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Introduction and Background
Cancer is a global health concern in the modern society and is 
the second driving cause of death worldwide after cardiovascular 
diseases.  In 2015 the number of new cases and deaths were 14.9 
million and 8.8 million respectively up from 12.7 million and 7.6 
million in 2012 [1-3]. A lot of factors that are involved in solid 
tumor development, points that cancer is a generic term used to 
describe the selfish and uncontrolled growth of cells leading to 
tumor formation. Cancer is also defined as a multistage dynamic 
autoimmune disease that develops through accumulation of genetic 
alterations initiated by interactions between genetic and external 
factors [4]. Tumors can be mainly classified into two categories 
that is tumors of the epithelial tissues (carcinomas) and those of 
conjonctive tissues (sarcomas). All cancers begin in the local 
(primary) stage, which is called, in situ carcinoma when in the 
epithelial tissue. Most of them are benign (non-threatening) tumors 
that can be eliminated by the immune system. Some tumors can 
become invasive and spread to other body organs (metastasis) 
forming secondary tumors [5].

Environment and other nongenetic factors have roles in cancer 
development but it is widely acknowledged that cancer arises 
due to mutations in cancer-susceptible genes. Its progression is 
viewed as an evolutionary process driven by genetic variations 
and natural selection. Normal cells ensure tissue homeostasis 
through self-regulation through two principal ways: extracellular 
pathways and intracellular pathways. Through deregulating these 

two mechanisms, cancer cells can maintain the cell division cycle 
activated hence escape, proliferate and grow pathologically and 
these regulations can only be disrupted by cell mutation [6,7]. 

Oncogenes and tumor suppressor genes (TSGs) are most relevant 
in regulating cell proliferation, differentiation and apoptosis. 
Oncogenes (modified genes that promote tumor growth) create 
growth signals and promote cell cycle progression while 
TSGs delay cell cycle, to ensure proper DNA repair, and may 
trigger apoptosis. These genes regulate and maintain a balance 
between normal cell birth, growth and programmed cell death 
(genetic stability) hence we can define genetic instability as the 
rate at which cells acquire genetic abnormalities [8]. Cancer 
initiation starts with the malfunction or mutation of at least one 
of TSGs or oncogenes leading to accumulation of mutations in 
gatekeeper genes (genes that control growth). Gene mutation 
causes overactivity in oncogenes and neutralise the functionality 
of TSGs. Gene expression is important to maintain a balanced 
cell function as over expression and under expression of genes, 
instead of outright genetic damage, can be a potential contributor 
to proliferation. Viral infections like the human papilloma virus 
(HPV) and microenvironmental signals such as hypoxia (oxygen 
deprivation) also induce changes in gene expression. In addition 
to aging, exposure to external factors that include chemical 
radiation and environmental features urge deregulation and lead 
to tumor evolution [8]. Cancer development can be viewed as 
a plan for uncontrolled growth between the environment and 
tumor cells with approximately 30% of most cancer deaths due 
to behavioral and dietary risks. Chronic and viral infections such 
as HIV, Hepatitis B, and C virus are also risk factors for cancer-
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Cancer is an age related autoimmune disease initiated by genetic mutations leading to increased proliferation rate and tumor formation. Accumulation of 
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arises due to abnormal growths of the cells lining the breast lobules hence men and women can develop it, although very rare in men (less than  ). There 
are different types of breast cancer, and the most common are the invasive and non-invasive cancers. Usually, it is common to study breast cancer tumors 
as isolated entities, but its biological and molecular structure are indicative of an unstable heterogeneous disease with multiple subtypes coexisting within 
a tumor. Many studies with different methodologies have been carried out to understand cancer development and progression, however, another approach 
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causing up to 70% of cancer deaths in 2008. Cancer, in general, 
remains a health problem due to its complexity and is classified 
based on the tissue of origin. Uncontrolled growth occurs in 
any part of the body, hence there are over 200 different types of 
cancers. Different molecular mechanisms and pathological stages 
controlling cell migration and proliferation are defined from a 
biological perspective, but there are multiscale linkages that affect 
tumor behaviour in the molecular micro scale. Mathematical and 
computational models have been widely used to quantify and 
model intra tumor molecular linkages connecting them with tumor 
behaviours such as growth and invasiveness [9]. The interactions 
between cellular proliferation and adhesion are influenced by 
cellular genetics and by microenvironmental conditions such as 
hypoxia. Competition between heterogeneous cell proliferation, 
driving shape instability, and invasive tumor morphologies, and 
other stabilizing mechanical forces like cell to cell and cell to 
matrix adhesion determine the overall tumor morphology. The 
most damaging aspect of advanced cancer is metastasis, which is 
a complex phenomenon defining the invasion or spread of tumor 
cells to form secondary tumors in distant body parts. The most 
common metastatic destinations include breasts, prostate, bones, 
and lungs and clinically it is estimated that at least 90% of all 
cancer deaths are end results of a metastatic process [4,7,9]. There 
is competition within the tumor cell due to intrinsic and extrinsic 
selective pressures like limited nutrients hence leading to genetic 
instability within the heterogeneous tumor cell populations. 

Breast Cancer Dynamics
Globally breast cancer is the most common invasive cancer and the 
second leading cause of cancer-related mortality among women 
after lung cancer [9]. It arises due to abnormal growths of the 
cells lining the breast lobules. Both women and men can develop 
it, although it is rare in men only accounting for less than 1%. 
There are several types of breast cancer as they are classified 
according to their stage, but the most common is the premalignant 
stage known as the atypical ductal hyperplasia (ADH), which 
progresses to the preinvasive stage of ductal carcinoma in situ 
(DCIS), and finally culminating in metastatic invasive carcinoma. 
The invasive cancers can be categorized as either invasive ductal 
carcinoma (IDC) or Invasive Lobular Carcinoma (ILC) [10-12]. 
DCIS develops inside the normal milk ducts and is non-invasive, 
while IDC and ILC are invasive breast cancers that can metastasise 
[13,14]. Breast cancer development is a multi-step linear process 
that begins in the premalignant stage (ADH) to the preinvasive 
stage (DCIS) to the invasive stage (IDC and ILC).  IDC and ILC 
have some identical features like tumour site, size, stage and grade, 
but have different metastatic and histology characteristics. IDC 
begins from the ducts and spreads to the fatty tissue of the breast, 
and ILC is mainly confined to the milk producing lobules. Breast 
cancer can spread to other body parts like lung, liver, bone, and 
brain and will be known as metastatic breast cancer or advanced 
breast cancer. It is estimated that if left untreated at most 75% of 
DCIS tumors progress to IDC. Tumor stages of the preinvasive 
and the invasive stages are heterogeneous, to characterise them 
tumor-grading systems have been developed to subtype the stages 
of DCIS and IDC. Yumei et al, identified three main tumor grades 
I, II, and III corresponding respectively to low, medium, and highly 
differentiated breast tumors.  In grade I cancer cells are small and 
similar to normal cells in structure, when in grade II the cancer 
cells slightly bigger than normal cells, change shape and grow 
faster than normal cells while in grade III cancer cells are growing 
at a faster rate and are completely different from normal cells [15].  
 
Usually, it is common to study breast cancer tumors as isolated 
entities, but its biological and molecular structure are indicative 

of an unstable heterogeneous disease with multiple subtypes 
coexisting within a tumor. These subtypes can be distinguished 
using phenotype or genotype characteristics of the tumor, like 
tumor stage, grade, and genetic profile. The main controversial 
question in cancer biology is whether genetic instability can 
be considered as a significant driver of cancer progression. In 
order to understand cellular physiology and predict their invasive 
behaviour, cell observable properties like morphology are used. 
Understanding the progression is key to developing future 
treatments to improve patient survival and major progress has 
been made to understand breast cancer development, however, the 
precise molecular dynamics underlying progression process are 
poorly understood due to the difficulty in obtaining longitudinal 
tissue samples at all tumor stages. They highlighted that in order 
to explore the molecular differences between distinct breast cancer 
stages there is need to separate pure populations of abnormal 
epithelial from different stages of tumor progression [16-18]. 

The main challenge in cancer research is the characterization of 
molecular events associated with progression. To understand the 
dynamic process we must identify the significant molecular events 
that are driving stepwise disease progression. Understanding early 
breast cancer molecular dynamics especially in non-invasive 
DCIS must provide new prospects to delay its progression and 
predict possible responses to treatment. Predicting the DCIS 
dynamics is key to understanding and delaying progression. Driver 
mutations confer clone growth advantage and initiate cancer 
progression while passenger mutations are assumed to be neutral, 
only cells with genetic and epigenetic alterations that favour tumor 
progression are selected [19,20].

Previous studies suggest that cancer progression is more 
complex than portrayed by traditional models through activation 
of oncogenes and deactivation tumor suppressor genes.  Rapid 
developments in molecular profiles and genomic technologies 
have enabled the study of cancer genomes using excised tumor 
tissue samples. However, currently there are limited established 
progression models derived from human tumor tissue after the 
conceptual models. Yumei et al, pointed out that since cancer cells 
are derived from normal cells, it is unethical to delay treatment 
after diagnosis. We have to use static data from excised tissue 
samples though it is regarded as a snapshot of the dynamic process. 
Some researchers posed the question: Can we develop cancer 
progression models using static data? Sun et al, highlighted the 
possibility only when using advanced computational techniques 
[21-23].

Key Breast Cancer Genes   
Genomic instabilities accelerate tumorigenesis. Many genes 
governing important functions in the development of cancers 
have been identified, though the biological insight from the 
list of genes is still limited hence the underlying tumorigenesis 
mechanisms are not well established. Genes are classified as either 
oncogenes or tumor suppressor genes (TSGs) which gain or lose 
their function respectively. Oncogenes stimulate the programmed 
cell division in the presence of the relevant growth signals. TSGs 
stop growth in normal cells through apoptosis, when a cell is 
genetically damaged or when cell death is necessary for tissue 
homeostasis.  Over expressed oncogenes and under expressed 
or inactivated TSGs can disrupt epithelial cell proliferation and 
apoptosis (tissue homeostasis), leading to cell over proliferation 
and tumorigenesis. Other genes can negatively regulate cell growth 
and proliferation and the retinoblastoma-associated protein (RB) 
and TP53 are key growth inhibitors. RB transduces extracellular 
growth inhibitory signals determining if the cell should continue 
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proliferating. TP53 protein (the most mutated gene in human 
cancer), receives inputs from intracellular signals on genome 
damages, growth-promoting signals, glucose, or oxygenation 
levels. When these levels are suboptimal, TP53 stop the cell 
division cycle and initiate programmed cell death. Cells can die 
differently but the most common are apoptosis (programmed 
cell death) and necrosis (cell exploding). Common characteristic 
for cancer cells is their ability to escape from apoptosis through 
loss of TP53 tumor suppressor function hence most of them die 
through the genetic program necrosis [24,25]. 

To deeply understand breast cancer heterogeneity at molecular 
level gene expression profiling was done and it identified six 
intrinsic subtypes which are: luminal A, luminal B, HER2, triple-
negative, claudin-low and normal-like with each molecular 
subtype exhibiting significant molecular heterogeneity. The first 
two subtypes, luminal A and luminal B are common, representing 
low to intermediate grade tumors. At most 25% of breast cancer 
cases are associated with mutations in the BRCA1 (BReast CAncer 
gene one), BRCA2 (BReast CAncer gene two) and TP53 genes. 
Everyone has BRCA1 and BRCA2 genes and they are responsible 
for repairing damaged cells and also help breast, ovarian, and other 
cells to continue growing normally. The transition from DCIS to 
IDC is associated with quantitative relationship mainly found in 
high-grade lesions regardless of tumor stage [26-28].

Risk Factors for Breast Cancer 
A risk factor is anything that affects an individual’s chance of 
getting a disease. Cancer arises from one single cell that transforms 
into a tumor cell through a multistage process due to interactions 
between genetic factors and the external agents. Some of the 
risk factors are beyond human control like being a woman is 
a significant risk factor for breast cancer since women are 100 
times more likely to develop the disease than men. In addition to 
aging, external factors that include exposure to high radiations, 
and environmental features urge deregulation in the dynamics of 
the biological system, leading to tumor evolution. Approximately 
30% of most cancer deaths are due to behavioral and dietary 
risks such as the use of tobacco, alcohol, obesity and decreased 
physical activities are some of the major cancer risk factors in 
today’s world. Chronic and viral infections such as HIV, Hepatitis 
B, and C virus are also risk factors for cancer as they had caused 
up to 70% of cancer deaths recorded in 2008 in low and middle-
income countries. Approximately 5- 10 % of breast cancers are 
linked to inherited genetic mutation caused by the non-modifiable 
mutation in the BRCA1 or BRCA2 gene [29,30].

There are also other non-modifiable factors to increase breast 
cancer incidences, such as early menopause, parity, race, 
hormones, and immune conditions, family breast cancer history. 
Among the risk factors for breast cancer, family history is the 
most significant hence women’s risk of breast cancer development 
significantly increases if she has a first-degree relative with breast 
cancer. Here genetic factors are assumed to be the major causes 
of breast cancer [31]. 

Mathematical Models in Cancer Biology
Cancer is a complex biological process hence its research is 
becoming a multi-disciplinary area involving collaboration from 
experts in different scientific fields. Previously the dynamics of 
breast cancer has been difficult to study since most researchers 
were focussing on qualitative aspects of cancer biology. However 
the growing interest on dynamical aspects of the biological 
processes including genetic developments are leading researchers 
to focus more on integrating maths and biology. The proposed 

models give insights into the mechanisms of existing treatments 
and help formulate new therapies. Above helping to understand 
the mechanistic foundations of dynamical systems, mathematical 
models simulate complex systems without the massive costs of 
laboratory experiments [32,33].

Mathematical models for cancer development are constructed 
from the basics, starting with pieces that describe key aspects of 
the disease and then continuously add more complex features as 
additional building blocks. We introduce and review the main types 
of mathematical models that have been widely used to describe 
tumor growth. Mathematical theory has contributed a lot to cancer 
research: firstly in epidemiology, where available incident statistics 
is used to create cancer models that explain the observations. 
Armitage and Doll were the pioneers of this theoretical modelling 
approach, which was then taken to the next level by Moolgavkar 
and Knudson. Tumor growth was then studied using mechanistic 
modelling which is different from the first method as this includes 
multiscale modelling. In this method properties of biological tissues 
were used to describe tumor growth as highlighted by Cristini and 
Lowengrub. To understand the collective behaviour of cancer, that 
is initiation and progression of cancer as an evolution process, 
methods incorporating population and evolutionary dynamics were 
developed by Gatenby and Gawlinski and also Gatenby and Vincent. 
The number of models developed by mathematical theorists in the 
field of “mathematical oncology has been growing exponentially. 
Due to cancer complexities and cell heterogeneity it is not possible to 
develop a single model that can fully describe cancer development, 
hence models of cancer growth are much diversified. Computational 
and mathematical modeling techniques have been accepted by the 
biological community as means to motivate experimentation and 
as a route to integrate multiple experimental findings and generate 
testable predictions. The major strength of mathematical modeling 
in breast cancer progression is its ability to capture the dynamic 
nature of the disease. Early molecular studies of invasive ductal 
carcinoma (IDC) looked on the relationship of tumor genomic 
variations with tumor grade, and this significantly contributed to 
understanding breast cancer progression [34-36].

Biological experiments are expensive, time consuming and ethically 
challenging, so mathematical models provide an alternative way 
through experiment-free check of assumption consistency, before 
experimental work. The power of quantitative models depends on 
its ability to integrate experimental data forming comprehensive 
framework, which can be used to predict the dynamics of a system. 
Mathematical models are mechanistic, they focus on the core 
processes driving tumor growth and integrating them to enable 
holistic predictions. Other models are classified as stochastic as 
they try to represent unpredictable processes, such as diffusion, 
that are random in nature [37].

Discrete Cell Modelling
Discrete models can trace individual cell behaviour as they interact 
with other cells and the microenvironment hence they are most 
suited for improving our understanding of cancer progression at 
cell level. Dynamic events like mutations, phenotypic properties 
are considered under discrete models. This modelling method 
led to the development “multiscale models”, where intracellular 
events are modelled using ordinary differential equations. These 
models have been modified to include the effects of blood flow 
within the capillaries that includes vascular tumor growth. Discrete 
models can be classified as lattice-based and lattice-free models. 
Lattice-based models are in different classes like lattice gas cellular 
automata (LGCA), cellular automata (CA), and cellular potts 
models (CPMs) while the lattice free models can be classified as 
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agent based models which can be approximated using stochastic 
models and finite-difference approximation methods [38,39].

(i) Cellular automata
These are models based on a spatial grid, where the dynamics 
are defined by some local rules (deterministic or stochastic) of 
interaction among neighbouring nodes. A cellular automaton 
model of tumor angiogenesis that was designed by Anderson 
and Chaplain adopted a discrete dynamical system of time and 
space. The movement rules between states are based directly on a 
discretized form of the continuous model. They used Euler finite 
difference approximation to the PDEs in the discretization process. 
This approach has been widely used to develop models  that rely on 
discrete and hybrid approaches as  the cellular potts model proposed  
by Hallou et al. and cellular automata models Enderling et al [40]. 

(ii) Agent based models
These models are ideal for situations of non-uniformly arranged 
cells, like in angiogenesis, carcinogenesis, and metastasis. The 
major objective is to develop a mechanistic model that explain 
cell behaviour. Agent-based models include components from 
two or more spatial or temporal scales, ranging from molecular 
to tissue, and the cellular. These models are most suitable when 
studying cell interactions and their implications on population-
scale development [41].

Continuous Modelling
Continuous models capture through simulation large scale 
volumetric tumor dynamics with one or more differential equations, 
which are used to calculate the amount of change. Continuous 
tumor models are mainly based on partial differential equations 
such as the  reaction diffusion equations that describe tumor cell 
population density and evolution, the extracellular matrix (ECM), 
and concentrations changes for nutrients, oxygen, and other growth 
factors and inhibitors. Differential equations are also used to 
explore therapeutic antibody distribution in tumors as well as to 
model tumor dynamics and interactions where growth is modelled 
as a function of cell oxygen concentration. The continuous models 
can explain the nutrient diffusion dynamics, tumor evolution and 
cell apoptosis as well as the effects of chemotherapies [42]. 

Different interactions with the microenvironment have been 
studied and these have some limitations on growth. Tumor growth 
can be divided into three categories that are associated with 
increasing degree of vascularization: low (diffusion dominated), 
moderate, and high. If tumor evolution is unstable it leads to 
invasive fingering and topological transitions hence Cristini and 
Lowengrub, concluded that instability during growth can allow 
tumors to grow indefinitely. Mathematical models show that the 
parameters that control tumor mass and shape, control its invasion 
ability, therefore tumor morphology may serve as an invasiveness 
predictor. Non-necrotic tumor evolution could be described by 
two dimensionless parameters, one describing the rate of mitosis 
(cell mobility and cell–cell interaction) and the other describing 
the balance between apoptosis and mitosis. These parameters 
regulate the growth (invasiveness) and morphology of tumors. 
The earliest continuum models developed by Greenspan expressed 
tumor growth as a function of the diffusion of cell substrates 
(oxygen, nutrients etc.) and this accounted for apoptosis and was 
further developed to incorporate immune response as discussed 
by Cristini and Lowengrub [43-45]. 

Hybrid Modelling
These are modern approaches to tumor modeling that are 
constantly being developed by several groups, through combining 

different modelling tools and methodologies. The continuum and 
discrete approaches provide important insights of cancer related 
processes that occur at particular length and time scales, but the 
complexity of cancer and the associated cell and tissue interactions 
need a hybrid approach that uses both continuum and discrete 
approaches. This modelling approach typically incorporate the 
continuum model for nutrient concentration evolution and the 
cellular automata (discrete) model for cell dynamics to explain 
nutrient uptake and cell proliferation dynamics. Classically hybrid 
models refers to the connection of discrete description of cells with 
continuous descriptions of microenvironmental factors. Anderson, 
Rejniak and Anderson and Sfakianakis et al. developed a hybrid 
model of solid tumour invasion focussing on how growing tumor 
geometry is affected by mutation. The model focuses on: tumor 
cells, extracellular matrix (ECM), matrix-degradative enzymes 
(MDE), and oxygen as its variables and they discovered that local 
tumour cell and ECM interactions control tumor geometry not the 
cell to cell interactions. Jiang et al, developed a hybrid model that 
inspects tumor at three different stages that is: cell scale dynamics 
(proliferation, survival, adhesion) and they used the Potts model at 
this scale taking the tumor microenvironment (nutrients, oxygen, 
drugs, growth /growth inhibitor hormones) into consideration, the 
extra cellular level that describes the chemical dynamics of the cell 
(nutrient, waste, growth promoter, and inhibitor concentrations).
was modelled using diffusion equations (PDEs) and the molecular 
scale (genetic dynamics) described using Boolean networks. 
Overally many researchers found out that cell-cell interaction 
and haptotaxis are the major drivers of tumour growth [46,47].

Mathematical Theories of Tumor Growth
We aim to discuss and review main types of mathematical theories 
commonly used when describing tumor growth. When we study 
tumor growth dynamics usually we will be studying the tumor 
volume dynamics. The earliest mathematical model in medicine was 
developed by Bernoulli, to investigate immunization effectiveness 
against smallpox. Kermack and McKendrick developed the most 
popular Susceptible-Infective-Recovered (S-I-R) model to explain 
the dynamics of communicable diseases. The S-I-R model lead to 
the development of other related modeling frameworks including 
the Susceptible-Exposed- Infected-Recovered (S-E-I-R) and 
Susceptible-Infected-Recovered-Susceptible (S-I-R-S) modeling 
frameworks which can be used to model current disease outbreaks. 
Mathematical modelling has been extremely used in understanding 
disease dynamics on the sub-cellular, cellular, and tissue levels. 
Mathematical models mainly focus on general laws that describe 
tumor growth dynamics [48].

(a) Ordinary differential equations
Cancer is viewed as a population of cells that evolve 
deterministically with growth potential and many researches used 
ordinary differential equations (ODEs) to describe the growth 
dynamics. This is mainly used when longitudinal scalar data 
is used to describe tumor dynamics based on the rate of mass 
balance. Natural tumor growth is characterized by several basic 
functions that includes the linear, exponential, logistic, Gompertz, 
and a combination of exponential and linear models. The linear 
model has the form:

  
Where Kg is the tumor regrowth rate. The linear tumor growth 
has been applied by Stein et al (2012) to describe natural tumor 
dynamics of renal cell carcinoma using the longest diameters of 
target lesions. They based their findings on a constant zero-order 
growth rate. If we incorporate the shrinkage (death) rate, then 
we have a model with a linear growth and first-order shrinkage.
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Yin et al, used this equation to describe tumor growth dynamics 
for advanced solid malignancies based on SLD measurements. 
ODEs are not able to describe any form of interaction hence they 
lack detail in their simplicity. The application of ODEs to large 
systems with no extinction effects is also limited since they cannot 
cater for stochastic dynamics.  There has been an increased need 
to consider models that incorporate tumor heterogeneity and 
mutations and these have been developed for tumor dynamics 
characterization as described by Yin et al, and Stura et al. Mufudza 
et al, used delay differential equations to model the interaction 
of breast cancer cells with the immune system. To predict breast 
cancer risk in women using age at menarche, age at first live birth, 
number of first-degree relatives with breast cancer and number of 
breast biopsies, the Gail model was developed. ODE based models 
like the Gompertz model have been used to predict tumor volume 
dynamics and other deterministic models based on  ODEs have 
been developed to explain the secondary tumor development [49].

(b) Exponential or Malthusian growth
Researchers believed that tumor growth was governed by an 
exponential process (Laird, 1964), resulting from constant 
proliferation and growth rate, hence it naturally describes the early 
stages of cancer growth. This tumor growth model was developed 
by Malthus (1766-1834) and the tumor cell growth in exponential 
model is assumed to be proportional to the population of the 
cancer. Claret et al developed the tumor growth inhibition model 
for colorectal cancer using the exponential growth modelling 
approach. The volume dynamics can be explained by the following 
ODE:

Where  λ is the effective growth rate and  V0 is the initial tumor 
volume
Yin et al (2019) introduced a shrinkage term to describe necrosis 
using the combined linear and exponential growth models. If 
we then consider the Malthus assumption and from a population 
dynamics point of view the equation becomes:

Where b is the number of new cells per unit time and d is the 
shrinkage rate that is the proportion of dying cells per unit of 
time. The effective growth rate λ = b ‒ d is positive in a growing 
population and the greater the growth rate the faster the tumor 
grows while negative growth rate leads to a monotonic decrease 
in tumor size. The parameter           is used to describe the 

relationship between tumor growth rate and the tumor doubling 
time T. Exponential growth has been observed in vitro for 2D 
monolayer cell cultures, although other studies show different 
patterns of growth for pulmonary metastases. The same modelling 
approach was adopted to describe changes of prostate cancer 
burden reflected by the level of prostate-specific antigen [50].

The exponential growth modelling approach is generally used 
for tumor growth during avascular and early vascular growth 
where proliferation and apoptosis are assumed constant. As tumor 
population increases, proliferation decreases hence rendering 
this approach inadequate over long time periods. The imbalance 
between proliferation and apoptosis is due to increased competition 
for limited amounts of oxygen and nutrients available which later 

causes proliferation rate to decrease as a function of population 
size while the death rate increases. If there exists a point   where 
these two rates are equal (dynamics equilibrium point) it is called 
the carrying capacity. However, the exponential growth law cannot 
explain solid tumor dynamics over a long period of time as it 
has limited descriptive power in vivo (breast and lung cell lines). 
Mayneord discovered that the overall growth of tumors slows 
down in the latter stages of their development. Due to the slowing 
growth in the late stages of cancer, other researchers proposed 
a variation on the equation for exponential growth, making the 
power-law growth, which is the generalization of exponential 
growth. Other researchers like Benzekry et al, combined the 
exponential and linear approaches to have the exponential-linear 
approach which assumes an initial exponential phase followed 
by a linear growth phase giving the following Cauchy problem 
for the growth rate: 

Where λ is the proliferative rate and coefficient Kg drives the 
linear phase.

(c) The power law model
Tumor growth is always complemented by new blood vessel 
growth (angiogenesis). Tumors grow slowly in the late stages 
of cancer and to grow beyond a diameter of 3 millimeters 
angiogenesis is required. Angiogenesis enables tumors to form 
their own vasculature for increased nutrients supply. The power 
model was introduced by Dethlefsen et al, and it assumes that cells 
within the vasculature proliferate.  The power law describes the 
tumor volume dynamics using the differential equation:

This model shows that the rate of change in tumor volume is 
proportional to volume to the power of and giving a simple 
description of the 2 parameters vascular growth [51].

Gompertzian Growth
The Gompertz model can reproduce biological growth dynamics 
that decrease with population size. It was introduced by Benjamin 
Gompertz in 1825 to describe the human mortality curve, and 
was further employed to describe the late stage tumour growth 
data with the assumption that the tumor volume grows with 
an exponentially decreasing growth rate. Murray and Frenzen 
created a model to monitor cell populations using the Gompertz 
equation via cell doubling time and growth patterns correlations. 
The Gompertzian growth law is able to fully explain growth 
dynamics for large tumor volumes, but inadequate for small tumor 
volumes. The model is written as:

Where λ  is the proliferation rate, β is exponential decay rate.
The analytical solution for tumor volume from the Gompertz 
model is then given by:

The tumor volume converges to the maximum carrying capacity 
supported by vascular supply which is given by
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This model can describe tumor growth with good predictive power. 
The Gompertz model became a widely-accepted representation of 
tumor growth in particular as it was used by Norton to describe 
breast cancer dynamics. Michor et al, illustrated the importance 
of mathematical models in clinical studies by proposing a model 
describing the dynamics of several cell populations of chronic 
leukaemia. The main important characteristic of the Gompertz 
model is that it exhibits exponential decay of the relative growth 
rate [52].

(d) Logistic and generalized logistic growth approach
Logistic equations were initially proposed by Verhulst in 1883, 
then forgotten until resuscitated by Pearl and Reed, who used this 
approach to model population growth in ecology and later applied 
to tumor growth. Systems similar to ecology’s predator- prey 
systems were also used to study the dynamics of cancerous cells 
Gatenby and Vincent. To describe the effects of limited resources 
on tumor growth, Verhulst proposed a competition model where 
birth rate is decreasing and death rate is increasing as function 
of tumor volume. This approach is based on competition (for 
nutrients, oxygen and space) between proliferation and death 
processes, assuming the rate of reproduction is proportional to 
current population and the amount of available resources. Solid 
tumors rapidly grow in their initial stages and then exhibits growth 
saturation when tumor volume turns to reach the maximum 
carrying capacity. This can be illustrated by the logistic differential 
equation: 

where the parameter V is the tumor volume (can also be measured 
in terms of number of cancer cells, density of cells, etc.) ,  K is a 
carrying capacity, the parameter λ is the growth rate and   

represents some cells competing for resources and space. These 
equations can be modified to incorporate mutations as introduced 
by Eigen. Vaidya used the logistic model to describe tumor growth 
and its analytical solution has been widely used to describe the 
dynamics of bacteria population in ecology, and now is being 
employed to describe tumor growth. Since tumors grow according 
to a monotonous growth model, Westvik et al, used the following 
generalised logistic growth curve with tumor diameter to estimate 
breast tumor growth:

Where S�  is the expected maximum tumor diameter in this 
case they assumed it to be 128 mm, b the tumor growth rate 
approximated from the lognormal distribution N = 1/4 , and   
is chosen such that the initial tumor size is 2 mm. The tumor 
carrying capacity determines the maximum tumor size that can be 
supported by vascular supply as Hahnfeldt et al, derived through 
diffusion-consumption arguments that vasculature inhibition can 
be explained using the function (tumor volume)2/s . The changes 
in maximum carrying capacity can be expressed

Where ϕ and φ are constant positive rates of angiogenesis 
stimulation and inhibition respectively. This was used by 
Enderling and Chaplain, to show that tumor growth is increased 

with abundant stimulation and as the tumor grows the inhibitory 
effects will overshadow the stimulator. Mutations give rise to 
different cell variants that often compete for resources (space, 
growth factors, and nutrients). Logistic growth was extended to 
explain competition dynamics between cell variants that share 
the same space, with maximum carrying capacity, only differing 
in their proliferation rates [53].

Mathematical models similar to the Lotka-Volterra competition 
models were developed to model immune response to tumor 
growth which explains the interaction between tumor and immune 
cells. When we compare the growing pattern of the different 
growth models described above, the logistic and Gompertz growth 
models accurately estimate the growth rate as the tumor increases 
though the logistic growth model has carrying capacity as its 
limitation to growth whereas the Gompertz model assumes that 
tumor growth rate decreases over time [54].

(e) Partial Differential Equations
The tumor is small and self-sufficient during the cancer initial 
stages, it can acquire nutrients without angiogenesis. Its growth 
and spread can be estimated using simple models since there 
is no competition for space and nutrients. Cancer becomes 
life threatening when primary tumors invade local tissues and 
metastasise to distant sites forming secondary tumors. Cancer 
invasion and metastatic spread are two crucial and inherently 
spatial processes, which can be simulated using partial differential 
equations (PDEs) which considers change of dependent variable in 
time and space. PDEs have been described as a tool of choice when 
studying tumor growth and metastasis. They are more powerful 
than ODEs, as it allows dynamic description of continuous spatial 
variations in the system. The first cancer invasion spatial model 
developed by Gatenby and Gawlinski, considered effects of 
excess hydrogen ions in degrading the extra cellular matrix hence 
permitting cancer cells to diffuse and proliferate. The following 
system of PDEs was used to model the evolution of cancer cells, 
c, hydrogen ions, m, and extracellular matrix, v: 

                                                                                     (a)

                                                                                     (b) 

                                                                                     (c)

Where Dc, p, δ, γ  are constants representing: diffusion, cancer cell 
proliferation rate, hydrogen ions production rate (similar to the 
decay rate) and extracellular matrix degradation rate respectively. 
In equation (a) evolution of cells was explained by nonlinear 
diffusion plus cell logistic growth. Diffusion and net growth 
explain the hydrogen ion changes in (b) while the difference 
between logistic growth and degradation explains extracellular 
matrix changes in (c). 

The first model that considered random motility, haptotaxis and 
chemotaxis for interactive invasive cancer cells was developed 
by Perumpanani et al, in 1996. This model incorporated possible 
interactions with matrix degrading enzymes (MDEs), extracellular 
matrix proteins (ECM), normal cells and other non-invasive cancer 
cells to examine the rate at which cancer cells invade the ECM in 
the presence of haptotaxis and chemotaxis [55,56].
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One common application of the PDEs is the proliferation–invasion 
(reaction–diffusion) model which accurately capture proliferating 
tumor core, assuming that the net proliferation and invasion 
contribute to cancer growth and is of the form:

Where C is the quadratic growth term, c(x,t) is the tumor cell 
concentration or density, 𝛻2 is the Laplace operator and D is the 
diffusion coefficient. Tumor proliferation can be expressed by 
exponential, logistic, or Gompertz functions. In this model the 
velocity of tumor growth is a constant determined by the diffusion 
coefficient and growth rate constant.  Researchers applied the 
proliferation–invasion model to describe tumor dynamics with 
interest in estimating the rate constants of net proliferation and 
invasion, which was described by a logistic function with constant 
growth rate. Le et al, used this model structure to investigate the 
personalization of radiotherapy strategy for brain cancer patients. 
Likewise, Yankeelov, used the same proliferation–invasion 
model with logistic growth function to describe and predict 
tumor dynamics in breast cancer. To estimate prostate cancer 
evolution dynamics and treatment using immunotherapy Jackson 
formulated a PDE model with cancer cells that are androgen 
independent and androgen dependent. After Jackson’s paper, 
many researchers later considered variations on the model to 
explore further dynamics.Many applications of the proliferation–
invasion model can be found in Meghdadi et al. One of the most 
cited models focussing on haptotaxis is the continuum PDE by 
Anderson et al., it extended modelling to a 2D setting and later in 
2016 Rutter extended to 3D setting while using spheroids to model 
brain cancer. Armstrong et al., modelled non-local interactions 
in the PDE model inclusive of cell–cell adhesion in interacting 
cell populations. Many researchers then based their models on 
Armstrong et al‘s findings by providing computational simulations 
demonstrating general effects of cell–cell and cell–matrix adhesion 
on tumor growth and progression. Anderson developed the PDE 
model of tumor invasion based on a vascularised generic solid 
tumor growth focussing on four main variables namely: tumour 
cell density, MDE concentration, macromolecule concentration 
and oxygen concentration. The complete set of PDEs describing 
the interactions of the four variables were derived and was used by 
Enderling et al, when they looked at breast cancer development, 
treatment and recurrence [57].

Other researchers like Barbolos et al, and Benzekry used 
the hyperbolic PDE model by Iwata et al, for the metastasis 
of natural colon tumours. Benzekry used the Iwata model to 
explain metastasis density and the ODE model by Hahnfeldt et al, 
accounted for tumour growth. Benzekry et al, used the hyperbolic 
PDEs by Iwata to relate presurgical primary tumour volume and 
post-surgical metastatic burden. The dynamics of epithelial and 
mesenchymal cancer cell density as described by Franssen et al, 
is governed by the diffusion-haptotaxis equation:

Where the first term on the right side of the PDE is for diffusion 
and the second term is for haptotaxis. D and Φ  are positive 
coefficients for cancer cell diffusion and haptotactic sensitivity 
respectively and w is the ECM density. This model was achieved 
by expanding the modelling approach of Anderson and Chaplain 
and Anderson et al.

(f) Stochastic Processes
Stochastic modeling arises since many biological characteristics 
are random with general trends that can be deduced hence 
we are not able to predict the exact state of the system at any 
given time. Stochastic processes have been used to understand 
mutation accumulation in cancer studies so it is central in cancer 
progression. Stochastic processes has been applied previously to 
cancer studies in different forms like the branching process, birth 
and death process and the Moran process. Cell division is viewed 
as a branching process, where at regular occasions, each cell 
divides into two identical cells. In the Moran process whenever 
a cell reproduces, another cell is chosen to die to keep a constant 
population size. The branching process is commonly used to 
model cancer evolution while the Moran process models stochastic 
dynamics in a constant population.   Models of metastatic dynamics 
include: fully stochastic mechanistic models by Bartoszynski et 
al, and Hanin et al, who based their work on Iwata et al. In other 
stochastic model by Haeno and Michor (2010); and time branching 
models by Iwasa et al, and Haeno et al, studied the effects of 
treatment choice and the dynamics of at most two mutations in 
suppressor genes to investigate the probability of tumour becoming 
resistant to therapy. Stochastic modelling have been applied to 
investigate breast cancer and tumor growth in Mufudza et al.  

Stochastic models have been used in studying the metastatic 
process of cell scale events. Michor et al, used the Moran process 
of the stochastic models to simulate Darwinian competition 
between tumor cells. They assumed that one mutation is key to 
acquiring the metastatic potential which can be of advantage or 
disadvantage to tumor growth [58]. 

(g) Multiscale Modelling
Multiscale models which uses ODEs to model intracellular events 
were developed through discrete models. Multiscale modelling 
generally uses continuous, discrete and hybrid approaches. 
Continuous approaches use PDEs to describe the tumor dynamics 
like tumor cell density as a function of space and time and other 
complex physical phenomena such as pressure gradients and 
convective transport within the tumor. Some authors concur that 
traditional growth laws (e.g. exponential, logistic, Gompertz) 
are mostly fit to describe tumor growth averages, not valid for 
individual tumors hence they used the multistage carcinogenesis 
theory to develop multi step models that forecast a multi-step 
pattern.  There is need for models that can use ODEs to describe 
tumor growth patterns exploring angiogenesis, apoptosis and 
genetic instability.

Integration of Biology Process 
Tumor growth models incorporating biological factors and 
processes like angiogenesis and other immune system components 
dynamics have been developed. To apply these methods, we 
need the understanding relating to the biological processes 
on top of tumor burden measurements. By incorporating 
angiogenesis biomarkers in tumor growth modeling we improve 
our understanding and prediction of tumor progression. The 
exponential model described the natural growth of the tumor 
and relative change in the biomarker’s amount was predicted 
to affect necrosis. Tumor growth can be described using the 
exponential-linear model, and the amount of unbound vascular 
endothelial growth factor (VEGF) was considered to affect a first-
order tumor shrinkage. The tumor carrying capacity is assumed to 
be determined by the effective tumor vascular support which in 
turn is affected by tumor volume, then the Logistic and Gompertz 
models can be applied as in Ouerdani et al. Other modeling studies 
mainly focused on the tumor microenvironment dynamics like 
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extracellular matrix (ECM) or nutrients concentration. Anderson 
et al. investigated the effect of ECM heterogeneity and hypoxia on 
cancer cells using a hybrid agent-based model and they discovered 
that strict microenvironmental conditions exert selective pressure 
on the cancer cells, resulting in more invasive tumors [59].

Conclusion
There are different models for different cancer types that 
characterize tumor dynamics and require different data input 
and knowledge. Most models can describe tumor size changes 
in patients under different treatment options for instance models 
developed for prostate cancer are mainly proper to describe 
prostate-specific antigen (PSA) level change. Among the functions 
of the natural tumor growth, the exponential growth model has 
been the most frequently selected in clinical studies.  To find the 
best fit natural growth model at least one pretreatment tumor size 
measurement would be helpful and this will enable a more accurate 
estimate of the natural tumor growth rate. The proliferation–
invasion model displayed by PDE has been applied to examine 
glioblastoma (breast cancer) using magnetic resonance images 
(MRI) measurements. Models displayed by ODEs, algebraic 
equations, and PDEs are mainly used to model change in tumor 
size and, in case of prostate cancer, PSA amount change. Most 
complex tumor dynamics models in mathematical oncology are 
based on the traditional types and assumptions of basic growth 
laws.
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