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Introduction
The evolution of e-commerce platforms has hastened the 
requirement of advanced, robust, and versatile test automation 
frameworks that can accommodate changes from the underlying 
technology stack such as UI, API or backend. This over-
dependence on static identifiers and hard-coded elements makes 
traditional test automation approaches susceptible to breakage 
when user interfaces, API endpoints, or backend schemas change. 
For example, if a user changes the checkout page structure or 
change an API endpoint, it may break the automated tests causing 
false negatives and costing lot of effort to maintain these tests.

In such scenarios there is a requirement of an intelligent, self-
healing test automation framework that works on autopilot and 
quickly adapts to any changes in the application. The journey of 
reinforcement learning, a subfield of machine learning aimed 
at maximizing cumulative rewards to optimize decisions in an 
environment, is an interesting one and offers a decent solution. 
With its flexibility, RL is applied for full stack test automation 
where this framework can automatically adapt for any changes 
in UI, APIs or database schemas and thus bringing in high level 
of adaptability and low maintenance.

Problem Statement
Classic test automation is prone to brittle tests that need to be 
constantly updated with every application component update. In 
e-commerce contexts, this challenge is exacerbated by the need for 
frequent change driven by the high demand for user interaction, 
and the need for rapid response to changing business requirements. 

Here are some examples of issues you might encounter:
•	 UI Updates: A static locator is likely to become useless when 

the UI gets updated frequently (e.g. changing button Ids or 
adding new fields).

•	 API Endpoint Changes: These changes in URL, parameters 
or response structure break API-based tests, especially tests 
related to transaction, check-out flow and inventory updates.

•	 Database Schema Changes: If the database schema has been 
changed (add a field, remove a column, change validation) 
then tests that validate data from the backend will fail.

This framework embeds RL where tests can adapt themselves 
with changes made at the application side and helps in increasing 
stability over UI, API and backend layers by solving these 
problems.

Solution: Reinforcement Learning in Self-Healing Frameworks
RL models are based on learning the best actions to take in 
an environment by maximizing the sum of rewards over time. 
In the introductory example of test automation, RL agent gets 
trained to dynamically modify test cases by observing states of 
application and choosing appropriate corrective actions to ensure 
test reliability.

Self-Healing Framework Using RL Components
State Representation
From this perspective, the state will be a full view of the testing 
environment and its response to the test case being executed. Each 
state represents the following information:
•	 UI Elements: Holds the configuration of the DOM elements 

used in a test case (like button ID, class names, XPaths, data 
attributes)

•	 API Endpoints and Payload: Details of API endpoint URLs, 
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parameter structure, headers, and response structure.
•	 Database Schema: Represents the table schemas and how the 

data is expected to be saved for being verified at the backend.
•	 Execution Context: Maintains the current execution step 

in the test case – If its a load state for a checkout page, or 
transaction state, or database query result.

The state here is specifically a vector encoding of the current state 
of the DOM (Document Object Model) structure, API schema, 
and the state of the database schemas. By representing it in this 
format, the RL model can treat every state as a single entity and 
learn to generalize on the UI, API, and the backend layers.

Action Space
The actions that the RL agent can take are the possible changes it 
can implement on self-heal test failures. Those actions tackle the 
most common failures areas in full-stack testing:

UI Self-Healing Actions
•	 Locator Modification: Change CSS selector or XPath based 

on adjacent elements or data attributes.
•	 Element Retry: Retry locating an element with a small delay, 

handy for asynchronous UI loads.
•	 e Element Replacement: Replace with an alternate element 

when a similar element is detected (Multiple "Add to Cart" 
buttons.)

API Self-Healing Actions
•	 Payload Change: Change payload keys or values based on 

pattern seen in successful requests.
•	 Retry with Fallback Parameters: If it does not work, the 

agent will attempt a fallback parameter seen to work before.
•	 Endpoint Update: Adjust API endpoint or parameters based 

on common changes (e.g., modifying /api/v1/checkout to /
api/v2/checkout)

Self-healing Actions of Database
•	 Schema Adaptation Change: SQL queries in case new fields 

are added or some fields are eliminated from the database.
•	 Conditional Validation: Update the backend validation to 

include/exclude fields based on the latest schema.
•	 Fallback Strategy: Fallback Query Retry with Default Field 

Rather than querying all the columns apply where clause to 
exclude rows with non-NULL columns

Given the current state and its training to maximize the success 
of a test passing, the agent selects an action.

Reward Mechanism
In the prior step, each action can be evaluated by providing a 
reward system that tells the RL agent if the action is success or 
not, e.g.

Positive Reward
•	 Due to self-healing of a test case and making it pass.
•	 To reduce the time of executing tests (e.g., Attempts should 

be minimal).
Negative Reward:
•	 To commit an undesired act or overtry
•	 Number of attempts to self-heal after which the test fails.
•	 Neutral Reward:
•	 Does nothing beneficial but keeps the test pipeline with no 

substantial advance or regression.

By receiving rewards, the agent learns to avoid actions that lead 
to test failures and execution time, thus leading it to take the best 
actions in future runs.

Reinforcement Learning Algorithm
Deep Q-Learning (DQN), which approximates the Q-value for 
each state-action pair using deep neural networks, is a widely 
used algorithm for this type of problem. The Q-values indicate 
expected total rewards for taking a specific action in a specific 
state in this framework.

Architecture of Deep Q-Network (DQN)
•	 Encoder (Input Layer): Encodes the current state vector 

(UI, API, and Database details)
•	 Hidden Layers: One or more dense layers to model the non-

linear relationships between the surface, the API changes, and 
the changes in the backend schema, respectively.

•	 Output Layer: Q-values for each action, letting the agent 
select the action with the best expected reward.

Training the DQN Agent
•	 Experience Replay: The agent keeps a memory of state-

action-reward-next-state tuples. At training time, it samples 
random batches from this memory for increased generalization.

•	 Target Network: a second network, which is updated to the 
weights of the first, reduces correlations which stabilizes 
learning.

•	 Exploration vs. Exploitation: The agent explores random 
actions initially to learn good self-healing paths. Eventually 
it becomes exploitative and picks actions which had a higher 
reward in the past.

Training Example
For e.g., take a checkout test case in an e commerce site where a 
dynamic change happened with the ID of the Place Order button 
to cause the test case to fail.
•	 First State: The agent now sees that the "Place Order" button 

is not present.
•	 Action: It attempts to locate the similar type of buttons using 

a new locator strategy.
•	 Reward: The action restores the test flow (positive reward) 

or goes back to penalty.
•	 Learn: The agent modifies its Q-values, more likely to select 

locator modifications for the same set of UI changes in the 
future execution.

Uses and Benefits of Self-Healing Frameworks
The ability of a self-healing test automation framework to solve 
these new-age challenges — powered by RL — can translate to 
significant benefits for businesses at scale, especially for large and 
complex e-commerce environments. Beyond core advantages such 
as lower maintenance and higher stability, there are a few unique 
features that come in with niRL based approach for automation 
of tests:
•	 Dynamic Change Resistance: E-commerce platforms 

continuously change UI/UX, API, and schema. RL, on the 
other hand, the framework self-adjusts to these changes, 
continues to adapt to promise the same test coverage as the 
app layer changes.

•	 Learning / Adaptive: The RL-based framework improves 
every time it carries out the test vs the scripted automation 
that keeps running the same script for the same test. The 
agent fine-tunes its approach as it faces different situations, 
improving at solving breakdowns without need for help.
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•	 Lower Manual Effort and Error: In automatically 
addressing common points of failure, the framework reduces 
manual effort to update test cases by developers and testers 
thereby allowing them to concentrate their time and efforts 
on strategic test design and higher-level validation activities.

•	 Release Cycle Disruption: Repeated maintenance of tests 
takes up time and finances. The result is lesser dependency, 
low maintenance costs, quick testing timelines, and ultimately 
quicker product deployments and lesser operational 
expenditure as compared to rule-based frameworks (enabled 
with RL).

•	 Improved Accuracy in Complicated Use Cases: 
E-commerce systems commonly incorporate complex, multi-
step workflows such as the checkout process and inventory 
management. In these situations, an RL-based framework 
that minimizes false negatives, increases test robustness by 
learning optimal correction strategies, and therefore enhances 
the precision of these tests can be advantageous.

Practical Example: Applying RL in E-Commerce Full-Stack 
Test Case
For instance, a typical scenario is a checkout process in an 
e-commerce test environment, where you have multiple interactions 
between layers such as UI, API and Database interacting with each 
other and a RL-based self-healing framework running to detect 
and heal errors on the fly. The RL agent must adapt to the changes 
independently, as each layer is a challenge on its own.

Scenario: The Checkout Workflow
A normal checkout workflow on an e-commerce site consists of 
the below steps:
•	 Product Selection and Cart Addition: The user picks the 

goods and adds the same to the shopping cart.
•	 Review and Checkout: The user sees their cart, changes the 

quantities if needed, and presses the Proceed to Checkout 
button.

•	 User Authentication: The user must be authenticated (login) 
if he/she is not logged in to continue

•	 Order processing: The checkout API handles the order—
totals, taxes, and discounts.

•	 Order Confirmation: This involves an update in the database 
which assures the order and records data in the backend.

In this process, the RL agent interacts with each layer which can 
change/fail that can break traditional automation scripts.

Layer-Specific Adaptations Using Reinforcement Learning
UI Layer - Dynamic Locator Handling
In the UI layer, dynamic changes to element locators, such as the 
IDs or classes of buttons and 
text fields, are common. For example, imagine that the ID for the 
"Place Order" button was changed after a user interface styling 
update.
•	 State representation: DOM structure that agent is focused 

on including attributes of button, other elements that are 
neighboring it, and the class name to capture

•	 Reward: The RL agent tries different locators. In case primary 
locator fails for "Place Order" button, it falls back to XPath 
relative to a stable parent element or use CSS selectors based 
on nearby text labels.

•	 Reward System: Positive reward when the button is clicked, 
thus allowing the test to move forward. In this case, the agent 
will receive a negative reward, and it will be punished for 
trying too many times.

•	 By interacting with the world many times, the agent learns 
successful locator

API Layer - Endpoint and Payload Adaptation
One way the backend can affect the API layer is by changing the 
endpoint structure or payload. For instance, if the order processing 
endpoint is changed from /api/v1/checkout to /api/v2/checkout, 
or if the payload schema includes new fields.
•	 State""" Representation""" State""" """ Info"""""" 

State-action\n State input\n""" Example""" State""" 
Representation""" The agent holds information about the 
endpoint to connect to, url, request headers, and other useful 
payload structure

•	 Behavior: To accommodate for the failed API call, RL agent 
acts by changing endpoint URL or payload keys. A good 
example would be to find out if a parameter is missing, like 
discountCode, and have the agent inject it because previous 
requests were successful with it.

•	 Reward Mechanism: The API call returns successfully, 
which means that these parameter changes match the backend 
requirements, and thus we are given a positive reward. In 
case of fails in retries or too many modifications it applies 
negative awards.

Through its actions, the agent updates the API interactions, 
allowing it to operate independently to respond to backend changes 
with minimal human intervention, learning over time what changes 
lead to successful API calls.

Database Layer - Schema Adjustment for Data Validation
Example 1: There are changes in schema fields or table structure 
in the database layer which affects the validation of the test. Such 
as a user can add a new column — order Discount in the orders 
table to store discount applied at XML checkout.

•	 States Representation: The agent learns the schema of the 
database, which includes the table layouts, the column names 
and the data types which are used for testing validations.

•	 Example of Changing Queries: The RL agent updates 
queries by verifying the existence of the order Discount field. 
If so, it modifies the SQL query to use the new column in 
data validations. If a given test doesn't require that column 
then it can simply choose to ignore it, which is the flexibility 
validation needs.

•	 Reward Model: A positive reward is given when the query 
is validated successfully based on the adjusted schema. 
Spamming/retrying or omitting information will incur 
penalties. This allows the agent to automatically reconfigure 
to the schema at hand and accurately validate backend data 
throughout the tests.

Conclusion and Future Directions
This paper proposed a self-healing test automation framework 
driven by reinforcement learning, specifically for complex full-
stack environments like e-commerce platforms. With a framework 
that automatically adapts to changes in UI, API and other backend 
components, this ensures minimum manual test maintenance, 
which means, lesser-cost and faster testing, along with increased 
reliability of software.

Future Directions
Despite success using RL for this purpose, opportunistic 
exploration may not be the only way for further improving our 
framework, as future work can explore:
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•	 Multi-Agent Reinforcement Learning: Using multiple 
agents for different application layers (i.e., UI, API and 
database) might allow more specialized learning with 
respect to different application layers since each agent would 
maximize its resilience at that specific layer.

•	 Improved Reward Shaping: The reward structure can 
be fine-tuned for incentivizing the stability along complex 
workflows leading to improved stability and accuracy for 
multi-step test cases.

•	 Transfer Learning: Transfer Learning can be utilized to 
speed up learning for the RL agent by transferring knowledge 
from one domain (e.g., user checkout flows) to updated, but 
similar workflows within the same application.

•	 Real-Time Monitoring and Adaptation: By integrating 
the RL agent with different real-time monitoring tools, the 
agent can detect application changes in real-time and adapt 
its testing plan, accordingly, thereby improving test success 
ratio in CI/CD pipelines. 

Such a self-healing test automation framework powered with 
RL is an ideal example of resilient, efficient and adaptive test 
automation which can cater to the needs of fast, changing nature 
of e-commerce platforms and similar kinds of high-dynamic 
software environments [1-13].
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