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Background
A multidisciplinary approach of medical, surgical, and radiation 
oncologists is essential for effective management of most cancers 
as almost 50% of patients require radiation as a part of their 
treatment. Major components of radiation are good immobilisation, 
target volume delineation, robust treatment planning and regular 
checks for errors. Radiotherapy aims at giving a tumoricidal dose 
while preserving normal tissue function and reducing radiation-
induced toxicity. 

Achieving a good tumour control with radiation is invariably 
dependant on the total dose delivered to the identified tumour 
volumes, use of concurrent radiosensitisers and the tumour biology. 
Therefore, accurate delineation of the gross tumour volume (GTV) 
necessitates quality imaging for appreciation of tumour extent 
and its locoregional spread. Normal tissue sparing can only be 
achieved if the tumour delineation is adequate that helps radiation 
oncologists to plan for conformal radiation techniques. Delineation 
of the regions of interest like the GTV (Gross Tumour Volume) 
and CTV (Clinical Target Volume) of the primary and locoregional 
spread is followed by dose prescription accordingly. 

In the past, information from clinical examination and radiographic 
imaging was used to plan for radiation therapy, however in the 
recent years advent of modern imaging techniques has improvised 
tumour volume delineation. With the advances in imaging 
modalities such as PET scan, radiation oncologists are now 
comfortable in planning conformal radiation therapy techniques 
such as 3 D-CRT (Conformal Radiation Therapy), IMRT (Intensity 
Modulated Radiation Therapy, VMAT (Volumetric-Modulated Arc 
Therapy), and SRT (Stereotactic Radiotherapy). 

Conformal techniques were reported to have a mishap of 

geographic miss and usually occurs when a marginal tumour area 
has either escaped radiation or irradiated incompletely because 
the total volume of the tumour was not appreciated. This can be 
greatly reduced with the help of appropriate imaging modalities. 
One such modality that has revolutionised the therapeutic approach 
is the FDG-PET (18F-fluorodeoxy-D-glucose - Positron Emission 
Tomography). 

FDG-PET (18F-fluorodeoxy-D-glucose - Positron Emission 
Tomography) provides information based on alterations in the 
tissue metabolism from normal physiology differentiating tumour 
cells from normal tissue [1]. Evidence exists to reinforce the need 
for this type of functional information about tumours and their 
surroundings for radiotherapy treatment planning [2,3]. Many 
studies in the recent past have emphasized on the integration of 
FDG-PET with conventional CT-based radiation therapy planning 
to achieve better patient outcomes, modifications to patient 
management and improvises target volume delineation [4-11]. 

PET-scans are used for tumour staging, for tumour response 
prediction, for selection or delineation of target volumes, for 
response assessment to treatment, for detection of recurrence, or 
as an aid to evaluate changes in organ function post-treatment 
[12]. PET imaging is reported to reduce PTV thus attenuating the 
toxicity with the same radiation dose or allowing radiation dose 
escalation with the same toxicity [13]. According to its biological 
activity, the “Biological Tumour Volume” (BTV) separates the 
tumour. Precise BTV definition is required for escalating the 
radiation dose without much normal tissue injury. 

FDG-PET based RT planning is extensively investigated in the 
lung cancer, head and neck cancers, gynaecological malignancies, 
and lymphomas. We aim to summarize the available evidence 
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ABSTRACT
With the advent of advanced imaging techniques such as positron emission topography/computed topography, use of radiotherapy in the management of 
various cancers has become more effective and is shown to have better outcomes. PET/CT scanning is useful for evaluating tumour biological heterogeneity 
of malignant lesions providing comprehensive information regards the tumour’s metabolism, hypoxia, and proliferation. Integration of PET/CT imaging 
in radiotherapy helps in assessing tumour volume to achieve effective tumour control by adjusting radiation dose. Literature is extensive on PET/CT based 
radiation planning and here we aim to provide a brief review of PET/CT use in different malignancies. 
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on PET-CT based RT and outcomes of its use in different 
malignancies. This article intends to analyse the applications 
of PET in radiotherapy planning, stressing on its application for 
lung, head and neck, oesophageal, gynaecological malignancies, 
and lymphomas. Besides this, why use PET-CT for radiation 
therapy planning? How helpful is PET-CT based radiation 
therapy planning? Where can we use PET-CT integration with 
RT planning? Does it impact the survival?

Head and Neck Cancer 
About 15 studies reported the sensitivity of nodal detection with 
PET as 87%, and specificity as 95% in head and neck cancer 
compared to CT/MRI that have a sensitivity of 77% and a 
specificity of 87%. For anatomic localization of the metastatic 
neck nodes, inclusion of PET was found to be superior to CT/MRI 
alone with 96% sensitivity and 98.5% specificity as demonstrated 
in the study by [14]. In the detection of suspected recurrence and 
residual disease in head and neck cancers, PET has played a crucial 
role with a sensitivity and specificity of up to 100%, as opposed 
to the 75% sensitivity and 80% specificity of CT/MRI [15-18].

Non-Small Cell Lung Cancer
FDG-PET is helpful for malignancy staging in the setting of 
radiation therapy for appropriate patient selection [19]. This is 
especially relevant when definitive chemo-radiation is being 
planned for a patient with NSCLC and may already have distant 
metastasis. Patients with stage III disease may have a rate of 
about 20 % unsuspected distant spread [20,21]. In a run-through 
of the literature accessible, for diagnoses of the primary lung 
cancer FDG-PET is reported have 91% sensitivity, 68% specificity, 
an 83% sensitivity and 91% specificity in mediastinal staging 
compared to 56– 65% sensitivity and 73–87% specificity for CT 
based mediastinal staging [21,22].

Oesophageal tumours
PET has higher accuracy than CT for identifying lymph node and 
distant metastases when used for initial staging of oesophageal 
cancer. This permits accurate selection of the most suitable 
treatment [24-26]. For detection of the primary disease in 
oesophagus, PET has sensitivity around 90–100% [27]. Similarly, 
for diagnosis of pathological lymph nodes PET-CT exhibits higher 
sensitivity (30–77%) and specificity (86–99%) than does CT 
(sensitivity 11–57%, specificity 69–99%) [28-34].

Gynaecological Malignancies
A couple of studies assessed role of FDG-PET for discerning 
suspicious pelvic mass on ultrasonography and found 58% to 
78% sensitivity and 78% to 87% specificity [11-12]. In the face 
of relatively low sensitivity of FDG-PET in the diagnosis of 
ovarian cancer, most of the false-negative results were either 
invasive stage I tumours or those of low malignant potential 
(borderline ovarian tumours). Advanced stages of ovarian cancer 
display avidly increased FDG uptake and are visualized better. 
Nevertheless, cellular composition of tumours has a notable effect 
on the level of FDG uptake. Large cystic components in the 
abdominal or pelvic masses as well as mucinous tumours are 
usually not be metabolically active.

Brain Tumours
Malignant gliomas and brain metastases are the most common 
brain tumours and neuroimaging is crucial in clinical decision 
making and to as an assessment tool to evaluate response to 
therapy. In low-grade tumours, neuroimaging is required to 
evaluate recurrent disease and to monitor transformation into 
high-grade tumours. In high-grade and metastatic tumours, it is 

challenging to differentiate recurrent tumour from post-radiation 
necrosis. 

FDG-PET has a role in identifying the grade of the tumour, 
assessing suspected high-grade transformation, characterising 
relapse with an equivocal MR and differentiating cerebral tumour 
from an atypical infection in immunocompromised patients having 
an indeterminate lesion. MRI provides superior structural detail but 
has poor specificity in identifying viable tumours in the brain post-
treatment. 18 An area of the treated brain has diffuse background 
metabolic activity and usually is of lower metabolic activity than 
the normal untreated brain. Summary of prior reports have reported 
that FDG PET to be proficient in distinguishing treatment necrosis 
from tumour recurrence with sensitivity and specificity in the 
ranges of 65%-81% and 40%-94%, respectively. 

F-FDG PET identifies anaplastic transformation and has 
prognostic value. The sensitivity and specificity of (18) F-FDG 
in understanding a recurrent tumour and treatment-induced 
changes can be improved drastically by co-registration with 
MRI and by delayed imaging 3-8 h after injection. F-FDG PET/
CT plays a crucial role in the tumour staging and follow-up to 
effectively evaluate therapy response of known metastases but is 
not considered the modality of choice to detect brain metastases. 

Radiotracers Used for Pet Based Rt Planning
[18F] Fluoro-deoxy glucose (FDG) is the tracer most often used 
which allows to evaluate tumour metabolism [35-38]. Of late, 
there is increasing interest for various specific biomarkers like 
the tracers used for tumour hypoxia and high mitotic activity 
[39-45]. Tumour hypoxia can be envisioned using various PET 
tracers such as [18F] Fluoromisonidazole (FMISO) [16], [18F] 
Fluoroazomycin (FAZA) [15] and Cu-ATSM [17] whereas [18F] 
Fluorothymidine (FLT) is used for imaging areas with high tumour 
proliferation. Human brain commonly shows intense uptake of 
FDG, as it metabolizes glucose exclusively, while myocardial 
uptake is variable in patients who have fasted. Adipose tissue 
shows negligible FDG uptake, but brown fat which has a role in 
thermogenesis can be eventfully activated in a nervous patient.

How has PET changed the treatment volumes?
A change of 30-60 % was seen in the GTV primary and 51 % in 
the GTV node while delineation of GTV based on PET-CT fusion 
as reported by Bradley et al on patients with NSCLC. In another 
study reported by Vila A et al, 34 % of the patients had alterations 
in the delineation of GTV primary. Dietl and colleagues reported 
that changes in radiotherapy technique due to PET occurred in 
40.8% of 49 patients in a prospective study [46]. Possible reasons 
for noteworthy changes in target volumes in lung cancer with 
PET include higher pick up of nodal metastasis than that of CT 
and better distinction of the border between malignant tissue and 
atelectasis [46]. Inclusion of PET thus enables encompassing 
the previously unidentified regional nodal involvement which 
can result in 10-25 % patients having alterations in the GTV. 
Also, consideration for excluding large PET negative nodes or 
uninvolved/collapsed lung tissue drastically reduces the GTV.

Does PET-CT integration impact survival?
There is a paucity of data on whether the changes in the tumour 
volumes as detected by PET also have a favourable outcome 
in terms of survival. Improvement in the overall survival was 
revealed in the only RCT done by Ung et al. It is quite sensible 
that one expects a survival benefit due to PET-based RT planning 
as it permits targeting the appropriate areas with radiation. 
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Drawbacks of PET Integration?
Limitations of PET integration include PET/CT error, false 
positivity, inability to detect microscopic spread, mis-registration 
between anatomical and functional information. Rigid parts of the 
body have minimal error such as the brain. The minimal error is 
unpreventable in image fusion, whether a separate or combined 
PET/CT scanner is used. Many soft- and hardware solutions claim 
higher precision in image fusion, up to 1–2 mm in all directions. 
Various movements which are possible in the neck have the likely 
mis-registration amidst anatomical and functional information. 
This explains the need for acquisition of PET/CT in the treatment 
position for radiation. There is also a potential risk of incorrectly 
converting the intent of the treatment from radical to palliative 
therapy due to false-positive findings in PET. The microscopic 
disease cannot be detected by PET. However, estimation of the 
true risk of microscopic nodal disease can be done if accurate 
information of the gross nodal disease is known.

Conclusion
FDG PET-CT is a precious tool for refreshing the conventional 
radiation therapy target volumes. Detection of the BTV is very 
essential as it impacts the radiation therapy planning. Tumour 
staging, response assessment and detection of recurrence are the 
major applications of PET-CT. Coalescing PET with treatment 
planning leads to significant alterations in the tumour volumes. 
Generalisation of PET-CT applications in all the tumour sites is 
taken with a pinch of salt. Future studies are awaited to throw more 
light on its impact on survival and the unexplored indications in 
oncology highlighting its widespread role.
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