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Introduction
Over the last decade, there has been an increasing interest to 
understand the behaviour of a new type of financial asset that 
has been labelled cryptocurrency. Given its large capitalization, 
the market of cryptocurrencies has attracted much attention 
(governments, policy makers, banks, hedge funds, consumers) 
[1]. The most popular cryptocurrency is the Bitcoin [2].

It has been well documented that cryptocurrency return series 
exhibit time-varying volatility, also known as conditional 
heteroscedasticity. Conditional heteroscedasticity in the relevant 
empirical literature has been modelled as a GARCH-type 
specification or as a stochastic volatility process [3-12].

In this paper we turn our attention to the day-of-the-week effect on 
Bitcoin returns. Although there is a voluminous financial literature 
that has examined whether the expected return and volatility of a 
stock are uniformly distributed across the days of the week (thus, 
rejecting or accepting the efficient market hypothesis, proposed 
by, no study so far has examined something similar in the case of 
returns on crypto currencies [13-15]. The present paper aspires 
to fill this gap.

To our knowledge, the paper by is the only paper that has 
investigated the day-of-the-week pattern of price clustering in 
Bitcoin [16]. However, does not analyse potential abnormalities 
over the week in Bitcoin returns but in price levels. This is the reason 
for which this paper has ignored conditional heteroscedasticity, 
which is a main characteristic of cryptocurrency returns. Used a 
periodic autoregressive conditional duration to detect a day-of-
the week periodicity in Bitcoin volumes. However, conditional 
heteroskedasticity has not been explored.

Accounting for conditional heteroscedasticity, we focus on whether 
the seasonality pattern in the form of day-of-the-week effect is 
present in the Bitcoin returns (and with what periodicity). To this 
end, we exploit the periodic autoregressive stochastic volatility 
model. It is an extension of the standard stochastic volatility model 
that allows the parameters in the stochastic volatility equation to 
vary periodically over time [17].  In this way, we can identify 
any periodically changing structure in the time series volatility 
of Bitcoin returns [18].

Our paper also contributes to the debate about whether the market 
of Bitcoin is efficient. The empirical findings about the efficient 
market hypothesis for Bitcoin are inconclusive [19-22]. If there 
is periodicity in Bitcoin returns, this is evidence against that 
hypothesis.

The paper is organized as follows. In Section 2 we describe the 
model and in section 3 we present the empirical results.

The Periodic Autoregressive Stochastic Volatility Model
The Gaussian Stochastic Volatility (SV) Model is Given by:

                                                                                               (1)

where yt is the log-return and ht  is the conditional variance that 
follows a first-order autoregressive process, where α ∈ R is the 
intercept, |β| < 1 is the slope parameter, and σ2 > 0 is the variance.                      

Also,                                             where I2 is the identity matrix 

of dimension 2.                          
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The Gaussian periodic SV model (Aknouche, 2017) imposes S-periodicity on the parameters over time by setting

                                                  The resulting specification reads:

                                                                                                                                                                                    (2)

where the parameters αv ∈ R, |β1...βS| < 1, and σ2
v > 0 (1 ≤ v ≤ S) are S-periodic over t, and {(enS+v, ηnS+v)} is defined as before. 

The model in (2) is named periodic autoregressive stochastic volatility (PAR-SVS). It defines a periodic-time varying dependence 
structure, where the dependence between successive times is distanced by a multiple of the period S. If there is S-periodicity in the 
volatility of a daily return series (in our case Bitcoin), this suggests the presence of the day-of-the-week effect in that series. Notice 
also, that the PAR-SVS reduces to the SV model for S = 1.

For the estimation of the SV and PAR-SVS we adopt Bayesian methods as described in. The (reasonably flat) priors used in this paper 
are displayed in the Appendix of this paper.

Empirical Analysis: The Bitcoin
•	 Data And Some Descriptive Statistics
We use 3014 daily closing prices for the Bitcoin Coindesk Index, from July 18, 2010 to October 17, 2018. We transform the prices 
to returns, by taking the natural logarithm of the ratio of two successive closing prices. The time series plot of Bitcoin returns is 
given in Figure 1(a).

(a) Time series plot of Bitcoin returns.                                                 (b) Sample autocorrelation function of the Bitcoin returns.
.

(c) Sample partial autocorrelation function of the Bitcoin returns.                 (d) Time series plot of the squared Bitcoin returns.
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(e) Sample autocorrelation function of the squared Bitcoin returns.       (f) Sample partial autocorrelation function of the squared                

                                                                                                                 
 Bitcoin returns.

Figure 1: Empirical results. Descriptive plots for Bitcoin.

Based on the simple and partial autocorrelation functions of Bitcoin returns (Figures 1(b) and 1(c), respectively), these returns 
seem to follow a white noise process. It is difficult to detect a possible periodicity in their conditional distributions, as almost all 
autocorrelations are insignificant.

However, if, for example, these returns follow a SV (or a GARCH) model, the squared returns will have an autoregressive conditional 
duration (ACD) representation, which is no longer uncorrelated and a possible periodicity could appear in their autocorrelations. 
Therefore, we plotted the squared returns of Bitcoin, along with their simple and partial autocorrelation functions (Figures 1(d) and 
1(e), respectively).

From the autocorrelations of the squared returns, there is an indication of periodicity, as it can be observed that important picks appear 
in lags, which are multiples of 7 (7, 21, 28 in Figure 1(f)). There exist of course other more important picks on other lags but they 
are not so persistent at their multiples.

In Table 1, we provided some descriptive statistics for the Bitcoin data, using the full sample and by each day of the week separately. 
The average return and the volatility (approximated by the absolute value) are somewhat different from one day to another. Furthermore, 
the returns exhibit negative skewness and high positive kurtosis that vary notably from Monday to Sunday. Since the distributions of 
returns over the days are not constant, we suspect that the day-of-the week effect may characterize the Bitcoin return data.

Table	1:	Empirical	Results.	Day-of-the-Week	Effect	in	the	Daily	Bitcoin	Returns(yt).
Full series Mean of yt Mean of |yt| Mean of y2 Skewness Kurtosis Min Max

0.0037 0.0333 0.0033 -0.3452 15.0201 -0.4915 0.4246
1 Monday 0.0048 0.0346 0.0035 -0.8533 13.6092 -0.3483 0.3478
2 Tuesday 0.0068 0.0353 0.0035 0.9435 12.7229 -0.2188 0.4246
3 Wednesday 0.0043 0.0329 0.0032 -0.5759 11.9987 -0.3321 0.3086
4 Thursday 0.0044 0.0375 0.0040 -0.5852 13.2344 -0.4700 0.2908
5 Friday 0.0025 0.0349 0.0034 0.4227 9.3506 -0.2610 0.2987
6 Saturday 0.0032 0.0312 0.0036 -1.1543 24.9235 -0.4915 0.4055
7 Sunday 7.4187e-05 0.0264 0.0020 -0.8474 17.4367 -0.3724 0.2360

•	 Estimation Results
We design our empirical analysis, by assuming that the conditional distribution of Bitcoin returns is characterized by a periodicity 
of up to magnitude 7. This approach is different from the one usually used for non-cryptocurrency returns (such as stocks, exchange 
rates, etc.,), which are characterized by a periodicity of up to magnitude 5, due to the non-trading days at each week (week-end).

Therefore, we first estimate seven PAR-SVS models, corresponding to each S ∈ {1, ..., 7}.
Then, we conduct model comparison, using the Deviance information Criterion (DIC) in order to identify the period of the best 
fitting PAR-SVS model [23].

We run the MCMC samplers for 2500 iterations after a burn-in of 2500 draws. To monitor convergence and mixing of the samplers, 
we use (and report) the relative numerical inefficiency (RNI) and the numerical standard error (NSE); see, for example [24].
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Based on the DIC values (Table 2), PAR-SV7 is the best model, being followed by the SV model. In Table 3, the results (posterior 
means and standard deviations) for the SV model show that there is high persistence (0.8626) in the estimated volatilities, which 
are plotted in Figure 2. In Table 4, the parameters for the PAR-SV7 model are all significant and different from one day to another 
especially for the αv’s and βv’s, a fact that supports the use of periodic SV modeling tools. The existence of periodicity in Bitcoin 
returns is also an evidence that they are market inefficient. Finally, Figure 3 plots the estimated volatilities from the PAR-SV7 model 
and Figure 4 portraits the difference in volatilities between the PAR-SV7 and the SV models.

Table	2:	DIC	Values	and	Monodromy	Parameters	(Bitcoin	Returns).
PAR-SV1	≡	SV PAR-SV2 PAR-SV3 PAR-SV4 PAR-SV5 PAR-SV6 PAR-SV7

DIC
(Std)

−9946.7109
(2.2431)

−9883.0069
(2.5607)

−9918.1148
(2.8753)

−9922.8003
(3.0197)

−9905.4721
(2.9816)

9902.2034
(2.8903)

−9950.8321
(2.6844)

Rank of DIC 
values

2 7 4 3 5 6 1

Monod. 0.8626 0.7841 0.6480 0.6229 0.6024 0.5775 0.4621

Notes: The monodromy (Monod.) parameters                                are quite large, indicating strong volatility persistence. Std stands for 
standard deviation. In computing the standard errors of DIC, we have replicated the algorithm 100 times.

Table	3:	Empirical	Results	for	The	SV	Model	(Bitcoin	Returns).
  Mean St. dev NSE RNI

α 0.8324 0.0514 0.0025 0.4080
β 0.8626 0.0097 0.0001 0.5261
σ2 0.3162 0.0111 0.0005 0.2592

Figure 2: Empirical Results. Bitcoin Estimated Volatilities Induced by the SV Model.

Figure 3: Empirical Results. Bitcoin Estimated Volatilities Induced by the PAR-sv7 Model.
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Table	4:	Empirical	Results	for	the	PAR-SV7	Model	(Bitcoin	Returns).
Periodic SV 
Parameters

Mean St. dev NSE                              RNI

1 Monday α1 −1.0069 0.1319 0.0025 0.0458
β1 σ

2 0.8421 0.0214 0.0004 0.0509
1 0.2661 0.0215 0.0060 0.1934

2 Tuesday α2 −0.9573 0.1511 0.0012 0.3174
β2 σ

2 0.8398 0.0249 0.0033 0.0644
2 0.3404 0.0287 0.0004 0.0359

3 Wednesday α3 −0.7087 0.1469 0.0214 2.5999
β3 σ

2 0.8788 0.0239 0.0032 2.2271
3 0.3328 0.0312 0.0069 0.2151

4 Thursday α4 −0.6756 0.1464 0.0010 0.1903
β4 σ

2 0.8877 0.0241 0.0044 0.1281
4 0.3230 0.0330 0.0008 0.1695

5 Friday α5 −0.2986 0.1654 0.0117 0.6854
β5 σ

2 0.9434 0.0258 0.0016 0.4957
5 0.3501 0.0293 0.0006 0.0954

6 Saturday α6 −0.3996 0.1357 0.0012 0.2397
β6 σ

2 0.9309 0.0234 0.0023 0.6778
6 0.3269 0.0320 0.0037 1.5641

7 Sunday α7 −0.2888 0.1564 0.0012 0.2375
β7 σ

2 0.9536 0.0257 0.0013 0.2116
7 0.3043 0.0277 0.0020 0.6830

Figure 4: Empirical Results. The Difference Between Estimated Volatilities (hPAR−SV7 − hSV ).

Conclusions
We examined the day-of-the-week effect in Bitcoin and found that the hypothesis that Bitcoin returns exhibit periodicity in their 
conditional distributions is tenable. Also, this empirical finding does not support the efficient market hypothesis for the data in question.

Appendix
Table	A.1:	Prior	Distributions	for	the	Parameters	of	the	SV	Model	(Which	is	Equivalent	to
PAR-SVs	with	S=1).
Priors Prior for ω = (α, β)′,    ω ∼ N (ω0,Σ0)

             
 ω0                                        Σ0

Prior for σ2 :                                          

a                                              λ

Hyperparameters
5                                             0.2

Notes: χ2
a denotes the chi-square distribution with a degrees of freedom.
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Table A.2: Prior distributions of ω	and	σ2 for the candidates PAR-SVS,	2	≤	v	≤	7.
Priors Prior for ω	=	(α, β)	:								ω ∼ N	(ω0,Σ0)

ω0	=																																										Σ0 =                  

Prior	for	σ2 :                                               

a	=	(a2, ..., aS)																					λ	=	(λ2,	...,	λS)

S = 2 04×1                                             D4 10 × 12                                        0.1 × 12

S = 3 06×1                                             D6 10 × 13                                        0.1 × 13

S = 4 08×1                                             D8 10 × 14                                        0.1 × 14

S = 5 010×1                                            D10 10 × 15                                        0.1 × 15

S = 5 012×1                                            D12 10 × 16                                        0.1 × 16

S = 7 014×1                                            D14 10 × 17                                        0.1 × 17

Notes:
Dk, 0k×1 and 1k denote respectively the diagonal matrix given by (1), the null vector with k
components and the k-vector with all components equal to 1.

Online Appendix for: Periodicity in Bitcoin Returns: A Time-Varying Volatility Approach

Priors
Table	1:	Prior	Distributions	for	The	Parameters	of	the	SV	Model	(which	is	Equivalent	to
PAR-SVS	with	S=1).
Priors Prior for ω = (α, β)′,       ω ∼ N (ω0,Σ0)

ω0                                    Σ0

Prior for σ2 :   

a                                             λ

Hyperparameters 0                               0.05                     0

0                                  0                  0.5

5                                       0.2

Notes: χ2
a denotes the chi-square distribution with a degrees of freedom.

In Table 2, the diagonal matrix Dk (k = 4, 10) is defined to be

      
                                                                                                                                                           (1)

Table 2: Prior Distributions of ω	and	σ2	for	the	Candidates	PAR-SVs,	2	≤	v	≤	7.
Priors Prior	for	ω	=	(α,	β)	:									ω ∼ N	(ω0,Σ0)

ω0	=																																							Σ0 =

Prior	for	σ2 :

a	=	(a2, ..., aS)																																	λ	=	(λ2,	...,λS)

S = 2 04×1                                        D4 10 × 12                                               0.1 × 12

S = 3 06×1                                        D6 10 × 13                                               0.1 × 13

S = 4 08×1                                        D8 10 × 14                                               0.1 × 14

S = 5 010×1                                       D10 10 × 15                                               0.1 × 15

S = 6 012×1                                       D12 10 × 16                                               0.1 × 16

S =7 014×1                                       D14 10 × 17                                               0.1 × 17
                                                                                                                                                   
Notes:
Dk, 0k×1 and 1k denote respectively the diagonal matrix given by (1), the null vector with
k components and the k-vector with all components equal to 1.
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