
J Arti Inte & Cloud Comp, 2022 Volume 1(4): 1-4

Review Article Open Access

Self-Healing Test Automation Frameworks Using Reinforcement
Learning for Full-Stack Test Automation

USA

Hariprasad Sivaraman

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Hariprasad Sivaraman, USA.

Received: June 10, 2022; Accepted: June 17, 2022; Published: June 30, 2022

Keywords: Self-Healing Framework, Reinforcement Learning,
Full-Stack Test Automation, Autonomous Testing, Machine
Learning, E-Commerce Testing

Introduction
The evolution of e-commerce platforms has hastened the
requirement of advanced, robust, and versatile test automation
frameworks that can accommodate changes from the underlying
technology stack such as UI, API or backend. This over-
dependence on static identifiers and hard-coded elements makes
traditional test automation approaches susceptible to breakage
when user interfaces, API endpoints, or backend schemas change.
For example, if a user changes the checkout page structure or
change an API endpoint, it may break the automated tests causing
false negatives and costing lot of effort to maintain these tests.

In such scenarios there is a requirement of an intelligent, self-
healing test automation framework that works on autopilot and
quickly adapts to any changes in the application. The journey of
reinforcement learning, a subfield of machine learning aimed
at maximizing cumulative rewards to optimize decisions in an
environment, is an interesting one and offers a decent solution.
With its flexibility, RL is applied for full stack test automation
where this framework can automatically adapt for any changes
in UI, APIs or database schemas and thus bringing in high level
of adaptability and low maintenance.

Problem Statement
Classic test automation is prone to brittle tests that need to be
constantly updated with every application component update. In
e-commerce contexts, this challenge is exacerbated by the need for
frequent change driven by the high demand for user interaction,
and the need for rapid response to changing business requirements.

Here are some examples of issues you might encounter:
•	 UI Updates: A static locator is likely to become useless when

the UI gets updated frequently (e.g. changing button Ids or
adding new fields).

•	 API Endpoint Changes: These changes in URL, parameters
or response structure break API-based tests, especially tests
related to transaction, check-out flow and inventory updates.

•	 Database Schema Changes: If the database schema has been
changed (add a field, remove a column, change validation)
then tests that validate data from the backend will fail.

This framework embeds RL where tests can adapt themselves
with changes made at the application side and helps in increasing
stability over UI, API and backend layers by solving these
problems.

Solution: Reinforcement Learning in Self-Healing Frameworks
RL models are based on learning the best actions to take in
an environment by maximizing the sum of rewards over time.
In the introductory example of test automation, RL agent gets
trained to dynamically modify test cases by observing states of
application and choosing appropriate corrective actions to ensure
test reliability.

Self-Healing Framework Using RL Components
State Representation
From this perspective, the state will be a full view of the testing
environment and its response to the test case being executed. Each
state represents the following information:
•	 UI Elements: Holds the configuration of the DOM elements

used in a test case (like button ID, class names, XPaths, data
attributes)

•	 API Endpoints and Payload: Details of API endpoint URLs,

ISSN: 2754-6659

ABSTRACT
In dynamic environments such as e-commerce, test automation frameworks often struggle as applications are continuously changing. In this paper a
test automation framework is being proposed with self-healing ability that leverages Reinforcement Learning (RL) to automatically adapt test cases to
new versions of interface, Application Programming Interfaces (APIs) and the database schema. With the integration of RL, the framework operates
with minimal human intervention, makes it easier to generalize the results and lowers the costs related to maintaining the tests. Through the framework,
examples inspired from common e-commerce use-cases are assessed and demonstrate the potential of RL to inject additional resilience & adaptive behavior
in full-stack test automation.

Citation: Hariprasad Sivaraman (2022) Self-Healing Test Automation Frameworks Using Reinforcement Learning for Full-Stack Test Automation. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-E210. DOI: doi.org/10.47363/JAICC/2022(1)E210

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 2-4

parameter structure, headers, and response structure.
•	 Database Schema: Represents the table schemas and how the

data is expected to be saved for being verified at the backend.
•	 Execution Context: Maintains the current execution step

in the test case – If its a load state for a checkout page, or
transaction state, or database query result.

The state here is specifically a vector encoding of the current state
of the DOM (Document Object Model) structure, API schema,
and the state of the database schemas. By representing it in this
format, the RL model can treat every state as a single entity and
learn to generalize on the UI, API, and the backend layers.

Action Space
The actions that the RL agent can take are the possible changes it
can implement on self-heal test failures. Those actions tackle the
most common failures areas in full-stack testing:

UI Self-Healing Actions
•	 Locator Modification: Change CSS selector or XPath based

on adjacent elements or data attributes.
•	 Element Retry: Retry locating an element with a small delay,

handy for asynchronous UI loads.
•	 e Element Replacement: Replace with an alternate element

when a similar element is detected (Multiple "Add to Cart"
buttons.)

API Self-Healing Actions
•	 Payload Change: Change payload keys or values based on

pattern seen in successful requests.
•	 Retry with Fallback Parameters: If it does not work, the

agent will attempt a fallback parameter seen to work before.
•	 Endpoint Update: Adjust API endpoint or parameters based

on common changes (e.g., modifying /api/v1/checkout to /
api/v2/checkout)

Self-healing Actions of Database
•	 Schema Adaptation Change: SQL queries in case new fields

are added or some fields are eliminated from the database.
•	 Conditional Validation: Update the backend validation to

include/exclude fields based on the latest schema.
•	 Fallback Strategy: Fallback Query Retry with Default Field

Rather than querying all the columns apply where clause to
exclude rows with non-NULL columns

Given the current state and its training to maximize the success
of a test passing, the agent selects an action.

Reward Mechanism
In the prior step, each action can be evaluated by providing a
reward system that tells the RL agent if the action is success or
not, e.g.

Positive Reward
•	 Due to self-healing of a test case and making it pass.
•	 To reduce the time of executing tests (e.g., Attempts should

be minimal).
Negative Reward:
•	 To commit an undesired act or overtry
•	 Number of attempts to self-heal after which the test fails.
•	 Neutral Reward:
•	 Does nothing beneficial but keeps the test pipeline with no

substantial advance or regression.

By receiving rewards, the agent learns to avoid actions that lead
to test failures and execution time, thus leading it to take the best
actions in future runs.

Reinforcement Learning Algorithm
Deep Q-Learning (DQN), which approximates the Q-value for
each state-action pair using deep neural networks, is a widely
used algorithm for this type of problem. The Q-values indicate
expected total rewards for taking a specific action in a specific
state in this framework.

Architecture of Deep Q-Network (DQN)
•	 Encoder (Input Layer): Encodes the current state vector

(UI, API, and Database details)
•	 Hidden Layers: One or more dense layers to model the non-

linear relationships between the surface, the API changes, and
the changes in the backend schema, respectively.

•	 Output Layer: Q-values for each action, letting the agent
select the action with the best expected reward.

Training the DQN Agent
•	 Experience Replay: The agent keeps a memory of state-

action-reward-next-state tuples. At training time, it samples
random batches from this memory for increased generalization.

•	 Target Network: a second network, which is updated to the
weights of the first, reduces correlations which stabilizes
learning.

•	 Exploration vs. Exploitation: The agent explores random
actions initially to learn good self-healing paths. Eventually
it becomes exploitative and picks actions which had a higher
reward in the past.

Training Example
For e.g., take a checkout test case in an e commerce site where a
dynamic change happened with the ID of the Place Order button
to cause the test case to fail.
•	 First State: The agent now sees that the "Place Order" button

is not present.
•	 Action: It attempts to locate the similar type of buttons using

a new locator strategy.
•	 Reward: The action restores the test flow (positive reward)

or goes back to penalty.
•	 Learn: The agent modifies its Q-values, more likely to select

locator modifications for the same set of UI changes in the
future execution.

Uses and Benefits of Self-Healing Frameworks
The ability of a self-healing test automation framework to solve
these new-age challenges — powered by RL — can translate to
significant benefits for businesses at scale, especially for large and
complex e-commerce environments. Beyond core advantages such
as lower maintenance and higher stability, there are a few unique
features that come in with niRL based approach for automation
of tests:
•	 Dynamic Change Resistance: E-commerce platforms

continuously change UI/UX, API, and schema. RL, on the
other hand, the framework self-adjusts to these changes,
continues to adapt to promise the same test coverage as the
app layer changes.

•	 Learning / Adaptive: The RL-based framework improves
every time it carries out the test vs the scripted automation
that keeps running the same script for the same test. The
agent fine-tunes its approach as it faces different situations,
improving at solving breakdowns without need for help.

Citation: Hariprasad Sivaraman (2022) Self-Healing Test Automation Frameworks Using Reinforcement Learning for Full-Stack Test Automation. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-E210. DOI: doi.org/10.47363/JAICC/2022(1)E210

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 3-4

•	 Lower Manual Effort and Error: In automatically
addressing common points of failure, the framework reduces
manual effort to update test cases by developers and testers
thereby allowing them to concentrate their time and efforts
on strategic test design and higher-level validation activities.

•	 Release Cycle Disruption: Repeated maintenance of tests
takes up time and finances. The result is lesser dependency,
low maintenance costs, quick testing timelines, and ultimately
quicker product deployments and lesser operational
expenditure as compared to rule-based frameworks (enabled
with RL).

•	 Improved Accuracy in Complicated Use Cases:
E-commerce systems commonly incorporate complex, multi-
step workflows such as the checkout process and inventory
management. In these situations, an RL-based framework
that minimizes false negatives, increases test robustness by
learning optimal correction strategies, and therefore enhances
the precision of these tests can be advantageous.

Practical Example: Applying RL in E-Commerce Full-Stack
Test Case
For instance, a typical scenario is a checkout process in an
e-commerce test environment, where you have multiple interactions
between layers such as UI, API and Database interacting with each
other and a RL-based self-healing framework running to detect
and heal errors on the fly. The RL agent must adapt to the changes
independently, as each layer is a challenge on its own.

Scenario: The Checkout Workflow
A normal checkout workflow on an e-commerce site consists of
the below steps:
•	 Product Selection and Cart Addition: The user picks the

goods and adds the same to the shopping cart.
•	 Review and Checkout: The user sees their cart, changes the

quantities if needed, and presses the Proceed to Checkout
button.

•	 User Authentication: The user must be authenticated (login)
if he/she is not logged in to continue

•	 Order processing: The checkout API handles the order—
totals, taxes, and discounts.

•	 Order Confirmation: This involves an update in the database
which assures the order and records data in the backend.

In this process, the RL agent interacts with each layer which can
change/fail that can break traditional automation scripts.

Layer-Specific Adaptations Using Reinforcement Learning
UI Layer - Dynamic Locator Handling
In the UI layer, dynamic changes to element locators, such as the
IDs or classes of buttons and
text fields, are common. For example, imagine that the ID for the
"Place Order" button was changed after a user interface styling
update.
•	 State representation: DOM structure that agent is focused

on including attributes of button, other elements that are
neighboring it, and the class name to capture

•	 Reward: The RL agent tries different locators. In case primary
locator fails for "Place Order" button, it falls back to XPath
relative to a stable parent element or use CSS selectors based
on nearby text labels.

•	 Reward System: Positive reward when the button is clicked,
thus allowing the test to move forward. In this case, the agent
will receive a negative reward, and it will be punished for
trying too many times.

•	 By interacting with the world many times, the agent learns
successful locator

API Layer - Endpoint and Payload Adaptation
One way the backend can affect the API layer is by changing the
endpoint structure or payload. For instance, if the order processing
endpoint is changed from /api/v1/checkout to /api/v2/checkout,
or if the payload schema includes new fields.
•	 State""" Representation""" State""" """ Info""""""

State-action\n State input\n""" Example""" State"""
Representation""" The agent holds information about the
endpoint to connect to, url, request headers, and other useful
payload structure

•	 Behavior: To accommodate for the failed API call, RL agent
acts by changing endpoint URL or payload keys. A good
example would be to find out if a parameter is missing, like
discountCode, and have the agent inject it because previous
requests were successful with it.

•	 Reward Mechanism: The API call returns successfully,
which means that these parameter changes match the backend
requirements, and thus we are given a positive reward. In
case of fails in retries or too many modifications it applies
negative awards.

Through its actions, the agent updates the API interactions,
allowing it to operate independently to respond to backend changes
with minimal human intervention, learning over time what changes
lead to successful API calls.

Database Layer - Schema Adjustment for Data Validation
Example 1: There are changes in schema fields or table structure
in the database layer which affects the validation of the test. Such
as a user can add a new column — order Discount in the orders
table to store discount applied at XML checkout.

•	 States Representation: The agent learns the schema of the
database, which includes the table layouts, the column names
and the data types which are used for testing validations.

•	 Example of Changing Queries: The RL agent updates
queries by verifying the existence of the order Discount field.
If so, it modifies the SQL query to use the new column in
data validations. If a given test doesn't require that column
then it can simply choose to ignore it, which is the flexibility
validation needs.

•	 Reward Model: A positive reward is given when the query
is validated successfully based on the adjusted schema.
Spamming/retrying or omitting information will incur
penalties. This allows the agent to automatically reconfigure
to the schema at hand and accurately validate backend data
throughout the tests.

Conclusion and Future Directions
This paper proposed a self-healing test automation framework
driven by reinforcement learning, specifically for complex full-
stack environments like e-commerce platforms. With a framework
that automatically adapts to changes in UI, API and other backend
components, this ensures minimum manual test maintenance,
which means, lesser-cost and faster testing, along with increased
reliability of software.

Future Directions
Despite success using RL for this purpose, opportunistic
exploration may not be the only way for further improving our
framework, as future work can explore:

Citation: Hariprasad Sivaraman (2022) Self-Healing Test Automation Frameworks Using Reinforcement Learning for Full-Stack Test Automation. Journal of Artificial
Intelligence & Cloud Computing. SRC/JAICC-E210. DOI: doi.org/10.47363/JAICC/2022(1)E210

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 4-4

Copyright: ©2022 Hariprasad Sivaraman. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

•	 Multi-Agent Reinforcement Learning: Using multiple
agents for different application layers (i.e., UI, API and
database) might allow more specialized learning with
respect to different application layers since each agent would
maximize its resilience at that specific layer.

•	 Improved Reward Shaping: The reward structure can
be fine-tuned for incentivizing the stability along complex
workflows leading to improved stability and accuracy for
multi-step test cases.

•	 Transfer Learning: Transfer Learning can be utilized to
speed up learning for the RL agent by transferring knowledge
from one domain (e.g., user checkout flows) to updated, but
similar workflows within the same application.

•	 Real-Time Monitoring and Adaptation: By integrating
the RL agent with different real-time monitoring tools, the
agent can detect application changes in real-time and adapt
its testing plan, accordingly, thereby improving test success
ratio in CI/CD pipelines.

Such a self-healing test automation framework powered with
RL is an ideal example of resilient, efficient and adaptive test
automation which can cater to the needs of fast, changing nature
of e-commerce platforms and similar kinds of high-dynamic
software environments [1-13].

References
1. Sutton RS, Barto AG (2018) Reinforcement Learning:

An Introduction. MIT Press https://ieeexplore.ieee.org/
document/712192.

2. Wang Y, Kong X, Bai J, Zhang J, Chen H (2021) Self-healing
Test Automation for GUI Testing of Web Applications. IEEE
Transactions on Software Engineering 47: 1153-1172.

3. Li Y, Duan Y, Chen X, Schulman J (2017) Self-Healing
Automation Framework Using Machine Learning. IEEE
Transactions on Software Engineering 43: 342-354.

4. Mao H, Alizadeh M, Menache I, Kandula S (2016) Resource
Management with Deep Reinforcement Learning. Proceedings
of the 15th ACM Workshop on Hot Topics in Networks
(HotNets-XV) 50-56.

5. Machado MC, Bellemare MG, Bowling M (2018) Revisiting
the Arcade Learning Environment: Evaluation Protocols and
Open Problems for General Agents. Journal of Artificial
Intelligence Research 61: 523-562.

6. Nascimento M, Cunha T, Silveira R (2020) An Adaptive
Test Automation Framework Using Reinforcement Learning.
Proceedings of the International Conference on Software
Testing, Verification and Validation Workshops (ICSTW)
171-175.

7. Testa G, Angius D, Orsenigo C (2019) A Framework for Self-
Healing Software Using Deep Learning Techniques. Future
Generation Computer Systems 100: 1025-1041.

8. Yosinski J, Clune J, Bengio Y, Lipson H (2014) How
Transferable Are Features in Deep Neural Networks?
Advances in Neural Information Processing Systems
(NeurIPS) 3320-3328.

9. Finn C, Abbeel P, Levine S (2017) Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. Proceedings
of the 34th International Conference on Machine Learning
(ICML) 1126-1135.

10. Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B
(2019) Interpretable Machine Learning: Definitions, Methods,
and Applications.

11. Dietterich TG (2000) An Overview of Hierarchical
Reinforcement Learning. Proceedings of the 9th International
Symposium on Artificial Intelligence and Mathematics.

12. Huang W, Boehm B (2017) Exploring Self-Healing in
Software Systems.

13. Liang X, Mendelson J (2019) Deep Reinforcement Learning
for Continuous Control in Software Engineering Applications.

