlag
https://link.springer.com/book/9783642125775.

2. S Robertson, J Robertson (2006) Mastering the Requirements
Process, 2nd ed. Reading, MA, USA: Addison-Wesley
https://www.amazon.com/Mastering-Requirements-Process-
Suzanne-Robertson/dp/0321419499.

3. B Kovitz (1998) Practical Software Requirements: Manual of
Content and Style. Shelter Island, NY, USA: Manning 448.

4. S Withall (2007) Software Requirements Patterns.
Unterschleißheim, Germany: Microsoft Press.

5. MU Malik, NM Chaudhry, KS Malik (2013) ‘‘Evaluation of
efficient requirement engineering techniques in agile software
development,’’ Int. J. Comput. Appl 83: 24-29.

6. HF Rasool, N Saher, Z Iqbal, MR Ajmal, S Arshad (2014)
‘‘Requirements engineering and its role in mobile telephone
industry development,’’ J. Adv. Comput. Netw 2: 218-221.

7. T Siebel (2019) "Digital Transformation: Survive and Thrive
in an Era of Mass Extinction".

8. J Patton, P Economy, M Fowler, A Cooper, M. Cagan (2014)
"User Story Mapping: Discover the Whole Story, Build the
Right Product".

9. J Schmuller (1999) "Sams Teach Yourself Uml in 24 Hours"
10. A. Riel (1996) "Object-Oriented Design Heuristics".

