Risk Probability of Having a Cardiovascular Disease or Stroke Using Annual Segmented Data of Glucose and Metabolism Index (GH Method: Math-Physical Medicine)

Gerald C Hsu

EclaireMD Foundation, USA

*Corresponding author
Gerald C Hsu, 7 Oak Haven Way Woodside, CA 94062, EclaireMD Foundation, USA, Tel: +1-510-331-5000, E-mail: g.hsu@eclairemd.com

Introduction
In this paper, the author describes the quantitative relationship between his risk probability of having a cardiovascular disease (CVD) or stroke and his annual segmented data of both average daily glucose and daily metabolism index (MI) by using GH-Method: math-physical medicine.

Method
In 2014, the author applied topology concept, finite-element engineering technique, and nonlinear algebra operations to develop a mathematical metabolism model which contains ten categories including four output categories (weight, glucose, BP, and other lab-tested data including lipid & ACR), and six input categories (food, water drinking, exercise, sleep, stress, routine life patterns and safety measures). These 10 metabolism categories include approximately 500 detailed elements. He further defined a new parameter referred to as the metabolism index (MI) that has a combined score of the above 10 metabolism categories with 500 elements. Since 2012, he has collected and stored ~2 million data of his own body health conditions and personal lifestyle details. He then developed a set of algorithms which include a patient’s baseline data (e.g., age, race, gender, family genetic history, medical history, bad habits, etc.) and conducted the following three calculations:
1. Medical conditions - individual M1 through M4: i.e. obesity, diabetes, hypertension, hyperlipidemia, and others.
2. Lifestyle details - individual M5 through M10.
3. MI scores - a combined score of M1 through M10.

With this mathematical risk assessment model, he can obtain three separate risk probability percentages to offer a range of the risk prediction of having CVD or stroke resulting from metabolic disorders, unhealthy lifestyles, and their combined impact on the human body.

Through his developed predicted weight and glucose (FPG, PPG, A1C) models, he has successfully reduced his glucose level from 280 mg/dL (A1C 10%) during 2010 to 116 mg/dL (A1C 6.4%) during his “no medication” period of 2015-2019. In addition, his ACR has also dropped from 116 mg/g in 2010 down to 8 mg/g in 2018.

During a particular period of 2018 through 2019, he has attended more than 60 medical conferences located in 50 international cities and presented more than 100 presentations. These unusual busy traveling schedules and heavy workload have brought tremendous amount of stress and strain on his body and his health conditions. As a result, his overall MI scores have been slightly increased during these two years, although his annual average glucoses still decreased slightly due to his through knowledge and acute attention on his diet and exercise while traveling.

Results
Figure 1 shows his daily data of both glucose and MI from 2014 through 2019. The calculated annual glucose and MI values are displayed inside this figure.
Figure 2 depicts his risk probability of having a CVD or stroke from 2010 through 2019. The risk has been reduced from 82% in 2010 to 54% in 2017 and then finally increased slightly to 56% in 2019.

Figure 2: Annualized risk probability of having CVD or stroke

Figure 3 illustrates three curves and data table of annualized glucose, MI, and CVD risk % together. It clearly shows that glucose values are continuously dropping from 2014 through 2019 except MI values have slightly increased during 2018 and 2019 due to his traveling life.

Figure 3: Annualized curve and data of Glucose, MI, CVD %, & Renal %

Figure 4 displays the following two correlation coefficients (R) Between:
(1) Glucose vs. CVD risk = 91.8%
(2) MI vs. CVD risk = 99.8%
These prove that the risk probability of having a CVD or stroke depends more on the overall metabolism conditions, rather than just glucose condition (diabetes), though it is one of the vital contributors of MI.

Figure 4: Two CVD Correlation Coefficients (R)

Figure 5: Three Curves of Glucose, MI, & CVD %

Conclusions
This paper has proven the strong influence of metabolism (including glucose) on CVD/stroke risk probability % by using the annually segmented MI (and glucose) data [1-5].

References

Copyright ©2020 Gerald C Hsu. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.