
J Econ Managem Res, 2022 Volume 3(2): 1-5

Real-Time Data Replication for Postgres using WAL Event Capture
and Its usage in E-Commerce Inventory Management

USA

Gautham Ram Rajendiran

*Corresponding author
Gautham Ram Rajendiran, USA.

Received: May 02, 2022; Accepted: May 09, 2022; Published: May 16, 2022

Keywords: Postgres, Write-Ahead Log, WAL Streaming, Data
Replication, AWS Lambda, Kinesis, Redshift, Snowflake, Multi-
Region, Cloud Computing

Introduction
Real-time data replication has become crucial for organizations
in today's data-driven world to keep data synchronized across
different regions and different varieties of platforms [1]. Many
enterprises have difficulties in ensuring consistency, low latency,
and availability of data across their operational environments.
PostgreSQL Write-Ahead Log (WAL) provides a mechanism for
capturing changes at the level of a transaction for enabling this
with low impact on modifications without intrusive queries on
the database itself [2,3].

The architecture presented utilizes AWS services, such as Lambda
and Kinesis Firehose for processing and delivering these WAL
events to multiple destinations, which is perfect for handling
complex data replication scenarios [4,5]. By implementing this
architecture, organizations will realize real-time replication and

analytics, thus allowing a unified view of data across geographies.

Problem Scope
Most traditional data replication techniques are suffering from
high latency, restricted scalability, and operational overheads.
They usually require complex configurations for handling data
collisions and schema changes in multi-environments. This
proposed architecture leverages WAL events and AWS-managed
services to help remove these limitations by providing an event-
driven and serverless approach for data replication.

Implementation
Presented below is a high-level architecture diagram of how the
system is implemented. It uses a plugin that can be installed in
postgres in order to listen to WAL events, and converts these events
into a JSON [3]. The Fanout Lambda periodically checks the WAL
event log for new events using the LSN, and if new events are
present, it processes these events and sends it out to the Fanout
Kinesis endpoint to be processed by downstream consumers [6].

Review Article Open Access

ISSN: 2755-0214

Journal of Economics & Management
Research

ABSTRACT
Real-time data replication is a core need for distributed systems, considering that data-centric applications are developing rapidly and that high availability,
scalability, and consistency need to be ensured. This paper proposes a robust, scalable architecture based on PostgreSQL's WAL mechanism to capture and
replicate changes across different regions. The architecture uses AWS Lambda for event-driven processing and Kinesis Firehose to streamline the delivery
of data to multiple targets, including Redshift and Snowflake. We delve into the detailed technical aspects and considerations needed to build such a system,
challenges faced, and benefits from this approach when it comes to real-time data replication.

J Econ Managem Res, 2022 Volume 3(2): 2-5

Citation: Gautham Ram Rajendiran (2022) Real-Time Data Replication for Postgres using WAL Event Capture and Its usage in E-Commerce Inventory Management.
Journal of Economics & Management Research. SRC/JESMR-E108. DOI: doi.org/10.47363/JESMR/2022(3)E108

WAL To JSON Plugin
The first step in the architecture is capturing the Postgres data
changes using a WAL to JSON plugin [7]. This plugin listens to
the Postgres WAL and serializes each event into a JSON format.
The JSON payload includes key metadata such as:
1. Table Name: The name of the table that has been modified.
2. Schema Information: Details about the schema to which

the table belongs.
3. CRUD Operation: Specifies whether the operation is an

Insert, Update, or Delete.
4. Old vs. New Values: For update operations, the plugin

captures both the old and new values of the changed rows.

A sample Change Data Capture event

{
 "kind": "insert",
 "schema": "public",
 "table": "table1_with_pk",
 "columnnames": ["a", "b", "c"],
 "columntypes": ["integer", "character varying(30)",
"timestamp without time zone"],
 "columnvalues": [1, "Backup and Restore", "2018-03-27
11:58:28.988414"]
}

The JSON payload is enriched with additional metadata, such
as the timestamp of the event and the region where the change
occurred. This metadata is crucial for downstream processing and
helps maintain traceability of data changes.

Postgres Stream to Fanout Lambda

Step 1: Read Replication Slot Stream

This example uses the PostgreSQL JDBC driver to create a logical
replication slot stream. A replication slot keeps track of WAL
(Write-Ahead Log) position for the streaming client [8]. It is a
necessity to prevent data loss when the database gets altered.

Create Replication Slot
The create Replication Slot Stream method initiates a logical
replication stream using the given slot options - include-timestamp,
and status interval configuration. This slot is used to stream WAL
events continuously to the Lambda function.

PG Replication Stream
This object initiates the logical replication stream from the given
replication slot [9]. It continuously reads the WAL events and
passes them on to the next step for processing.

private PGReplicationStream createReplicationSlotStream(Con
nection databaseConnection,
 ReplicationSlotDataSource
replicationSlotDataSource)
 throws SQLException {
 final PGConnection pgConnection = databaseConnection.
unwrap(PGConnection.class);
 return pgConnection.getReplicationAPI()
 .replicationStream()
 .logical()
 .withSlotName(replicationSlotDataSource.
getReplicationSlot())
 .withSlotOption("include-timestamp", true)
 .withSlotOption("include-types", false)
 .withStatusInterval(2, TimeUnit.SECONDS)
 .start();
 }

Step 2: Get Checkpoint and Process Checkpoint Records

After the stream is established, the system will read the WAL
events and process these in batches.

Checkpoint Handling
The function handle Stream Batch captures a batch of records
from the replication stream and finds out what is the last processed
Log Sequence Number. To prevent data loss from occurring due
to failures, it will keep track of LSNs that have been processed.

Record Extraction
The program loops through the batch of PG Stream Data,
accumulating all the records to prepare them for processing. It
keeps track of the last non-empty LSN for accurately identifying
the most recent changes.

Logging and Writing
Each record is logged while the record Writer writes accumulated
records to the intermediate store, or sends them directly to a
downstream service such as AWS Lambda or Kinesis.

private void handleStreamBatch(List<PGStreamData> dataList) {
 if (dataList.isEmpty()) {
 return;
 }
 LogSequenceNumber lastLSN = dataList.get(dataList.size()
- 1).getSequenceNumber();
 LogSequenceNumber lastNonEmptyLSN = null;
 for (int i = dataList.size() - 1; i >= 0; i--) {
 PGStreamData streamData = dataList.get(i);
 if (!streamData.getRecordList().isEmpty()) {
 lastNonEmptyLSN = streamData.getSequenceNumber();
 break;
 }
 }
 log.info("get last LSN {}, last non-empty LSN {}", lastLSN,
lastNonEmptyLSN);
 List<Record> recordList = new ArrayList<>();
 for (PGStreamData data : dataList) {
 recordList.addAll(data.getRecordList());
 }
 if (!recordList.isEmpty()) {
 log.info("get record size {}", recordList.size());
 recordWriter.write(recordList);
 }

J Econ Managem Res, 2022 Volume 3(2): 3-5

Citation: Gautham Ram Rajendiran (2022) Real-Time Data Replication for Postgres using WAL Event Capture and Its usage in E-Commerce Inventory Management.
Journal of Economics & Management Research. SRC/JESMR-E108. DOI: doi.org/10.47363/JESMR/2022(3)E108

 this.onSuccess.accept(lastLSN, lastNonEmptyLSN);
 }

Step 3: Send Processed Records to Kinesis

Once the records are processed, they need to be forwarded to a
Kinesis stream for further handling. The Lambda function that
receives the records transforms the data into a format suitable for
Kinesis and pushes it downstream.

Transformation to Kinesis Record
The Lambda function typically converts each record into a JSON
or binary format before sending it to Kinesis. Additional metadata
may be added during this transformation, such as the source region,
event timestamp, and other relevant attributes.

 @Retryable(maxAttempts = 3, delay = 1000, backoffCoefficient
= 1.5,
 recoverableThrowables = {AmazonKinesisFirehoseException.
class})
 private FirehoseRedshiftDefinition getFirehoseRedshiftDefin
ition(String firehoseName) {
 FirehoseRedshiftDefinition definition = firehoseCache.
get(firehoseName, FIREHOSE_CACHE_TIME);
 if (definition != null) {
 return definition;
 }
 DescribeDeliveryStreamRequest request = new
DescribeDeliveryStreamRequest();
 request.setDeliveryStreamName(firehoseName);
 DescribeDeliveryStreamResult result = firehoseClient.desc
ribeDeliveryStream(request);
 if (result == null) {
 return null;
 }
 definition = FirehoseRedshiftDefinition.from(result.
getDeliveryStreamDescription());
 log.info("get firehose data {} for {}", definition, firehoseName);
 firehoseCache.put(firehoseName, definition);
 return definition;
 }

 @Override
 @WithMetrics
 public void write(@Count(name = "BatchWriteToFirehose.
InputSize", path = "size()") final List<Record> theRecords) {

 if (theRecords == null || theRecords.isEmpty()) {
 log.info("empty record, skip");
 return;
 }
 final List<Record> records = ImmutableList.
copyOf(theRecords);
 final Map<String, List<Record>> tableNameByRecordsMap =
 records.stream().collect(Collectors.groupingBy(Reco
rd::getTableName));
 final Map<String, List<Record>>
supportedTableNameByRecordsMap =
 tableNameByRecordsMap.entrySet().stream()
 .filter(entry -> isTableSupported(entry.getKey()))
 .collect(Collectors.toMap(Map.Entry::getKey,
Map.Entry::getValue));
 supportedTableNameByRecordsMap.forEach(this::putRec

ordsByTable);
 }

Step 4: Update most Recently Processed LSN to S3

After successfully sending the records to Kinesis, it’s crucial
to update the checkpoint information. This ensures that in the
event of a failure or restart, the system knows from which LSN
to resume processing.

Checkpoint Update
The LSN of the last successfully processed batch is stored in
an S3 bucket. This checkpoint serves as a marker for where the
replication stream should resume in case of any interruption.

Step 5: Gracefully Handle Close

To avoid data loss or inconsistencies, the replication stream must
be closed gracefully. The Lambda function should ensure that all
pending records are flushed, and the checkpoint is updated before
the stream is closed.

 @Override
 @Retryable(maxAttempts = DEFAULT_RETRY_ATTEMPTS,
 delay = DEFAULT_RETRY_DELAY_INTERNAL_IN_
MILLIS,
 backoffCoefficient = DEFAULT_RETRY_BACKOFF_
COEFFICIENT,
 recoverableThrowables = {RetryableException.class})
 public void close() {
 this.streamStarted = false;
 try {
 log.info("Closing replication slot stream");
 if (this.stream != null) {
 this.stream.close();
 }
 log.info("Closing db connection");
 if (this.dbConnection != null) {
 this.dbConnection.close();
 }
 } catch (SQLException e) {
 log.warn("Failed to close RecordReader", e);
 throw new RetryableException("Failed to close RecordReader
", e);
 }
 }

Resilience and Idempotency
1. Error Handling and Retries: Provide comprehensive error

handling that captures failed records for retries. To that effect,
the system is robust by using retries from AWS Lambda and
implementing retry logic within the handle Batch function.

2. Event Ordering: The replication slots in Postgres are
designed to maintain a strict ordering of events. This
architecture leverages that feature to process all the changes
in the order they happened, so that across regions/target
destinations, consistency is maintained.

3. Idempotency: This Lambda function should be idempotent
upon processing every batch of WAL events. Each record
should contain an identifier based on LSN and timestamp,
which means it cannot be duplicated in the downstream
systems.

J Econ Managem Res, 2022 Volume 3(2): 4-5

Citation: Gautham Ram Rajendiran (2022) Real-Time Data Replication for Postgres using WAL Event Capture and Its usage in E-Commerce Inventory Management.
Journal of Economics & Management Research. SRC/JESMR-E108. DOI: doi.org/10.47363/JESMR/2022(3)E108

Fanout Lambda to Kinesis
The diagram demonstrates how the Fanout Lambda function
processes events and sends them to different Kinesis Firehose
delivery streams, ultimately delivering data to tables in Redshift
or Postgres [10].

Event Source to Lambda: The architecture is initiated with an
event stream, or in other words, input that Lambda reads from,
comprising database change events. Each event is enriched with
metadata and labeled in relation to the target tables.

Table Mapping
The following mapping of tableA and tableB corresponds to
the Firehose delivery streams, namely tableAFirehose and
tableBFirehose. This needs to be configured prior to enabling of
the stream so that correct routing can be ensured.

Firehose Delivery
The output of the Firehose streams is configured to deliver the
data into Redshift, Postgres or any of the streams supported by
Firehose [5]. Each table at the destination will pre-exist, and
ingestion should have been already pre-configured via Firehose.

Event Routing
The routing logic in the Lambda function inspects the metadata of
each event to determine which Firehose stream is the target. For
example, if the source table of the event is tableA, then it routes
the event to tableAFirehose.

Further transformations can occur, like event payload conversion
to CSV or JSON before sending to Firehose.

Requirements Pre-Configuration
The tables to be replicated need to be created at the target database
systems. Table A and Table B therefore need to be present in the
destination before turning a stream.

Firehose Mappings
All tables should have a corresponding mapping created for the
Firehose delivery stream to avoid misrouting events.
Technical Considerations

Schema Evolution
Implement a schema registry and automated update mechanism
for Firehose in case there are frequent table schema changes [11].

Idempotency and Retry Logic
The events could be processed multiple times, so at both places-
Lambda and Firehose, idempotency keys or deduplication logic
need to be configured to avoid duplicate records [12].

Result
The proposed real-time data replication architecture demonstrates
significant improvements in multi-region data consolidation, real-
time analytics performance, and latency reduction.

E-Commerce Inventory Management
This is the real-time data replication architecture from PostgreSQL,
which leverages WAL events for better inventory management
for eCommerce platforms. It enables the architecture to stream
every change coming in the database in real time into various
downstream systems and keep the inventory data across multi-
regions consistent and updated. This is particularly critical in
eCommerce, where the availability of accurate inventory data
directly impacts order fulfillment and customer satisfaction. It
allows for seamless synchronization of the stock level between
primary and regional warehouses to make sure that the global view
is always correct. For every new order placed or item returned, the
changes are captured as WAL events and immediately propagated
to downstream databases such as Redshift and Snowflake. This is
how the platform can do real-time inventory analytics and predict
stock shortages before they even happen. By spreading these events
over the regions, the system can scale with low latency for updates
of its inventory, hence an efficient and global scalable solution for
operations in eCommerce. This won't just reduce overselling or
stockouts but also supports advanced features: dynamic reordering
and auto-restocking based on real-time demand patterns.

Performance Metrics

J Econ Managem Res, 2022 Volume 3(2): 5-5

Citation: Gautham Ram Rajendiran (2022) Real-Time Data Replication for Postgres using WAL Event Capture and Its usage in E-Commerce Inventory Management.
Journal of Economics & Management Research. SRC/JESMR-E108. DOI: doi.org/10.47363/JESMR/2022(3)E108

Copyright: ©2022 Gautham Ram Rajendiran. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are edited.

Multi-Region Consolidation
The chart entitled Multi-Region Consolidation Time represents
the time consumed while consolidating data from various regions.
Each region represents a time in seconds, and test results are
consistent across regions. Region 1 and Region 3 were able to
perform slightly faster at 0.5 and 0.45 seconds, respectively,
while Region 2 had a slightly higher consolidation time of
0.6 seconds. This would therefore imply that architecture has
consistent performance within regions for low latency and timely
availability of data to downstream systems.

Real-Time Analytics of Big Data
The graph on the right, Real-Time Analytics Throughput Over 24
Hours, shows the throughput performance of the system operating
at high transactions per second: The system processes between
1,000 and 4,500 transactions every second during this 24-hour
period. Peaks in throughput, such as for hours 2, 7, 14, and 18,
indicate that sudden spikes in the data ingestion are handled with
great efficiency by the system, thus being fit for scenarios needing
real-time analytics and monitoring of big sets of data.

Very Low Latency
For instance, the Latency Comparison chart shows the difference
between a single-region and multi-region deployment scenario.
The average latency for a single region is about 0.2 sec, which
goes up to 0.35 seconds when using multiple regions. The low
latency in multi-region deployment speaks to efficiency in the
architecture to propagate changes across multiple regions without
introducing significant delays.

These results confirm that the real-time data replication system
has met its objectives: it provides multi-region data consolidation,
supports real-time analytics of large-scale data, and keeps latency
very low-even in complex multi-region deployments. Next steps
could be to further reduce latency by optimizing the processing
times of Lambda functions and also increasing throughput by
utilizing more parallelism in delivery streams in Kinesis Firehose.

Conclusion
In this paper, we proposed a highly available and scalable
architecture for real-time replication using PostgreSQL Write-
Ahead Log events and AWS services. The architecture will make
use of logical replication slots in PostgreSQL, seamless integration
with AWS Lambda, and Kinesis Firehose, which in turn will enable
real-time data streaming across multiple regions into target data
stores like Redshift and Postgres.

It solves many of the cardinal challenges related to traditional
data replication approaches characterized by high latency, lack
of flexibility, and operational complexity. The study was a result
of implementing this architecture in a high traffic e-commerce
system and was used for real-time analysis of inventory data.
Key results shown in this work bring to light the architecture's
ability to perform multi-region data consolidation with consistent
performance, allowing for high throughput as part of real-time
analytics over large datasets. Furthermore, the system maintains
very low latency and is thus appropriate for mission-critical
applications that demand timely and reliable data replication.

References
1. Hamdi S, Ben Salem M, Bouazizi E, Bouaziz R (2013)

Management of the real-time derived data in a Distributed
Real-Time DBMS using the semi-total replication data.
ACS International Conference on Computer Systems and
Applications (AICCSA) Ifrane Morocco 2013: 1-4

2. (2024) PostgreSQL: The World's Most Advanced Open Source
Relational Database. Available: https://www.postgresql.org/.

3. (2024) Write-Ahead Logging (WAL) Introduction. Available:
https://www.postgresql.org/docs/current/wal-intro.html.

4. (2024) AWS Lambda. Available: https://aws.amazon.com/
lambda/.

5. (2024) Amazon Kinesis Data Firehose. Available: https://docs.
aws.amazon.com/firehose/latest/dev/what-is-this-service.
html.

6. (2024) PostgreSQL Datatype PG LSN. Available: https://
www.postgresql.org/docs/current/datatype-pg-lsn.html.

7. (2024) WAL2JSON. Available: https://github.com/eulerto/
wal2json.

8. (2024) PostgreSQL JDBC Driver. Available: https://jdbc.
postgresql.org/.

9. (2024) Logical Replication in PostgreSQL Available: https://
www.postgresql.org/docs/current/logical-replication.html.

10. (2024) Amazon Redshift. Available: https://aws.amazon.com/
redshift/.

11. (2024) Confluent Schema Registry. Available: https://docs.
confluent.io/platform/current/schema-registry/index.html.

12. Gilbert J and Price E (2021) Software Architecture Patterns
for Serverless Systems: Architecting for Innovation with
Events, Autonomous Services, and Micro Frontends. Packt
Publishing Ltd.

