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Introduction
Resonances offering a variety and peculiarities of physical patterns 
of phenomena exist in any branch of physics from molecular 
physics to elementary particle physics. The concept of resonance 
is one of fundamental concepts in quantum physics. We can attach 
a broad physical meaning to the term resonance, including stable 
levels and implying their effect on scattering processes [1, 2].

Resonances play a special role in the physics of irreversible 
processes. In this case, in accordance with the Poincare theorem, 
resonances are responsible for nonintegrability of most dynamic 
systems [3]. A theoretical explanation of resonances and their 
parameters can be constructed on the basis of forces of interaction 
between particles that are treated as elementary particles in such 
processes. For example, resonant processes in atomic physics are 
determined by the forces of interaction between electrons and 
nuclei, while resonances in nuclear physics are determined by 
forces acting between nucleons. A resonance in scattering is any 
peak on the experimental curve describing the scattering cross 
section. The resonance is characterized by the moment, parity, 
spin, lifetime, etc.

Collisions of electrons with molecules often result in the formation 
of metastable negative molecular ions, which are also traditionally 
referred to as molecular resonances [4-11]. In this case, since atoms 
move slowly as compared to electrons, the electron + molecule 
system can be regarded as a quasi-molecule whose electron shell 
at each instant corresponds to a quasistationary state of such a 
quasimole-cule. This is in accordance with the well-known adia-
batic approximation in quantum mechanics. In this approximation, 
various electron transitions (excitation, ionization, charge transfer) 
are hampered for collisions of electrons, atoms, or ions with 

molecules under ordinary conditions. The necessary condition 
for such a charge transfer is ∆ E ∆ τ  ͠  ħ, where ∆E is the change 
in the quasimolecule energy and ∆τ is the collision time. Thus, 
for slow collisions, when the value of ∆τ is large, transitions can 
occur only if ∆E is small; i.e., two states ofthe quasimolecule 
before and after the collision must be close and such a process 
can also be treated as a resonant process. Such a treatment of a 
resonance reveals the relation between equilibrium and dynamics 
on the one hand and the physics of dissipative processes on the 
other hand [5,6,12].

The importance of resonant processes is determined by the fact 
that all practical applications of experimental studies are based on 
resonances since it is resonant processes that are characterized by 
large cross sections or long lifetimes as compared to nonresonant 
processes and play an important role in low-temperature plasmas 
(resonant processes determine the emergence and disappearance of 
excited and charged particles, i.e., determine optical and electrical 
properties of a plasma), in controlled thermonuclear synthesis, 
mu-catalysis, and so on [4-12].

Proceeding from the theory of collisions in a two-body system 
in which the target molecule is regarded as a force center, the 
following type of resonances can be distinguished [4-11].

1. A form resonance appears in the case when the impinging 
electron is trappedto a quasi-stationary level separated from 
the level in the continuum by a centrifugal barrier formed by 
a combination of attractive and repulsive fields of the target 
molecule. This type of resonance appears only when the electron 
possesses an angular momentum relative to the target molecule. 
In the case of low-energy s scattering (l = 0), electron cannot be 
trapped and form resonance is absent.
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AbstrAct
The main features of resonance in scattering are described and resonances are determined on the basis of the theory of collisions in a two-body system, as 
well as resonances emerging as a result of collisions in a few-body system. Regularities in the emergence of such resonances and their characteristics are 
analyzed. The results of calculations of these resonant processes occurring during collisions of electrons with diatomic molecules, made on the basis of 
the quantum theory of scattering in a few body system, based on Faddeev-Yakubovsky equations are discussed. The results of calculations of the resonant 
cross sections of electron and atom collisions with molecules are presented. Obtained results are compared with the available experimental data and with 
the results of calculations based on other approximations. In addition some biological applications (e.g. properties biopolymer molecules) are presented.
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2. A vibrationally excited resonance appears when the impinging 
electron excitesvibrations of the target molecule and is temporally 
bound. In this case, the kinetic energy of the electron is directly 
transformed into the vibrational energy of motion of the nuclei 
of the negative molecular ion; thus, this type of resonance is 
associated with violation of the Born-Oppenheimer principle. The 
lifetimes of such resonant states are extremely long (especially for 
polyatomic molecules) and attain tens of microseconds.

3. An electron-excited resonance is formed when the projectile 
electron excites theelectron system of the target molecule and 
also becomes temporally bound. In this case, the detachment of 
an electron is impossible as long as the molecule remains in the 
excited state. Nevertheless, an electron still may be detached if 
closed and open channels are coupled.

Theoretical description of such resonances appearing as a result of 
formation of negative metastable ions is presented in on the basis 
of the theory of scattering in a two-body system [5-11]. In these 
works, resonances are defined as complex poles of the scattering 
matrix 1 continued to the non-physical energy sheet or as poles 
of an analytic continuation of the Green function. Collisions 
between electrons and molecules occurring without the formation 
of intermediate complexes as well as collision processes at thermal 
energies of impinging electrons, in which a nonmonotonic energy 
dependence of scattering cross section is also observed, remain 
unstudied. In the latter case, the application of standard techniques 
for calculating cross sections is unjustified in view of violation of 
the Born-Oppenheimer approximation [4-9]. The application of 
the theory of collisions in a two-body system for calculating such 
processes encounters considerable difficulties since the system 
considered here is essentially a many-particle system [13, 14].

For this reason, we will describe resonant processes occurring 
during collisions of an electron and atoms with molecules 
by using a more consistent approach based on the quantum 
theory of scattering in a few-particle system [13, 14]. The main 
approximation in this case is that the interaction of the projectile 
electron or atom with the electrons and nuclei of the target 
molecule is replaced by the interaction of the electrons or atoms 
with the atoms of the molecule, the atoms being treated as force 
centers. Thus, a complex many-particle system consisting of the 
electron and the nuclei is replaced by a system of few interacting 
bodies, which can be described with the help of Faddeev equations 
[13]. Naturally, this approximation imposes certain constraints on 
the energy of the projectile electron: this energy should not be 
higher than that the ionization energy of the atoms constituting 
the molecule. However, it is precisely this energy range that is 
interesting in connection with the presence of resonance peaks in 
the effective cross sections of collisions of electrons with various 
molecules [4-11].

In such a formalism, a resonance in a three-particle system is 
determined by two particle resonances under certain conditions 
[1, 13, 14]. Thus, the reason for the emergence of three-particle 
resonances is the existence of resonant states in paired subsystems. 
This not very popular point of view is due to the fact that such a 
coupling does not exist always and cannot be determined explicitly 
even when it is present. This was demonstrated for the first time 
in nuclear physics and in elementary particle physics where the 
interaction between particles leading to the existence of resonances 
is determined by the exchange between the particles of the same 
resonances; thus, resonances produce themselves [1, 2].

In atomic physics, coupling between resonances is observed for 
a large number of phenomena (such as scattering of electrons by 
molecules, coupling between clusters in biopolymer molecules, 
and in Bose condensate) [4-7, 14, 15]. In this type of coupling, 
two-particle resonances lead to a series of three-particle resonance. 
A peculiar feature of this phenomenon is that the stronger the 
two-particle resonance, the larger the number of three-particle 
resonances produced by it. Experiments show [1, 14, 15] that such 
resonant states in many-particle systems lead to anomalously high 
rates of chemical reactions, dynamic coupling of noninteracting 
particles, etc. [14-16]. The importance of studying such states 
is directly associated with determining the binding energy of 
a system of N bodies using information on subsystems of this 
many-particle system, i.e., the construction of dependences EN 
= f(EN−1,EN−2,...) and the determination of the conditions for the 
formation of a coupled many-particle system provided that some 
subsystems are not coupled [16].

The physical foundation of the effect considered here is presented 
in, where the following aspects are revealed [1].

1. The eect of two-particle resonances on the spectrum of a three-
particle system is clearly manifested; i.e., a two-particle resonance 
can radically reconstruct the discrete spectrum of three particles. 
However, not every two-particle resonant tate can reconstruct the 
spectrum of three particles, but only the state whose size rres ∼ 
(2mij |e0|)1/2 is much larger than the range r0 of its action (e0 is the 
binding energy and mij is the reduced mass of a pair of particles. 
Such a resonance can only be an s resonance (l = 0) since such 
resonant states strongly dier in size from other types of resonant 
states. For e0 → 0, size rres → ∞. The size of a resonant state is 
manifested in the scattering of particles in the form of a large 
scattering length a, which is equal to the size of this resonant 
state for small e0. Analyzing resonant states from the standpoint 
of their size, we can observe that all these states sharply dier from 
the resonance considered above. For example, the state occupied 
by the system in a partial wave with l ≠ 0 has a size on the order 
of the range of forces due to the centrifugal barrier; a compound 
resonance is not large either. Thus, a two-particle s level with a 
small binding energy occupies an exceptional position among 
resonant states as regards its size.

2. Three-particle levels are stable and their number is proportional 
to ln(a/r). It can be proved that the interaction responsible for the 
emergence of these levels has the form U ∼ A/R2 where 
                                  ri is the distance between a pair of particle, 

and is operative in the interval (r0, a) (Figure 1) [1, 13-15].

Figure 1: Effective potential responsible for resonances in a 
three-body system

In the general case, the constant A of this interaction is a function of 
quantum numbers of the three-particle state, angular momentum, 



Citation: Pozdneev SA (2023) Simulation Chemical Reactions in Faddeev Approach. Journal of Physics & Optics Sciences. SRC/JPSOS/212. 
DOI: doi.org/10.47363/JPSOS/2023(5)179

J Phy Opt Sci, 2023               Volume 5(2): 3-13

parity, and symmetry relative to the transposition of the particles. 
The value of A is estimated in [1,14, 15]. The strongest attraction 
should be observed for the orbital angular momentum L = 0 for 
three particles since centrifugal forces are absent in this case. The 
symmetry of this state must be maximal; otherwise, the wave 
function has nodes and the coupling becomes weaker.

3. Centrifugal forces suppress the effect.
4. Such states possess the maximal symmetry.
5.Triple and many particles forces do not influence on the effect.
6. The addition of a particle to the three-particle system suppresses 
the effect.
7.The particle charge has no influence on the effect which is 
manifested less clearly
in this case.

8.For particles with spins, the effect is also pronounced less clearly.
It should be noted that such peculiar states of three particles are 
independent of the specific form of the potential (i.e., independent 
of the forces of interaction between particles) and are universal 
in the sense that these states reflect only the fact of existence of a 
resonance. Thus, irrespective of the form of pair forces between 
the particles, if it leads to a low-energy two-particle s resonance, 
this automatically leads to the formation of a family of three-
particle resonances. Consequently, the reason for the emergence 
of three-particle level lies in the production of long-range 
interaction between three particles by a two-particle resonance 
with a large spatial size. Thus, the number of resonant states in a 
three-particle system is determined only by specific properties of 
paired subsystems. The masses of the particles have the strongest 
influence on the effect. The following three characteristic regimes 
can be singled out: the mode of identical particles, the mode of a 
heavy center, and the molecular mode [1, 13-15]. The heavy-center 
mode takes place when the masses of two particles are of the same 
order ml, while the mass mh of the third particle is much larger. 
The pair of light particle has no energy level and these particles 
do not interact with each other, but interact with the heavy particle 
through the attracting potential. In this case, if the mass of the 
third particle is infinitely large, we are dealing with the case of a 
pair of particles in a force center; naturally, three-particle levels 
do not emerge in such a system. In this case, the heavy particle 
does not respond to the motion of the noninteracting particles 
moving independently from each other in the field of the stationary 
heavy particle. Consequently, in this limit, the binding energy 
of the three particles is the additive sum of the binding energies 
of two-particle systems. However, for a finite mass of the heavy 
particle, the motion of all the three particles is correlated, so that 
the center of mass of the system remains at rest. In this case, 
the heavy particle responds to a change in the position of other 
particles whose motion becomes correlated in spite of the absence 
of a direct interaction between them. Thus, dynamic correlation 
in the motion of coupled particles can be treated as a sort of 
attraction. It should be noted that such a dynamic attraction also 
appears in the case when repulsive force act between the particles 
coupled in this way. In this case, dynamic attraction compensates 
mutual repulsion and leads to stabilization of the system. This 
can be clearly seen, for example, for the ion of positronium e+e−

e− [14-16]. In this case, for any finite mass of a heavy center, the 
number of levels is

A special feature of this mode is that extremely shallow levels in 
paired subsystem are required for the existence of three-particle 
levels in contrast to the molecular mode, where the requirements 
imposed on paired levels are much less stringent and more realistic.
In the molecular mode, when a light particle has shallow levels 
in the interaction 
with the heavy particles, the number of levels is

and the potential of the interaction produced by the light particle 
has the form

which is precisely the energy of the molecular energy level. The 
simple example of this mode is a system consisting of an electron 
and two neutral atoms. The molecule formed in this way differs 
from a conventional molecule in that its nuclei vibrate in region 
R whose size is determined by the energy e0 of the shallow paired 
level; in addition to vibrational levels, this system also has a 
rotational spectrum. Thus, two-particle levels in this mode lead to 
the formation of a series of not only vibrational, but also rotational 
levels [1, 13-15]. It should be noted that such peculiar resonance 
states are manifested in a wide range of conditions and form a 
stable phenomenon which can be reliably identified and confirmed 
experimentally.

basic Equations and Main Approximation
We will analyze these peculiar resonant states quantitatively in the 
case of the molecular mode using the Faddeev integral equations 
[13]. In the given approximation (three particles, viz., two atoms 
and an electron), these equations are formulated for three parts 
into which the total wave function of the three-body system splits,

Each part corresponds to possible divisions of the system of three 
particles into noninterecting subgroups. In the momentum space, 
in the case of scattering of particle 1 from the coupled pair (2,3) 
the equations have the form [13,14]

                                                                                             (1)  

Here, Φ1 describes the initial state of the three body systems: 
free motion particle 1 and the bound state of pair (2,3); G0(Z) = 
(H0 − Z)−1, Z = E + i0, where H0 is the operator of free motion 
of three particles; E is the total energy of three-body system, 
which is equal to the sum of kinetic energy of projectile 1 and the 
binding energy of pair (2,3); Ti is a paired T-matrix that can be 
unambigously defined in terms of the paired interaction potential 
Vi with the help of the Lippmann-Schwinger equations

                                                                                              (2)
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To describe the motion of three particles in center-of-mass system 
we use the generally accepted Jacobi coordinates. It should be 
borne in mind that we must use as integration variables in Eq. (1) a 
certain system of variables which is found to be most convenient. 
For example, in the integral corresponding to the expression 
G0T1Ψ2, it is more convenient to take k2  and p2 as integration 
variables. In this case, variables k1  and k2 determining the kernel 
of operator T1 should be expressed in terms of variables  and p2. 
Sometimes, it is more convenient to use variables p1 and p2 in 
the same situation.

Paired T matrices               appearing in the kernels of the 
equations have singularities in variable Z: the poles corresponding 
to the discrete spectrum of paired subsystems and a cut along the 
positive part of the real axis generated by the spectrum of the 
two-body problem. The explicit form of these singularities gives 
the spectral representation of matrix T. The poles of the T matrix 
corresponding to the discrete spectrum generate singularities in 
the wave function components Ψi; separating these components, 
we obtain the representation

                                                                                              (3)
where

and Qj, Rji are smooth function of their variables. Such a division 
of singularities appears automatically in the numerical solution of 
integral equations. To define functions Qj and Rij unambiguously, 
we can proceed as follows. We substitute Ψi in form (3) into initial 
equations (1) and equate the coefficients of identical singularities. 
This gives the equations for these functions which can be used 
for expressing explicitly all main characteristics of the three-body 
problem: wave function, elements of the S matrix, as well as the 
amplitudes and cross sections of all processes occurring in the 
three-body system.

                                 -elastic scattering processes
                                 -excitation processes
                                 -rearrangment processes
                                 with excitation
                                 -ionization processes

Thus, the cross section of the elastic scattering process has the form

the cross section of rearrangement processes is given by

where

The main advantage of the Faddeev equations (1) is that
(i) the solution of this equation gives simultaneously the amplitudes 
and crosssections of all processes occurring in the three-particle 
system;
(ii) the accuracy in determining the bound state from the solution 
of the Faddeevequations is much higher than the accuracy obtained 
by solving the Schrodinger equations (this peculiarity is associated 
with the fact that Eqs. (1) were formulated for the wave function 
components and, hence, take into account possible asymptotic 

forms of the three-particle system);
(iii) these equations make it possible to carry out a correct (from 
the standpointof mathematics) analysis of scattering processes, 
in which all three free particles are in the initial state this is 
impossible in all approaches proposed earlier [5-13]:

                                 -elastic scattering processes
                                 -excitation processes
                                 -rearrangment processes
                                 with excitation
                                 -ionization processes

In this case, we have the following representation for the wave 
function [13-15]:

where functions Mi,j satisfy the following system of equations:

For cross sections of these processes, we obtain the following 
expression [13,15]

corresponds to processes in which three free particles are in the 
initial and final states,

correspond to processes in which a coupled pair of particles sj is 
present in the initial or the final state. The equations for functions 
Qj, Qj, and Rij are analogous to the equations for Mij and are 
given in [13-15]. It should be noted that potentials do not appear 
explicitly in integral equations (1); these equations contain a 
more general characteristic, viz., T matrices, which are connected 
with the potentials of the Lippmann-Schwinger equations (2). 
Consequently, although potentials are formally used in the given 
method, we essentially model T matrices, which are constructed on 
the basis of the Bateman method suitable for any local potential. 
This method considerably simplifies numerical solution of the 
system of integral equations (1) and sometimes even leads an 
analytic solution [13-17].

Integral equations (1) possess good properties (from the 
mathematical point of view) such as the Fredholm property and 
unambiguous solvability only under certain conditions imposed 
on two-particle data [13]:

(i) paired potentials Vi(~k,~k'), which are nonlocal in the general 
case, are smooth functions of k, k' and satisfy the condition
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(ii) point Z = 0 is not a singular point for Eqs. (2); i.e., all three 
scattering lengths in pair channels are finite;

(iii) the positive two-particle spectrum is continu- ous. This 
condition is essentialfor nonlocal potentials since positive 
eigenvalues may appear only in this case, and this condition is 
satisfied virtually for all physical processes.

Coulomb potentials and hard-core potentials do not satisfy the 
first condition:
Coulomb potentials lead to a singularity of the type |k −k'|−2 in 
T matrices, while hard-core potentials result in a slow decrease 
in the T matrix for large momenta. When the second condition 
is violated, the Fredholm property of Eqs. (1) is lost for Z = 0, 
which leads to the above-mentioned effect of emergence of an 
infinitely large discrete spectrum in a three-body system under 
certain conditions. A similar situation emerges in the case of 
scattering of electrons from diatomic molecules, for which the 
Efimov levels were experimentally observed for the first time. 
The approximation considered here reproduces these experimental 
results in a quite natural way.

It should be emphasized once again that the give approximation 
appears quite reasonable for values of the impinging electron 
energy lower than the electron excitation energy of the molecule. 
As the initial data in such a formulation of the problem, we use pair 
interaction potentials, masses, and energies of colliding particles.

Numerical solution of integral equations (1) involves considerable 
difficulties because the kernels of integral equations (1) contain the 
same singularities but here, we propose a quite universal method 
for solving system of equations (1) for calculating bound states as 
well as scattering states in systems with arbitrary masses, which 
interact via arbitrary pair short-lived potentials that can also be 
defined numerically [13-15]. In the method proposed here, the 
domain of an unknown function is divided into a number of 
intervals on each of which the function is approximated with the 
help of corresponding interpolation polynomials. The method for 
solving system of equations (1) is a modification of the standard 
method for solving integral equations, in which the integral on the 
right-hand side is replaced with the help of a quadratures formula 
for solving Eq. (1). As a result, we arrive at a system of algebraic 
equations for values of the sought function at the nodes of the 
quadratures formula. In the proposed method, the domaine of the 
sought function is divided into a number of segments, on each of 
which the function is determined with the help of interpolation 
polynomials reproducing the correct behavior of the function in the 
vicinity of the above singularities, after which integration is carried 
out using quadratures formulas. A package of applied programs 
was used for realization of the proposed numerical method for 
solving system of integral equations (1)[13,15].

Computational difficulties encountered in calculation of cross 
sections in the given approximation are mainly associated with 
the long-range Coulomb interaction potentials. It was mentioned 
above that in this case the integral Faddeev equations cannot 
be applied directly; either these equations should be modified, 
or the differential formulation of the Faddeev equations in the 
coordinate state should be used [13-15]. In case for three charged 
particles Faddeev equation in the coordinate space, which have 
the form [13-15].

                                                                                        (6)

where

and the coordinates are connected via the relations

Vst being pair short-range interaction potentials. The relation 
between the momentum and coordinate representations is defined 
by the Fourier transformation,

To obtain a unique solution of integrodifferential equations in the 
coordinate space, we must add the boundary conditions, which 
have the form [13-15]

                                                                                                (8)

where

A large number of various numerical methods have been developed 
on the basis of approximation of components Ψ by bicubic Hermite 
splines, quintet basis splines, etc. However, an effective, reliable, 
and universal algorithm of numerical solution of Eqs. (6) with 
boundary conditions (7) and (8) in the coordinate space has not 
been developed for the following reasons.

First, an algorithm of numerical solution for processes with three 
free particles in the initial and final states does not exist in view 
of rather complex boundary conditions.

Second, point-by-point convergence of the obtained result to the 
exact solution upon a decrease in the mesh size cannot be proved 
analytically in any of the known numerical methods based on 
finite different approximation.
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Consequently, the application of the mesh method in the 
polar coordinate system for solving numerically the system of 
coupled integrodifferential equations (6) in partial derivatives 
with boundary conditions (7) and (8) appears as most justified 
since analytic solutions also exist in this case for some potentials 
determining the resonant states under investigation [13,14,18]. 
This makes it possible to monitor the accuracy of the solutions 
obtained by the numerical method.

Let us consider the geometrical (topological, spatial) characteristics 
of the above-mentioned peculiar resonant states. Since it is quite 
difficult to study these characteristics experimentally in the 
case of electron collisions with molecules, we will consider the 
systems that are accessible for experimental studies, viz., clusters 
of molecules of inert gases [19].

It should be noted that these molecular clusters consisting of 
atoms of helium, lithium, and a number of inert gases attract 
attention of both theoreticians and experimentalists primarily due 
to applied studies such as superfluidity, superconductivity, Bose 
condensation, chemistry and physics of clusters, laser physics 
(i.e., the possibility of developing   molecular laser), as well as 
the possibility of observing such a peculiar quantum effect in real 
systems [19, 20].

However, a direct theoretical analysis of even the simplest of the 
above systems, viz., He3 consisting of three helium nuclei and 
six electrons, is an extremely complicated problem. To analyze 
the He3 system, we consider the cluster approximation in which 
this system is replaced by a simpler system consisting of three 
force centers (helium atoms). The validity of this approximation 
for calculations of bound states is obvious since the difference 
between the binding energy of the system and the ionization energy 
of the atom is several orders of magnitude. It is well known that 
helium atoms are bosons; consequently, the problem boils down 
to analysis of three pairwise identical neutral spinless particles. 
To solve this problem, we propose mathematically correct model-
free methods in the theory of scattering in the three-body system 
[13-15].

It should be emphasized that virtual levels in paired subsystems 
in the case of complex many-particle systems do not lead to the 
emergence of resonant states in a many-particle system [1]. This, 
however, does not mean that this effect is absent in these systems 
since it can be due to many-particle and not two-particle virtual 
states.

For this reason, we will consider the interpretation of a number 
of peculiar properties of systems He3, Ar3, Kr3, Ne3, Xe3, Li3, and 
Rn3 precisely on the basis of the threeparticle approximation. It 
should be noted that a large number of theoretical and experimental 
methods exist for studying clusters consisting of atoms of helium 
and a number of inert gases. Most methods are intended for 
studying bound states; however, scattering states, which are most 
informative for confirming the existence of peculiar resonant 
states, were practically ignored [19-22].

It was stated by a number of authors that the main difficulties in 
studying the He3 system are associated with its low binding energy 
( 1 mK), an unusually large size of the excited state (∼ 150Ao), 
and a strong repulsion at small distances. However, the results 
obtained in, where an analogous three-particle approximation was 
used for calculating the He3 system, differ from the statements 
made in [15,21,22].

For this reason, it would be also interesting to verify the conclusions 
drawn in on the basis of the three-particle approximation with the 
short-range pair potentials used in [23]. The main purposes of 
this investigation are
(i)   determining the number of possible resonant states;
(ii) clarifying the role of pair interaction potentials in the 
characteristics of thesestates;
(iii) estimating the effect of repulsion at short distances, which 
can be approximatedby a hard core in the model for the boundary 
conditions imposed on the characteristics of these peculiar states 
[13-15].

Thus, the theoretical analysis of the He3 system is reduced to 
solving equations in the quantum theory of scattering in a three-
body system, which makes it possible to use the well-known 
methods [13-15]. In contrast to, where resonances in a three-
particle system were studied using the Faddeev equations on the 
basis of analytic continuation of the scattering matrix to the range 
of complex energy values, we are using here direct numerical 
solution without an analytic continuation [21].

In this case, after the separation of angular variables, the Faddeev 
equations (6) in the coordinate space for the He3 system in the 
three-particle approximation with pair short-range potentials have 
the form [13-15, 23]

                                                                                                (9)
Where

For calculations with a hard core in the model of boundary 
conditions, the righthand side is equal to zero for x < c, where c is 
the core size. To obtain an unambiguous solution to the equations, 
we must preset boundary conditions (7), (8),

                                                                                           (10)

which assume the following form in the boundary-condition 
model:

For ρ → ∞ the boundary conditions in the case of short-range pair 
potentials can be written in the form [13]

                                                                                              (11)

where ψl,v(x) are the partial components of the wave functions of 
paired subsystems with binding energy 

                                                                     and AaL(θ) are the 
scattering amplitudes of processes with two or three particles, 
respectively, in the final state; and Hv(x) are the Hankel spherical 
functions.
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In calculations of bound states, the wave functions decrease quite 
rapidly at infinity; consequently, at a large distance x = Rx, y = 
Ry, the asymptotic boundary conditions can be replaced by the 
conditions

For the He3 system in the three-particle approximation with angular 
momentum L = 0, we have

where partial components l assume even values. l = 0,2,4,...; and 

the expression for functions                      is given in [13-15].

The asymptotic behavior of the components of Eqs. (9) for 
scattering processes with short-range potentials can be described 
by the function [13-15].

                                                                                           (12)

where a0(z), z = E + i0 is the elastic scattering amplitude for E>ϵd, 
and Al(E,θ) is the decay amplitude for E > 0.

We also assume that the helium molecule He2 has only one bound 
state with binding energy ϵd <0 and with the corresponding wave 
function ψd(x).

For processes of scattering, the scattering matrix for  z = E + 
i0, E>ϵd, the scattering phases and lengths in the s state can be 
expressed with help of the following formulas

To solve the system of equations (9) with boundary conditions 
(10), (12) numerically, we used the standard method described 
in detail in [13-15, 17].

results of calculations
We will analyze these peculiar resonant states quantitatively using 
the Faddeev equations (1-12) in diferent systems.

For pair interaction potentials, we used potentials HFDHE2, 
HFD-B, HFDID, LM2M1, LM2M2, and TTYPT with appropriate 
parameters, which reproduce in detail the main parameters of the 
corresponding molecules [23,24].

The results of calculation of the energy of bound states in systems 
He3, He*3, He3  and He*3 with and without taking into account the 
hard core are given in [14-17].

The results of calculation of the ground and the first excited states 
systems Ne3, Ar3, Kr3, Xe3 and Re3 in the given approximation 
with the HFD-B potential and the parameters borrowed from are 
presented in Tables 1,2 [32].

table 1: binding energies of inert gas molecules calculated by 
using HFD-b potential, a.u. 10‒6

Energy Ne2 Ar2 Kr2 Xe2 Rn2

Ethr 178 394 619 854 9268
Eexp 135 446 629 874 -

Table 2: Binding energies of the ground state and the first 
excited state of the inert gas molecules calculated by using 
HFD-b potential

Ne3 Ne *3 Ar3 Ar*  3 Kr3 Kr*3 Xe3 Xe*3 Rn3 Rn*3

398 330 1278 1215 1885 1811 2509 2438 30875 30801

In calculations based on the boundary-condition model, the 
value of core c was chosen so that even a slight change in this 
quantity did not affect the binding energy of paired subsystems. 
In our calculations, c = 1.5Ao, the value of binding energy for the 
helium molecule was 1.69 mK, and the value of r0 was 100 Ao. A 
detailed description of the numerical method for solving system 
of equations (9) with asymptotic boundary conditions (11), and 
(12) is given in [13-15].

We will consider the results of calculation of these resonant 
processes using as an example the calculation of cross sections 
for the simplest chemical reaction of dissociative attachment of 
electrons to hydrogen molecules. In this calculations for potentials 
of pair interaction of electrons with atoms of the molecule, we 
used potentials of the form

                                                                                        (4)

whose parameters were determined on the basis of the electron 
binding energy at a negative ion, scattering lengths, and effective 
radius. Allowance for spin (in the case of homonuclear molecules) 
was made as follows. For the scattering length, we used the 
quantity [5, 6, 14-17]

where at and as are the triplet and singlet scattering lengths, 
respectively. Pair potentials of interaction between atoms in 
molecules was simulated by the Morse potentials

                                                                                       (5)

whose parameters were determined on the basis of spectroscopic 
data [24]. These results are shown in Fig.2 together with the latest 
experimental data and the results of calculations based on other 
approximations [4,5,11,25-27]. These results confirm the existence 
in this system of the resonant states considered above. It should 
be noted here that experimental results of observation of three-
particle resonant states were presented for the first time in for the 
dissociative attachment of an electron to hydrogen molecules. 
However, in view of the energy distribution for the electron beam 
of width 0.1 eV, only nonmonotonicity of the energy dependence 
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of the dissociative attachment cross section was noted in these 
experiments; this nonmonotonicity was confirmed in theoretical 
calculations published more than 20 years ago [3,14, 17]. The 
oscillatory structure of the dissociative attachment cross sections 
was confirmed only recently in the experiments, in which special 
technique was used for energy stabilization of the electron beam 
( meV) [25]. The detailed structure of cross section in ∼ 3.75eV 
rigion are presented on Fig.3.

Figure 2: Dependences of the cross section of electron dissociative 
attachment to hydrogen molecules on the energy of projectile 
electrons: the solid curve corresponds to experimental data [19]; 
the results of calculations performed in [11], [7, 10], [10, 26], 
[21], and [20] are represented by the fine-dash, large-dash, dot-
and-dash, dotted, and double dot-and-dash curves, respectively; 
our results of calculation are presented by circles.

Figure 3: Dissociative attachment of electrons to H2 molecules. 
Region 3.75 eV. The solid lines correspond results of our 
calculation, experimental data presented by circles [4].

To estimate the influence of particle charges on the effect, 
we consider the scattering of electrons from hydrogen halide 
molecules. Since the electron affinity to the hydrogen atom is much 
smaller than to a halogen atom, a hydrogen halide molecule can 
be visualized as a system consisting of a proton and a negative 
halogen ion [24]. Thus, in the approach proposed here, the main 
approximation is that the interaction of the projectile electron with 
the nuclei of the target molecule is replaced by the interaction of 
the impinging electron with the proton and the negative halogen 
ion. The complex many-particle problem of calculation of electron 
scattering cross section at diatomic molecules is reduced to the 
problem of collision in a three-body system, which can be solved 
using the method of quantum scattering problem in a few-particle 
system. Naturally, this approximation is valid for energies of the 
impinging electron lower than the electron excitation energy of 
the molecule.

Computational difficulties encountered in calculation of cross 
sections in the given approximation are mainly associated with 
the long-range Coulomb interaction potentials between a projectile 
electron, a proton, and a negative halogen ion. It was mentioned 
above that in this case the integral Faddeev equations cannot be 
applied directly; either these equations should be modified, or the 
differential formulation of the Faddeev equations in the coordinate 
representation should be used [13-15]. It should be noted that in the 
general case of scattering of an electron from halogen molecules 
in the given approximation,

the Faddeev equations for four mutually interacting bodies (two 
electrons, a halogen atom, and a proton) should be used. However, 
for some processes such as dissociative attachment reactions, we 
can confine our analysis to equations for three pairwise interacting 
bodies.

In our case, to calculate dissociative attachment of an electron to 
hydrogen halide molecules, we apply the Faddeev equation for 
three charged particles in the coordinate space [13-15].

Figures 4 show the results of calculation of the cross sections of 
electron dissociative attachment to hydrogen halide molecules and 
their isotope-substituted modifications in the ground state and in 
excited vibration-rotation states as well as experimental results  
and the results of calculations based on other approximations [4-
11], which demonstrate suppression of oscillations in the scattering 
cross sections [4-11, 25, 27].
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Figure 4: Scattering of electrons by hydrogen halide molecules: 
(dots) experimental results of [11, 12] and (solid lines) calculated 
results of this work.

Let us consider the effect of these peculiar resonances on the rates 
of chemical reactions, which appears interesting for explaining 
electron transport in proteins (physically, this transport is one 
of the main functionally important processes in a cell [15, 28]). 
Knowing this transport mechanism, it would be possible to explain 
how a transition is made from structurally disorganized chemical 
transformations (e.g., in solutions) to coordinated subsequent 
stages typical of biological systems [15]. It should be noted that 
no new interactions are used in nature and the process is organized 
due to an appropriate choice of molecular structures and the 
corresponding wellknown interactions. Thus, identification and 
analysis of these interactions will make it possible to understand 
physical mechanisms of processes occurring in proteins and other 
molecular structures such as DNA and RNA.

The application of the method presented above for calculation of real 
biopolimer molecules now encounters many difficulties, namely, 
absenct of reliable spectroscopic data on clasters as distinct from 
diatomic and poliatomic molecules [4,7, 28] and some others. 
Yowever, in some particular cases certain estimates can de made. 
One can prove that under certain condition biopolimers consisting 
of similar elements from spiral strutures. This is experementally 
confirmed by sublimation of frozen water solutions of organic 
compounds, including amino acids (protein monomers), nucleotides 
(DNA and RNA vonomers) and their mixtures. In this experiments 
[23], for solution concentrations exceeding 10−2 gmol/l porous 
remnants (matrices of cristals of dissolved substances) are formed, 
while for lower consrntrations the strurture of matrices changes 
drastically and they have the form ofundirectional tubular lines 
[28]. The formation of this lines is due to solution freezing which is 
accompained by replacement of impurity components be front of the 
newly formed ice and the component density fluctation lead to shifts in 
the ice cristal lattice, i.e. dislocations that form steps. In the course of 
cristallization the step winds, which is shown schematically in Fig.5. 

Figure 5: Schemanic drawing of spiral type structure growth

Experiments demonsrated that monomers may joint in lines in 
course of their assembly becouse freezing of water solutions of 
amino acids of certain concentration was revealed to initiate, 
under UV irradiation (λ = 250−300nm), an intaraction between 
comonents and to lead to reaction of biopolimer synthesis. The 
calculation dased on the proposed model show that the mutual 
orientation of monomers in chains under self-assembly is due to 
precisely the above-described specific multipartice interaction? 
where molecules attach to each other tending to occupy a position 
wtith minimum potential energy. As a results of assembly of 
L-amino acid chains the role of matrix is played by nucleotides 
and vice of versa. This is how one-to-one correspondence between 
molecules, i.e., a genetic code appears owing to multiparticle 
dymamic interactions. The estimates obtained of the bases of 
proposed model shows that

- amino acids and nucleotides form their individual chains and 
pracitically no restrictions exist for asstmbly of large (106 − 109 
atoms) molecules of nucleic acid,
- alternation of regions with periodic and aperiodic character of 
succession of different monomers in the chains depends on the 
velosities of molecular motion at different dislocation steps upon 
freezing,
- not only nucleotides and amino acids but also their isomers, 
if they were present in the initial solution, are distributed in 
independent chains. This proves that L-amino acids that rotate 
the polarizftion plane of light to the left form the chain in space 
with a shape of the right helix and are located near the right helix 
of nucleotides, while Damino acids that form the left helix are 
located across the nuclejtide spiral. This fact proves the nutural 
separation of stereoisomers in the course of evolution [28]. These 
results, i.e., the formation of ordered helical structures of impurity 
molecules, or a one-dimentional assembly, are directly related to 
the problem of appeance of life. The practical imporrtance of this 
phenomenon refers to the creation of biopolymers with prescribed 
properties and to the possibility of constraction on their basis of 
various thechnical elements of bioelectronics.

To study the processes described above, we first consider a simple 
system of two identical coupled particles tunnelling through a 
potential barrier by using a mathematically correct quantum theory 
of scattering in a few-body system [13-15].

It should be noted that tunnelling of particles (including structured 
ones) is usually considered on the basis of well-known theories 
and results are automatically extended to many-particle systems 
(especially in applied studied, e.g., in biology [28, 29]). Most 
results in these applications are associated precisely with analysis 
of tunnelling through various potential barriers of multicomponent 
structured complexes. Quite often, such results do not correspond 
to the initial problem and do not reproduce experimental data. 
It should be noted that if the barrier size is much larger than 
the characteristic size of a complex, the difference from the 
structureless case is insignificant. If the size of the complex is 
commensurate with the barrier width, mechanisms appear leading 
to anomalous transparency of the barrier (analogously to the 
Ramsauer effect [4, 5, 7, 15, 30]).

The physical reason for the barrier transparency is associated 
with the possibility of formation of a barrier resonance since the 
potential energy of the system may have a local minimum ensuring 
the metastable state of the complex; to this end, the interaction of 
all particles of the complex with the barrier is required.
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To demonstrate this effect, we use the quantum scattering theory 
to consider the tunnelling of a pair of identical particles m1 = 
m2 = m coupled through various types of interaction (harmonic 
oscillator, Morse and Gauss potentials) through a potential barrier 
which was simulated by a potential of the form [30].

where a and b are the barrier height and width. The results of 
calculations are shown in Fig.6. It can be seen from the figure 
that, for a barrier height much larger than the characteristic size 
of the incident complex, its transmission probability differs 
insignificantly from the transmission probability in the case of 
structureless particles. If the size of the complex is commensurate 
with the spatial size of the barrier, mechanisms appear which lead 
to a substantial transparency of the barrier and even to its total 
transparency in some cases.

Figure 6: Tunneling probabilities for a structureless (1) and 
structured (2, 3) particles as functions of the energy of the projectile 
particle for the harmonic potential (2) and the Morse potential (3) 
for various characteristics of the barrier a = 1 (a), 6 (b), and 11 
(c). Energy E is given in units of the corresponding potential.

In the simplest case of a complex consisting of two particles, the 
physical pattern of the barrier transparency is determined by the 
formation of a resonant state upon the passage of only one of the 
particles through the barrier. Thus, two particles are on different 
sides of the barrier (i.e., this resonant state is preserved until the 
other particle passes through the barrier). The barrier width is 
determined by the lifetime of this resonance.

It should be noted here the penetrability symmetry breaking for 
structured particles may serve as a possible mechanism explaining 
different penetrabilities of biomembranes in opposite directions 
(osmosis). Another explanation of penetrability of a biomembrane 
is given in on the basis of the assumption that an isothermal phase 
transition of the melting/crystallization type occurs in a monolayer 
of the membrane, but in 2D and not in 3D system [28]. This makes 
it possible to interpret some peculiarities of blood circulatory 
system, which could not been explained earlier.

Analogous results are considered in however, the results concerning 
the penetrability of potential barriers for structured particles are 
completely different.

Figure 12 shows that the tunnelling probability in some cases may 
attain unity, which can be explained by interference suppression of 
the reflected wave (this phenomenon is widely used for blooming 
of optical systems). As the number of interacting particles 
increases, the effect of enhancement of the barrier penetrability 
may substantially increase. Thus, under certain conditions, coupled 
clusters not only surmount obstacles more easily, but can also be 
themselves transparent to other particles (this is often encountered 
in biological systems).

The most astonishing fact is that this mechanism of potential 
barrier transparency for structural particles was confirmed in 
experiments [25-30].

These features are commonly observed in real systems, e.g., in 
the simplest chemical reactions induced by electrons:

In the approximation of the quantum theory of scattering in a few-
body system, it is possible to reproduce the experimental data on 
the simplest chemical reactions occurring during the interaction 
of electrons with diatomic molecules in the ground state as well 
as in excited vibration-rotation states [9-11, 25-31]. These results 
are presented in all calculations in this case are performed in the 
above-mentioned approximation, in which the interaction of an 
electron with nuclei and electrons of the target molecule was 
replaced by the interaction of the electron with each atom as a 
whole (the atom was treated as a force center) [13-17]. The same 
figures also show the results of calculations performed in the 
resonance model approximation with nonlocal potentials based 
on the quantum theory of scattering in a two-body system [31].

It should be noted once again that this approximation appears 
as reasonable for energies of the projectile electron lower than 
the electron excitation energy of the molecule. Otherwise, it is 
necessary to use the many-particle approximation instead of the 
three-particle approximation since the contributions from the 
dissociation channels become significant (this is demonstrated 
in Figures. 2-4). Consequently, we can speak of the agreement 
with the experimental results only on the average in view of the 
initial model of the process as well as the simplest pair potentials 
simulating the interaction of an electron with atoms [14, 15, 17].
A comparison of the results of our calculations with the available 
experimental data [4-11, 19-23] shows that simulation of the 
electron interaction with each atom of the molecule based on 
Eqs. (1,6), which correspond to the multiple scattering pattern 
[6, 14, 17], makes it possible to attain satisfactory agreement 
with experiment (coincidence of the orders of magnitude of cross 
sections, including isotopic effects and threshold singularities 
[14-17]).

The well-known theoretical methods for studying resonant 
processes occurring during electron collisions with molecules 
(the boomerang method, the R matrix method, the method of 
time evolution of the wave function, the Feschbach operator 
method, etc.) are based on interpreting this process as a multistage 
process [4-11]. The first stage involves the electron capture by 
a molecule and the formation of a negative molecular ion. The 
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second stage is the decay (evolution) of this state to various states 
of the decay products: a negative ion and a neutral or excited atom, 
two neutral or excited atoms and an electron (dissociation of the 
molecule), and an excited molecule and an electron (excitation 
of the molecule by electron impact). The basis of this formalism 
i.e., the formation of an intermediate state of a negative molecular 
ion) appears as not always substantiated from the physics point 
of view. For example, in the case of dissociative attachment of 
an electron to a hydrogen molecule, the lifetime of this complex 
is comparable with the electron mean free time, during which it 
covers a distance equal to the diameter of the hydrogen molecule. 
An analogous situation also emerges for the reaction O(3P) + 
CS(X1Σ+) → CO(X1Σ+) + S(3P), in which a considerable fraction 
of the translational energy (in accordance with the momentum 
limit Eυ/Et ∼ 0.88 [32]) is transformed into the vibrational energy 
of the CO molecule [14, 32]. Such a reaction also occurs without 
the formation of an intermediate complex. The results of this 
calculation present in Fig.7. Naturally, many reactions exist in 
which a long-lived intermediate complex is formed in the course 
of the reaction (see [5-11, 14, 15, 17] for details). However, for 
some processes like those described above, a preliminary analysis 
of experimental data for a given processes required for analyzing 
various collisions; the absence of such an analysis often leads to 
erroneous interpretation of experimental data.

Figure 7: Cross sections of the O(3P) + CS(X1Σ+) → CO(X1Σ+; υ 
= n) + S(3P) reaction: (+++) calculated results of this work, (ooo) 
results of calculations based on classical mechanics [2-4,10-12],

Thus, a class of processes existing in atomic, chemical, and 
biological physics can be referred to as direct processes in analogy 
with nuclear physics. The main feature of these processes is that 
no intermediate long-lived complex is formed in the course of 
scattering.

Consequently, the most adequate methods for interpreting such 
direct processes and reaction occurring with the formation of an 
intermediate complex are those proposed by Faddeev, Yakubovskii, 
and Merkur’ev, who developed a quantum theory of scattering 
in few-body systems without model assumptions concerning 
the formation an intermediate complex during a collision [13]. 
This method can be applied for describing direct processes as 
well as processes occurring with the formation of intermediate 
long-lived states. Thus, we can state that quantum transparency 
effects for various barriers and peculiarities of chemical reaction 
mechanisms described above can take place in various branches 
of physics, chemistry, and biology and can be interpreted in the 
framework of nonrelativ-istic quantum mechanics with the help 
of the formalism proposed in [13-15].

It is especially important for molecular biology, in which a 
consistent and mathematically correct explanation of fermentation 
reactions has not been obtained as yet [28]. The contemporary 
description of these reactions based on the assumption that a 
part of the free energy liberated as a result of a reaction is used 
for accelerating catalysis, i.e., penetration through a barrier 
(recuperation of energy), does not permit to quantitatively analyze 
the reaction energy. For this reason, it is extremely difficult to 
experimentally confirm or reject the proposed model.

On the contrary, the above substantiation of the transparency 
of potential barriers for structural complexes with a size 
commensurate with the barrier width provides an explanation 
for such reactions based on the well-known physical principles in 
the framework of ordinary quantum theory for a few-body system.

Figure 8 presents the cross sections of reaction Na + I → Na+ + 
I− – calculated with the aid of the quantum scattering theory in a 
system of three particles (Na+ , e and I−). In this case, differential 
equations with the corresponding boundary conditions are used. 
We employ the quantum scattering theory in a system of several 
particles in the calculations of the following molecular reactions:

Figure 8: Cross sections of the Na + I → Na+ + I‒reaction: (dots) 
calculated results of this work, (solid line) results of calculations 
based on classical mechanics, (dashed line) results of calculations 
in the tight-binding approximation and (dashed-and-dotted line) 
results of calculations in the quasi-classical approxi- mation [2-
4,10-12].

where R = Xe,Hg (Figures. 9 and 10). Note that the calculations 
are performed in the approximation in which the CsBr molecule 
is considered as the Cs+Br– system owing to a relatively high 
electron affinity of the halogen atom. Thus, the calculations of such 
a reaction are reduced to the solution of a problem in the system 
of three bodies (negative ion of halogen atom Br –, positive ion 
Cs+ , and atom R). The pairwiseinteraction potentials are written 
as [14, 15]

where Ci, Ai, ρi. αi determinates from experimental data [2-5,10-
15].
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To prove the universal character of the proposed method in the 
calculations of cross sections of the following chemical reactions 
in which three (initially free) atoms are involved:
 

Figures. 11 and 12 present the calculated results for vibrational 
excitation of the reaction products in reactions H + H + H → H2(v 
= n) + H and He + He + He → He2(v = n) + He.

Figure 11: Plot of the rate of reaction H +H +H → H2(υ = n)+H 
vs. vibrational quantum number (calculated results of this work).

Figure 12: Plot of the rate of reaction He+He+He → He2 +He 
vs. energy: (solid line) experimental data of [3, 4], (dashed line) 
calculated results of [9, 12, 14], and (dashed- and-dotted line) 
calculated results of this work.

Note that the above models allow qualitative estimation of the 
experimental data and are not aimed at exact approximation of the 
experimental results. This circumstance can be interpreted as the 
main advantage of the above calculations, which make it possible 
to qualitatively reproduce the experimental data using rough 
approximations (approximation of the problem of several bodies, 
application of the Morse pair potentials, etc.). The calculated 
results of Figs. 2–4 and 8-11 provide the supporting evidence.

To study the scattering processes occurring during the collision 
of an atom with a helium molecule and to determine the role of 
pair interaction potentials, we calculated the amplitudes of elastic 
scattering and decay as well as phase shifts with and without taking 
into account the hard core. The results of these calculations are 
present in [13-17]. The results are almost independent of the form 
of pair interaction potentials and on whether or not the hard core 
was taken into account both for bound states and for scattering 
state. Thus, it can be concluded that the form of pair interaction 
potentials and allowance for a hard core in the boundary-condition 
model in the given approximation does not substantially affect 
the results of calculations.
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