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The List of Abbreviations, Symbols and Notations
Abbreviations: SRE – Solid Rocket Engine, IBC – Intra-Ballistic 
Characteristics, k–phase, Condensed Phase (Solid Fuel).

Key notations: p – pressure, u – burning rate, t – time, x – distance 
in the coordinate system related to the combustion surface, T – 
temperature, f – temperature gradient, α – thermal conductivity 
coefficient, λ – thermal conductivity coefficient, c – heat capacity, 
ρ – density, E – activation energy, H – pre-exponential factor, R 
– universal gas constant, Q – heat of reaction, A – concentration, 
Z – molar fraction, ε – heat quantity. 

Symbols: o – steady-state conditions, s – combustion surface, 
so – steady-state conditions at the combustion surface, g –gas 
phase, N – initial conditions.

Introduction
Modeling solid fuel combustion processes is a complex task 
that involves the interaction of various physical and chemical 
phenomena. Researchers use mathematical models to understand 
and predict the behavior of solid fuel combustion in different 
systems, such as industrial boilers, power plants, and furnaces. 
Here are some key aspects of the modeling process 

•	 Mass and Energy Balances: Mathematical models often 
begin with mass and energy balances to describe the overall 
combustion process. These balances account for the fuel, 
oxidizer, and products of combustion, as well as heat transfer 
mechanisms

•	 Chemical Reactions: Solid fuel combustion involves 
complex chemical reactions. Models include reaction kinetics 
to describe how fuel particles decompose, release volatile 
gases, and react with oxygen

•	 Detailed reaction mechanisms for different types of solid 
fuels are essential for accurate modelling

•	 Heat and Mass Transfer: Heat and mass transfer between 
the solid fuel, gas phase, and surrounding surfaces play 
a crucial role. Models consider convective and radiative 
heat transfer, as well as mass transfer of gases within the 
combustion chamber

•	 Particle Dynamics: In solid fuel combustion, the behavior 
of individual fuel particles is important. Models may account 
for particle size distribution, shape, and trajectory

•	 Particle dynamics influence combustion efficiency and 
pollutant formation: pollutant formation modeling includes 
the prediction of pollutant formation, such as NOx, SOx, 
and particulate matter. Understanding the factors influencing 
pollutant formation helps in designing cleaner and more 
efficient combustion processes

•	 Computational Fluid Dynamics (CFD): CFD techniques 
are commonly used for simulating the fluid flow, temperature 
distribution, and species concentrations within combustion 
chambers. Advanced CFD models provide insights into 
the three-dimensional and transient nature of combustion 
processes
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ABSTRACT
This study provides a comprehensive introduction to the combustion of solid propellants. We conduct a thorough review of existing physical-mathematical 
models related to solid fuel combustion processes. Additionally, we explore the heat propagation within the solid phase, examine the physical chemical 
processes in the k–phase, and investigate the fundamental solution of the heat conduction equation in a multiphase (k–phase) medium. The heat conduction 
equation plays a crucial role in governing the temperature distribution within a given material, and a profound understanding of its fundamental solution is 
essential for various engineering and scientific applications. In this research, we expand our analysis to a multiphase scenario, considering different phases 
with distinct thermal properties coexisting.
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•	 Validation and Experimental Data: models need to be 
validated against experimental data to ensure their accuracy 
and reliability. Continuous improvement and refinement of 
models are ongoing processes based on new experimental 
findings. The field of solid fuel combustion modeling is 
dynamic, with ongoing research focused on improving the 
accuracy and applicability of models to various practical 
scenarios. Researchers are also exploring sustainable and 
cleaner combustion technologies, which may involve 
alternative solid fuels and novel combustion processes.

Success in space research and practical applications hinges largely 
on advancements in rocket engine development, with a particular 
emphasis on the successful execution and theoretical understanding 
of solid fuel combustion processes. This involves refining methods 
for calculating engine characteristics. Currently, a substantial 
body of scientific work is dedicated to theoretically describing 
non-stationary processes occurring during the combustion of solid 
fuel in rocket engine chambers.

The most extensively studied aspect of non-stationary solid 
fuel combustion theory involves the investigation of vibrational 
processes and the rigorous analysis of combustion harshness. 
Esteemed researchers such as Zeldovich, Novozhilov, Pershnikov, 
and others, both from Russia and abroad, have delved into this 
critical area. However, the existing theoretical framework falls 
short in addressing the imperative for the development of solid 
fuel rocket engines, primarily due to the lack of practical methods 
for calculating non-stationary combustion rates.

This limitation arises from the inherent complexity of combustion 
processes, especially when catalysts are introduced. Catalysts 
significantly alter the relationship between solid fuel combustion 
rates and pressure, adding an extra layer of intricacy. Furthermore, 
the underutilization of findings from related scientific fields 
compounds this challenge. For instance, the theory of chain-
branching reactions, which has proven successful in liquid fuel 
combustion theory and was developed by Academician Semenov, 
has not been effectively incorporated into solid fuel combustion 
theory.

The combustion velocity of solid fuel within the Intraballistic 
Characteristic (IBC) of a solid fuel rocket motor (RMSF) is 
determined by the law of burning rate, which establishes its 
dependence on pressure and initial temperature. This law is 
derived through experimental burning of fuel samples under 
stationary conditions. Stationary burning rate laws are deemed 
appropriate when the crater time of the process is sufficiently 
large, approximately around 10−1 s. However, under non-stationary 
conditions, such as rapid pressure changes in RMSF occurring 
within a crater time of approximately 10−3 s or less, the burning 
rate varies. In such instances, the burning rate cannot instantly 
conform to the value calculated by stationary laws. It requires 
some time during which complex processes occur, leading to 
a restructuring of the fuel burning front. These processes occur 
during the transition to the operating mode, pressure drop at the 
end of operation, and throughout the entire operational cycle of 
certain types of RMSF.

It is essential to consider the non-stationary nature of the burning 
rate of solid fuel when calculating intra-ballistic characteristics. 
This necessity arises from the prevalent use of rocket engines 
operating in “impulse” mode, where the engine functions for a 
duration of 5 − 50 milliseconds. Such engines find application in 

guidance systems for aircraft, ejector seats, and launch engines 
for diverse purposes.

The theory of Solid Fuel Combustion (SFC) is a standalone and 
well-developed branch of science. However, the internal ballistic 
calculations of specific Solid Rocket Motors (SRM), including 
those with “impulse” characteristics, are currently based solely on 
dependencies of burning rate on pressure obtained experimentally 
under stationary conditions.

The current situation arises from a twofold challenge. Firstly, 
there is uncertainty among developers of solid propellant rocket 
missiles regarding the necessity of incorporating the non-stationary 
component of burning rate. Secondly, there is a lack of specific 
methods designed to calculate non-stationary burning rates, 
especially tailored for their integration into the system of equations 
governing the internal ballistics of solid rocket motors.

The objective of this work is to bridge the existing gap between 
academic theories of combustion and the practical development 
of specific Rocket Motor Solid Propellants (RMSP). The ultimate 
goal is to devise a calculation method for the internal ballistics 
of solid rocket motors that explicitly takes into account the non-
stationarity of the burning rate.

Analyzing the outcomes of computations employing this approach 
in contrast to experimental data will provide insights into the 
criteria that, once satisfied, permit the exclusion of non-stationarity 
considerations in calculating internal ballistics. The lack of 
established calculation dependencies has hitherto hindered the 
formulation of such criteria.

By the present time, a significant number of scientific works by 
researchers like I.B. Zeldovich, Novozhilov, Prisnyakov, both 
from Russia and abroad, have been published, focusing on the 
theoretical description of the processes occurring during the 
combustion of solid propellants in the combustion chambers of 
rocket engines. However, the results of the existing theory of non-
stationary combustion have not found widespread application in 
the development of solid rocket motors (SRMs).

For the calculation of the internal ballistics characteristics (IBC) 
of SRMs, burning rate laws are used. These laws describe the 
burning rate of solid propellants as functions of pressure and initial 
temperature, which have been experimentally obtained under 
stationary conditions. This approach is entirely justified when the 

characteristic time of pressure change              is sufficiently 

large, on the order of 10−1 s or more.

However, the real combustion rate may differ from the value 
calculated using stationary laws if the pressure change process 
occurs rapidly, i.e., within a characteristic time on the order of 
10−3 s or less. Such a process occurs during startup, pressure drop 
at the end of operation, and throughout the operational cycle of 
some types of SRMs, especially in the case of impulse SRMs 
with a firing duration of 5-50 milliseconds used in Crew Escape 
Systems (CES) for aircraft and spacecraft. When CES is engaged, 
an error of more than 10 percent in the calculations of acceleration 
or its rate of increase is unacceptable, and, consequently, an error 
of more than 5 percent in calculating the burning rate of SRPs is 
also unacceptable.

this critical area. However, the existing theoretical framework falls short in addressing the imperative for
the development of solid fuel rocket engines, primarily due to the lack of practical methods for calculating
non-stationary combustion rates.

This limitation arises from the inherent complexity of combustion processes, especially when catalysts
are introduced. Catalysts significantly alter the relationship between solid fuel combustion rates and
pressure, adding an extra layer of intricacy. Furthermore, the underutilization of findings from related
scientific fields compounds this challenge. For instance, the theory of chain-branching reactions, which
has proven successful in liquid fuel combustion theory and was developed by Academician Semenov, has
not been effectively incorporated into solid fuel combustion theory.

The combustion velocity of solid fuel within the intraballistic characteristic (IBC) of a solid fuel rocket
motor (RMSF) is determined by the law of burning rate, which establishes its dependence on pressure and
initial temperature. This law is derived through experimental burning of fuel samples under stationary
conditions. Stationary burning rate laws are deemed appropriate when the crater time of the process is
sufficiently large, approximately around 10−1 s. However, under non-stationary conditions, such as rapid
pressure changes in RMSF occurring within a crater time of approximately 10−3 s or less, the burning
rate varies. In such instances, the burning rate cannot instantly conform to the value calculated by
stationary laws. It requires some time during which complex processes occur, leading to a restructuring
of the fuel burning front. These processes occur during the transition to the operating mode, pressure
drop at the end of operation, and throughout the entire operational cycle of certain types of RMSF.

It is essential to consider the non-stationary nature of the burning rate of solid fuel when calculating
intra-ballistic characteristics. This necessity arises from the prevalent use of rocket engines operating
in ”impulse” mode, where the engine functions for a duration of 5 − 50 milliseconds. Such engines find
application in guidance systems for aircraft, ejector seats, and launch engines for diverse purposes.

The theory of solid fuel combustion (SFC) is a standalone and well-developed branch of science.
However, the internal ballistic calculations of specific solid rocket motors (SRM), including those with
“impulse” characteristics, are currently based solely on dependencies of burning rate on pressure obtained
experimentally under stationary conditions.

The current situation arises from a twofold challenge. Firstly, there is uncertainty among developers
of solid propellant rocket missiles regarding the necessity of incorporating the non-stationary component
of burning rate. Secondly, there is a lack of specific methods designed to calculate non-stationary burning
rates, especially tailored for their integration into the system of equations governing the internal ballistics
of solid rocket motors.

The objective of this work is to bridge the existing gap between academic theories of combustion and
the practical development of specific Rocket Motor Solid Propellants (RMSP). The ultimate goal is to
devise a calculation method for the internal ballistics of solid rocket motors that explicitly takes into
account the non-stationarity of the burning rate.

Analyzing the outcomes of computations employing this approach in contrast to experimental data
will provide insights into the criteria that, once satisfied, permit the exclusion of non-stationarity consid-
erations in calculating internal ballistics. The lack of established calculation dependencies has hitherto
hindered the formulation of such criteria

By the present time, a significant number of scientific works by researchers like I.B. Zeldovich,
Novozhilov, Prisnyakov, both from Russia and abroad, have been published, focusing on the theoret-
ical description of the processes occurring during the combustion of solid propellants in the combustion
chambers of rocket engines. However, the results of the existing theory of non-stationary combustion
have not found widespread application in the development of solid rocket motors (SRMs).

For the calculation of the internal ballistics characteristics (IBC) of SRMs, burning rate laws are used.
These laws describe the burning rate of solid propellants as functions of pressure and initial temperature,
which have been experimentally obtained under stationary conditions. This approach is entirely justified
when the characteristic time of pressure change ( p

dp/dt ) is sufficiently large, on the order of 10−1 s or
more.

However, the real combustion rate may differ from the value calculated using stationary laws if the
pressure change process occurs rapidly, i.e., within a characteristic time on the order of 10−3 s or less. Such
a process occurs during startup, pressure drop at the end of operation, and throughout the operational
cycle of some types of SRMs, especially in the case of impulse SRMs with a firing duration of 5-50
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Calculations for the IBC of such engines, especially during startup, 
must take into account all possible factors that can influence the 
internal chamber characteristics and, therefore, the magnitude of 
acceleration and its rate of increase, to which the human body 
is particularly sensitive. In this case, for a more accurate IBC 
calculation, the stationary burning rate law must be replaced 
with a relationship that links the non-stationary burning rate and 
non-stationary pressure.

In the existing theory of non-stationary SRP combustion, there 
was no question of developing specific methods for calculating 
the dependence of the non-stationary burning rate on pressure. 
When theoretically studying the combustion processes of solid 
propellants, either a time interval is considered in which the 
influence of initial conditions on the course of the process is 
negligible, or the problem statement is so general that obtaining 
a specific solution is not feasible.

In the existing theory of non-stationary combustion of solid fuel, 
the question of developing specific methods for expenditure 
dependency of non-stationary burning rate on pressure throughout 
the entire process was not addressed. The theoretical investigation 
considered the non-stationarity over a time interval where the 
influence of initial conditions on the process was negligible. 
Consequently, the curve problem with initial conditions for the 
heat conduction equation describing heat propagation in the k– 
phase was not posed in the study of this issue. Thus, creating a 
theoretical foundation for studying the non-stationary burning rate 
of solid fuel, grounded on accumulated results in this field and 
suitable for a more accurate calculation of the internal ballistics 
characteristics of solid rocket propellants, appears highly relevant.

Thus, the creation of a theoretical foundation for studying the 
non-stationary burning rate of solid rocket propellants, which, 
on one hand, would be based on the accumulated results in this 
field and, on the other hand, would be suitable for a more precise 
calculation of the IBC of SRMs, appears highly relevant.

The main goal of this work is to develop the theoretical foundations 
of a physico-mathematical model for the non-stationary 
combustion of solid fuel, considering typical time processes on 
the order of 10−3 s. This involves accounting for the influence of 
initial conditions on the course of the non-stationary combustion 
process, deriving equations to calculate non-stationary combustion 
velocities from a closed system of equations, and understanding 
methods to calculate the dependence of solid fuel combustion 
velocity on pressure in non-stationary conditions.

The work uses methods of mathematical analysis to derive 
forms for calculating non-stationary combustion, velocity from 
fundamental laws of classical physics and gas combustion. 
Specifically, the main equation of Zeldovich-Novozhilov 
combustion theory is used, relating the propagation of heat and gas 
condensation in accordance with the law of energy conservation. 
The relationship between the equation’s links combustion velocity 
and the temperature of the burning surface. The validity and 
universality of this equation have been proven in works with 
Zenin and Novozhilov. Additionally, the theory of branched chain 
reactions in gas combustion is attributed to the Semenov. The gas 
dynamics equation in molecular genetic theory is compared with 
experimental data, and in some cases, experimental dependencies 
are obtained, such as the theoretical derivation of the stepwise law 
for stationary combustion velocity.

The mathematical model for solid fuel combustion, accounting for 
the influence of non-stationary combustion velocity on pulse solid 
rocket engines, has been proposed and justified. This model differs 
fundamentally from existing ones by incorporating non-stationarity 
in the initial period, correctly formulating the problem with an 
initial condition for a simultaneous non-stationary heat conduction 
equation with a moving boundary containing the burning 
velocity as an unknown variable. The model is characterized by 
the axiomatic construction of a rigorous analytical form for all 
dependencies from the initial positions, allowing for variable 
assumptions in the theory of non-stationary solid fuel combustion. 
Current theories of non-stationary combustion are applied for the 
first time to solid fuel combustion theory, utilizing results from 
a developed theory of branched chain chemical reactions. This 
theory derives a formula for calculating perpetual heat flow from 
the gas phase to condensation. The derived formula for calculating 
perpetual flow from the gas phase to condensation is obtained.

The results of this work will be utilized in the State Defense Order 
(SDO) for the development of calculation methods for the internal 
ballistics of impulse engines used in catapult seats for automatic 
crew ejection systems in aircraft, helicopters, and spacecraft.

Physical-Chemical Processes in the k–phase
By the present time, a significant number of scientific works by 
researchers like I.B. Zeldovich, Novozhilov, Prisnyakov, both 
from Russia and abroad, have been published, focusing on the 
theoretical description of the processes occurring during the 
combustion of solid propellants in the combustion chambers of 
rocket engines. However, the results of the existing theory of non-
stationary combustion have not found widespread application in 
the development of Solid Rocket Motors (SRMs).

For the calculation of the Internal Ballistics Characteristics (IBC) 
of SRMs, burning rate laws are used. These laws describe the 
burning rate of solid propellants as functions of pressure and initial 
temperature, which have been experimentally obtained under 
stationary conditions. This approach is entirely justified when the 

characteristic time of pressure change               is sufficiently 

large, on the order of 10−1 s or more.

However, the real combustion rate may differ from the value 
calculated using stationary laws if the pressure change process 
occurs rapidly, i.e., within a characteristic time on the order of 
10−3 s or less. Such a process occurs during startup, pressure drop 
at the end of operation, and throughout the operational cycle of 
some types of SRMs, especially in the case of impulse SRMs 
with a firing duration of 5-50 milliseconds used in Crew Escape 
Systems (CES) for aircraft and spacecraft. When CES is engaged, 
an error of more than 10 percent in the calculations of acceleration 
or its rate of increase is unacceptable, and, consequently, an error 
of more than 5 percent in calculating the burning rate of SRPs is 
also unacceptable.

Calculations for the IBC of such engines, especially during startup, 
must take into account all possible factors that can influence the 
internal chamber characteristics and, therefore, the magnitude of 
acceleration and its rate of increase, to which the human body 
is particularly sensitive. In this case, for a more accurate IBC 
calculation, the stationary burning rate law must be replaced 
with a relationship that links the non-stationary burning rate and 
non-stationary pressure.

crew ejection systems in aircraft, helicopters, and spacecraft.

3 Physical-chemical processes in the k–phase

By the present time, a significant number of scientific works by researchers like I.B. Zeldovich, Novozhilov,
Prisnyakov, both from Russia and abroad, have been published, focusing on the theoretical description
of the processes occurring during the combustion of solid propellants in the combustion chambers of
rocket engines. However, the results of the existing theory of non-stationary combustion have not found
widespread application in the development of solid rocket motors (SRMs).

For the calculation of the internal ballistics characteristics (IBC) of SRMs, burning rate laws are used.
These laws describe the burning rate of solid propellants as functions of pressure and initial temperature,
which have been experimentally obtained under stationary conditions. This approach is entirely justified
when the characteristic time of pressure change ( p

dp/dt ) is sufficiently large, on the order of 10−1 s or
more.

However, the real combustion rate may differ from the value calculated using stationary laws if the
pressure change process occurs rapidly, i.e., within a characteristic time on the order of 10−3 s or less. Such
a process occurs during startup, pressure drop at the end of operation, and throughout the operational
cycle of some types of SRMs, especially in the case of impulse SRMs with a firing duration of 5-50
milliseconds used in crew escape systems (CES) for aircraft and spacecraft. When CES is engaged, an
error of more than 10 percent in the calculations of acceleration or its rate of increase is unacceptable, and,
consequently, an error of more than 5 percent in calculating the burning rate of SRPs is also unacceptable.

Calculations for the IBC of such engines, especially during startup, must take into account all possible
factors that can influence the internal chamber characteristics and, therefore, the magnitude of accelera-
tion and its rate of increase, to which the human body is particularly sensitive. In this case, for a more
accurate IBC calculation, the stationary burning rate law must be replaced with a relationship that links
the non-stationary burning rate and non-stationary pressure.

In the existing theory of non-stationary SRP combustion, there was no question of developing specific
methods for calculating the dependence of the non-stationary burning rate on pressure. When theoreti-
cally studying the combustion processes of solid propellants, either a time interval is considered in which
the influence of initial conditions on the course of the process is negligible, or the problem statement is
so general that obtaining a specific solution is not feasible.

Thus, the creation of a theoretical foundation for studying the non-stationary burning rate of solid
rocket propellants, which, on one hand, would be based on the accumulated results in this field and, on
the other hand, would be suitable for a more precise calculation of the IBC of SRMs, appears highly
relevant.

In [1], it is assumed that the surface combustion temperature is a universal constant for a given type
of fuel, independent of pressure and initial temperature. This assumption is equivalent to assuming the
absence of chemical reactions in the k–phase, reducing the gas formation process during combustion to
purely physical processes such as evaporation, distillation, and dispersion. Such an assumption allowed
Ya. B. Zeldovich to develop the first physico-mathematical model of combustion. Subsequent studies [10],
[19], [21], and others have shown that heat release in the k–phase is a significant factor, the consideration
of which is necessary for an adequate description of the combustion process.

For example, in [19], the assumption is put forward that the burning rate of solid fuel is completely
and unequivocally determined by the surface combustion temperature, i.e., that the combustion rate is
governed by an Arrhenius-type equation:

u = H exp

[
− Es

RTs

]
(2)

Thanks to the experimental work of A.A. Zenin and other researchers [10], [11], [12], [24], [25],
the validity of this equation has been proven. It has been demonstrated that the surface combustion
temperature depends on the initial temperature of the fuel and the pressure, explaining the experimental
dependencies of the combustion rate on these factors. The measurements covered a range of initial fuel
temperatures from minus 200 to 140◦C and a pressure range from vacuum to 150 atm.
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In the existing theory of non-stationary SRP combustion, there 
was no question of developing specific methods for calculating 
the dependence of the non-stationary burning rate on pressure. 
When theoretically studying the combustion processes of solid 
propellants, either a time interval is considered in which the 
influence of initial conditions on the course of the process is 
negligible, or the problem statement is so general that obtaining 
a specific solution is not feasible.

Thus, the creation of a theoretical foundation for studying the 
non-stationary burning rate of solid rocket propellants, which, 
on one hand, would be based on the accumulated results in this 
field and, on the other hand, would be suitable for a more precise 
calculation of the IBC of SRMs, appears highly relevant.

In [1], it is assumed that the surface combustion temperature 
is a universal constant for a given type of fuel, independent of 
pressure and initial temperature. This assumption is equivalent 
to assuming the absence of chemical reactions in the k–phase, 
reducing the gas formation process during combustion to purely 
physical processes such as evaporation, distillation, and dispersion. 
Such an assumption allowed Ya. B. Zeldovich to develop the 
first physico-mathematical model of combustion. Subsequent 
studies [10], [19], [21], and others have shown that heat release 
in the k–phase is a significant factor, the consideration of which is 
necessary for an adequate description of the combustion process.

For example, in [19], the assumption is put forward that the burning 
rate of solid fuel is completely and unequivocally determined by 
the surface combustion temperature, i.e., that the combustion rate 
is governed by an Arrhenius-type equation

                                                                                      (2)

Thanks to the experimental work of A.A. Zenin and other 
researchers [10], [11], [12], [24], [25], the validity of this equation 
has been proven. It has been demonstrated that the surface 
combustion temperature depends on the initial temperature of the 
fuel and the pressure, explaining the experimental dependencies of 
the combustion rate on these factors. The measurements covered 
a range of initial fuel temperatures from minus 200 to 140◦C and 
a pressure range from vacuum to 150 atm.

The dependence u = u(Ts) is presented based on the data from 
works [11], [12], [21], indicating that, within the experimental 
errors, it is possible to speak of a unified (universal for all pressure 
and initial temperature values) dependence of the combustion rate 
on the surface temperature. This dependence can be described 
by equation (3). Additionally, in work [21], it is shown that the 
Jacobian

At the experimentally obtained values of its partial derivatives, 
the Jacobian is very close to zero. As is known, this indicates the 
presence of a functional dependence between the quantities u(p, 
TN ) and Ts(p, TN ), i.e., a connection u = u(Ts). The dependence 
of the form (3) can be justified by the fact that the chemical 
decomposition reactions are zero-order reactions, the rate of which 
does not depend on pressure. Thus, numerous theoretical and 
experimental studies have shown that the combustion rate can be 
represented by an equation similar to the Arrhenius equation—
an unique dependence of the combustion rate on the surface 
temperature of the burning fuel. The activation energy Es entering 

this equation is apparently the cumulative activation energy of 
all physico-chemical processes—processes of vaporization, 
distillation, and decomposition of substances that make up the fuel.

Physico-Chemical Processes in the Gas Phase
The theory of solid fuel combustion was developed by Zeldovich 
in the assumption that the temperature of the surface in k—phase 
is constantly elevated. In the work [1] the assumption is made that 
the surface combustion temperature is universal and constant for a 
given type of fuel, regardless of pressure and ambient temperature.

This assumption is equivalent to assuming the absence of chemical 
reactions in the condensed phase, reducing the process of gas 
formation during combustion to an oxygen-dependent process of 
vaporization and dispersion. This assumption allowed Zeldovich 
to develop the first physico-mathematical model of combustion. 
However, subsequent research, for example, in [16], [26] and [41], 
definitively indicates the presence of chemical reactions in the 
condensed phase, showing that the heat release in the condensed 
phase is a crucial factor necessary for an adequate description of 
the combustion process.

In [19] the assumption was first introduced that the combustion 
rate of solid fuel is entirely and unambiguously determined by the 
surface combustion temperature. In other words, the burning rate 
follows a dependence similar to the Arrhenius-type relationship.

Physico-chemical processes in the gas phase play a pivotal role 
in understanding and manipulating the behavior of matter under 
various conditions. This interdisciplinary field encompasses 
the study of physical and chemical transformations that 
occur in gaseous substances, shedding light on fundamental 
principles governing molecular interactions and reactivity. This 
comprehensive exploration delves into the intricacies of gas-
phase phenomena, examining their significance across diverse 
scientific disciplines
•	 Gas Phase Kinetics: gas phase kinetics elucidates the rates at 

which chemical reactions occur in the gaseous state. The study 
involves understanding reaction mechanisms, collision theory, 
and factors influencing reaction rates, such as temperature, 
pressure, and concentration. This knowledge is indispensable 
for designing efficient industrial processes, optimizing 
reaction conditions, and predicting reaction outcomes

•	 Thermodynamics of Gases: the thermodynamics of gases 
explores the relationship between heat, energy, and the 
spontaneous direction of gas-phase reactions. Key concepts, 
such as enthalpy, entropy, and Gibbs free energy, provide 
insights into the feasibility and spontaneity of reactions. The 
understanding of thermodynamics in the gas phase is crucial 
for assessing the energy changes associated with chemical 
processes

•	 Gas–Phase Spectroscopy: gas–phase spectroscopy involves 
the study of the interaction between electromagnetic 
radiation and gaseous molecules. Techniques like infrared 
spectroscopy and mass spectrometry enable researchers to 
analyze molecular structures, study vibrational and rotational 
transitions, and investigate electronic states. This information 
is vital for identifying and characterizing gas-phase species 
in various applications, from environmental monitoring to 
astrophysics

•	 Molecular Dynamics in Gases: molecular dynamics 
simulations offer a powerful tool for exploring the behavior 
of gas-phase molecules at the molecular level. This 
computational approach allows researchers to simulate the 

crew ejection systems in aircraft, helicopters, and spacecraft.

3 Physical-chemical processes in the k–phase

By the present time, a significant number of scientific works by researchers like I.B. Zeldovich, Novozhilov,
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In [1], it is assumed that the surface combustion temperature is a universal constant for a given type
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governed by an Arrhenius-type equation:

u = H exp

[
− Es

RTs

]
(2)

Thanks to the experimental work of A.A. Zenin and other researchers [10], [11], [12], [24], [25],
the validity of this equation has been proven. It has been demonstrated that the surface combustion
temperature depends on the initial temperature of the fuel and the pressure, explaining the experimental
dependencies of the combustion rate on these factors. The measurements covered a range of initial fuel
temperatures from minus 200 to 140◦C and a pressure range from vacuum to 150 atm.
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The dependence u = u(Ts) is presented based on the data from works [11], [12], [21], indicating that,
within the experimental errors, it is possible to speak of a unified (universal for all pressure and initial
temperature values) dependence of the combustion rate on the surface temperature. This dependence
can be described by equation (3). Additionally, in work [21], it is shown that the Jacobian:

∂(u, Ts)

∂(p, TN )
=

(
∂u

∂p

)

TN

(
∂Ts

∂TN

)

p

−
(

∂u

∂TN

)

p

(
∂Ts

∂p

)

N

At the experimentally obtained values of its partial derivatives, the Jacobian is very close to zero. As
is known, this indicates the presence of a functional dependence between the quantities u(p, TN ) and
Ts(p, TN ), i.e., a connection u = u(Ts). The dependence of the form (3) can be justified by the fact
that the chemical decomposition reactions are zero-order reactions, the rate of which does not depend
on pressure. Thus, numerous theoretical and experimental studies have shown that the combustion rate
can be represented by an equation similar to the Arrhenius equation—an unique dependence of the
combustion rate on the surface temperature of the burning fuel. The activation energy Es entering this
equation is apparently the cumulative activation energy of all physico-chemical processes—processes of
vaporization, distillation, and decomposition of substances that make up the fuel.

4 Physico-chemical processes in the gas phase
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combustion temperature is universal and constant for a given type of fuel, regardless of pressure and
ambient temperature.

This assumption is equivalent to assuming the absence of chemical reactions in the condensed phase,
reducing the process of gas formation during combustion to an oxygen-dependent process of vaporization
and dispersion. This assumption allowed Zeldovich to develop the first physico-mathematical model of
combustion. However, subsequent research, for example, in [16], [26] and [41], definitively indicates the
presence of chemical reactions in the condensed phase, showing that the heat release in the condensed
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the intricacies of gas-phase phenomena, examining their significance across diverse scientific disciplines:
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thermodynamics of gases: the thermodynamics of gases explores the relationship between heat,
energy, and the spontaneous direction of gas-phase reactions. Key concepts, such as enthalpy,
entropy, and Gibbs free energy, provide insights into the feasibility and spontaneity of reactions.
The understanding of thermodynamics in the gas phase is crucial for assessing the energy changes
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gas–phase spectroscopy: gas–phase spectroscopy involves the study of the interaction between elec-
tromagnetic radiation and gaseous molecules. Techniques like infrared spectroscopy and mass spec-
trometry enable researchers to analyze molecular structures, study vibrational and rotational tran-
sitions, and investigate electronic states. This information is vital for identifying and characterizing
gas-phase species in various applications, from environmental monitoring to astrophysics;
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trajectories and interactions of individual particles over time, 
providing valuable insights into gas-phase phenomena that 
are challenging to observe experimentally. Applications range 
from understanding gas-phase reactions to predicting the 
properties of novel materials

•	 Atmospheric Chemistry: the study of physico–chemical 
processes in the gas phase is particularly relevant in 
understanding atmospheric chemistry. Reactions occurring 
in the Earth’s atmosphere, such as the formation of ozone and 
reactions leading to air pollution, have profound implications 
for climate, air quality, and human health. Investigating these 
processes is crucial for developing strategies to mitigate 
environmental challenges.

Physico–chemical processes in the gas phase represent a rich 
and diverse area of scientific inquiry, with implications spanning 
chemistry, physics, environmental science, and beyond. As 
researchers continue to unravel the complexities of gas-phase 
phenomena, their findings contribute not only to fundamental 
scientific knowledge but also to the development of innovative 
technologies and solutions addressing contemporary challenges.

Experimental studies show that the combustion rate of solid fuel 
is significantly influenced by the pressure in the combustion 
chambers, highlighting the substantial role of the gas phase in 
the combustion process. To rigorously mathematically represent 
the combustion process in the gas phase, it is necessary to develop 
an adequate physical model that takes into account the real physics 
of chemical processes occurring.

For a rigorous mathematical representation of combustion 
processes in the gas phase, it is necessary to create an adequate 
physical model that considers the real physicochemical processes 
occurring near the burning surface.

Yakov B. and Zeldovich’s combustion model [1], [2], methods 
based on flame propagation theory in gases were used to calculate 
the combustion rate. The equations of mass conservation, 
conservation of the number of each type of atom, conservation 
of energy (enthalpy constancy), and diffusion equations were 
considered. These works introduced the spatial division of the 
combustion zone into zones, and the processes were examined 
separately for each zone. Assuming equal diffusion coefficients 
and thermal conductivity, the similarity of concentration and 
temperature fields throughout the gas phase was established. 
The integration of equations for the “dark” zone was performed, 
neglecting heat release, and the equations for the reaction zone 
were integrated with the assumption of temperature constancy.

Effectively, the concept of the “flame front” was justified in [1], 
the representation of an infinitely thin reaction zone where heat 
release occurs.

The processes occurring in the gas phase during the combustion 
of solid fuel are most comprehensively described in [19], [22]. 
However, the fundamental equations derived in these works do 
not differ significantly from the equations in [1].

To calculate the combustion rate of solid fuel, a crucial aspect is 
the description of heat transfer from the gas phase to the condensed 
phase. To determine the heat flux entering the condensed phase, 
second-order boundary conditions [1], [19], or third-order 
boundary conditions [16], [18], with a pressuredependent heat 
exchange coefficient, are used. Models that account for thermal 
radiation from the flame are also available [26]. In [19], [22], it is 

assumed that the heat flux into the condensed phase may depend on 
the combustion rate (either directly proportional or proportional to 
the magnitude. It can be noted that there is the greatest divergence 
of opinions among various researchers on this issue. In fact, each 
study uses its own model for calculating the heat flux.

It is necessary to emphasize that in all physical-mathematical 
models of processes occurring in the gas phase, specific chemical 
reactions constituting the combustion process itself are not 
considered. However, despite the complexity of the processes 
occurring in the flame, which strongly depend on the type of 
fuel used, some general regularities can be established. For 
example, it can be asserted that in the decomposition products 
of the condensed phase of all solid fuels, free hydrogen and free 
oxygen are necessarily present. The mechanism of hydrogen 
combustion is well-known thanks to the works of Academician 
N.N. Semenov [27], [28], who was awarded the Nobel Prize. 
According to these works, hydrogen combustion occurs as a result 
of branched chain reactions involving free radicals (active centers). 
The derivations of equations and dependencies required for the 
construction of a physical-mathematical model for nonstationary 
solid fuel combustion. It presents the main equation for calculating 
non-stationary combustion velocity as the solution to a system 
of equations, which includes the heat conduction equation in the 
k– phase with boundary and initial conditions, the heat balance 
equation at the combustion surface, and an additional boundary 
condition. The project formulates the initial and boundary value 
problem for the heat conduction equation in a one-dimensional 
formulation, introducing a coordinate system connected to the 
combustion surface. The key equations and conditions are derived 
in this part, and the project elaborates on the physical meaning 
and significance of these equations.

Overall, the work delves into the complex process of non-stationary 
solid fuel combustion, providing a theoretical foundation for 
understanding the interplay of factors such as temperature, 
pressure, and reaction kinetics in the combustion process. The 
use of mathematical models and physical principles enables the 
analysis and prediction of non-stationary combustion behavior.

0. H2 + O2           2OH – chain initiation reaction; 
1. H2 + OH          H2O + H – chain propagation reaction; 
2. O2 + H           OH + O 
3. H2 + O            OH + H  – chain branching reactions; 
4. H + H + M        H2 + M 
5. H + OH + M       H2O + M  – chain breakdown in the volume; 
6. H + parede – chain de breakdown in the surface. (3)

Here, M stands for any molecule or radical. Reaction 6 refers to 
chain breaking when a free radical collides with the surface of 
a condensed particle present in the fuel decomposition products. 
According to the theory of branched chain reactions developed by 
the academic Semyonov, after reaching the necessary conditions 
due to the mixture of hydrogen and oxygen that promote chain 
reactions, the ignition of hydrogen combustion occurs with a 
delay. This delay, or the induction period, is caused by the need 
to accumulate a sufficient quantity of free radicals responsible for 
the continuation and branching of the chains. For the same reason, 
there is a delay in ignition in the case of solid fuel combustion 
mixtures (CSM) during the passage of the “dark zone” through 
the gases [27], [28], are
1.	 The presence of a clearly defined pressure threshold below 

which the reaction practically does not occur, and above 
which the reaction proceeds at a high speed. The pressure 
values considered in the theory of combustion are deliberately 

of equations and dependencies required for the construction of a physical-mathematical model for non-
stationary solid fuel combustion. It presents the main equation for calculating non-stationary combustion
velocity as the solution to a system of equations, which includes the heat conduction equation in the k–
phase with boundary and initial conditions, the heat balance equation at the combustion surface, and an
additional boundary condition. The project formulates the initial and boundary value problem for the
heat conduction equation in a one-dimensional formulation, introducing a coordinate system connected
to the combustion surface. The key equations and conditions are derived in this part, and the project
elaborates on the physical meaning and significance of these equations.

Overall, the work delves into the complex process of non-stationary solid fuel combustion, providing
a theoretical foundation for understanding the interplay of factors such as temperature, pressure, and
reaction kinetics in the combustion process. The use of mathematical models and physical principles
enables the analysis and prediction of non-stationary combustion behavior:
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−→← 2OH – chain initiation reaction;

1. H2 +OH −→← H2O +H – chain propagation reaction;
2. O2 +H −→← OH +O
3. H2 +O −→← OH +H

}
– chain branching reactions;

4. H +H +M −→← H2 +M
5. H +OH +M −→← H2O +M

}
– chain breakdown in the volume;

6. H + parede – chain de breakdown in the surface.

(3)

Here, M stands for any molecule or radical. Reaction 6 refers to chain breaking when a free radical
collides with the surface of a condensed particle present in the fuel decomposition products. According to
the theory of branched chain reactions developed by the academic Semyonov, after reaching the necessary
conditions due to the mixture of hydrogen and oxygen that promote chain reactions, the ignition of
hydrogen combustion occurs with a delay. This delay, or the induction period, is caused by the need
to accumulate a sufficient quantity of free radicals responsible for the continuation and branching of the
chains. For the same reason, there is a delay in ignition in the case of solid fuel combustion mixtures
(CSM) during the passage of the “dark zone” through the gases [27], [28], are:

1. the presence of a clearly defined pressure threshold below which the reaction practically does not
occur, and above which the reaction proceeds at a high speed. The pressure values considered in
the theory of combustion are deliberately higher than the limiting ones;

2. the presence of an induction period, i.e., the time from the moment the initial fuel mixture reaches
the conditions necessary for spontaneous ignition (specific values of temperature and pressure) until
the onset of the rapid reaction. The magnitude of the induction period is inversely proportional to
the rate of the chain-branching reaction (reaction 2 of mechanism 3). In other words, the induction
period is the time required to accumulate a sufficient number of active centers for the oxidation
reaction of hydrogen to proceed;

3. a very high reaction rate after the completion of the induction period - the reaction is perceived as
an explosion or flash.

In the works of N.N. Semenov, theoretical dependencies for the rate of branching chain reactions have
been obtained. These dependencies do not involve the concepts of “activation energy” and “reaction
order”, i.e., branching chain reactions are not described by Arrhenius-type equations. A theoretical
dependence for the induction period was also derived, which was subsequently experimentally verified
[31], [32] and applied to the combustion of hydrocarbons [33]. It is worth noting that the formula for
calculating the induction period was known earlier [34], but only in the works of N.N. Semenov and his
students did it receive sufficient theoretical and experimental justification. Subsequently, the concept of
the induction period has been used in the theory of liquid fuel combustion [35], while in the theory of
solid fuel combustion, this concept has not been utilized up to the present.

It is necessary to note that the approximate formula for calculating induction periods was known
before. However, it was only in the work of Semenov and his students that it received theoretical and
experimental justification. Subsequently, the concept of the induction period was used in the theory of
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higher than the limiting ones.
2.	 The presence of an induction period, i.e., the time from 

the moment the initial fuel mixture reaches the conditions 
necessary for spontaneous ignition (specific values of 
temperature and pressure) until the onset of the rapid 
reaction. The magnitude of the induction period is inversely 
proportional to the rate of the chain-branching reaction 
(reaction 2 of mechanism 3). In other words, the induction 
period is the time required to accumulate a sufficient number 
of active centers for the oxidation reaction of hydrogen to 
proceed.

3.	 A very high reaction rate after the completion of the induction 
period - the reaction is perceived as an explosion or flash.

In the works of N.N. Semenov, theoretical dependencies for 
the rate of branching chain reactions have been obtained. These 
dependencies do not involve the concepts of “activation energy” 
and “reaction order”, i.e., branching chain reactions are not 
described by Arrhenius-type equations. A theoretical dependence 
for the induction period was also derived, which was subsequently 
experimentally verified [31], [32] and applied to the combustion 
of hydrocarbons [33]. It is worth noting that the formula for 
calculating the induction period was known earlier [34], but only 
in the works of N.N. Semenov and his students did it receive 
sufficient theoretical and experimental justification. Subsequently, 
the concept of the induction period has been used in the theory 
of liquid fuel combustion [35], while in the theory of solid fuel 
combustion, this concept has not been utilized up to the present.

It is necessary to note that the approximate formula for calculating 
induction periods was known before. However, it was only in 
the work of Semenov and his students that it received theoretical 
and experimental justification. Subsequently, the concept of the 
induction period was used in the theory of combustion of liquid 
fuels [33]. In the theory of solid fuel combustion, this concept was 
not utilized. In this study, the results of the theory of exploratory 
chain chemical reactions are adopted as the theoretical basis for 
calculating the heat flux from the gas phase to the k–phase.

Methods for Calculating the Burning Rate of Solid Propellant
The task of calculating the combustion speed of solid fuel was 
first addressed in the article of Zeldovich [21]. Methods based 
on flame propagation theory in gases were used to compute 
the steady-state combustion speed. This involved considering 
mass conservation equations, where ug is the flame propagation 
speed in the gas phase, equations for conserving the number of 
atoms of each species, energy conservation equations, enthalpy 
constancy, and diffusion equations. Assuming equal diffusion 
coefficients and temperature conductivity in established similarity 
fields of concentration and temperature throughout the gas phase, 
integration of equations was performed for the “dark zone”, 
anticipating heat release.

Calculating the burning rate of solid propellant is a crucial aspect 
of designing solid rocket motors and propellant-driven rockets. 
The burning rate refers to the speed at which the solid propellant 
burns over time. This measure is essential for understanding 
engine performance and ensuring safe and efficient operation. 
There are various approaches to calculating the burning rate of 
solid propellant, and they can be categorized into analytical, 
empirical, and numerical methods. Analytical methods BATES– 
GRUNEISEN Law is based on the Bates-Gruneisen law, which 
relates the burning rate to gas pressure and propellant density. 
Internal ballistics Mmdels utilizes mass and energy conservation 

equations to describe the burning of solid propellant inside the 
motor. Includes considerations for motor geometry, propellant 
characteristics, and thermal effects. Empirical Methods proposed 
by Crawford, it relates the burning rate to gas pressure. Correlation 
methods from experimental data relies on experimental data, 
such as laboratory burning tests. Uses statistical techniques 
to correlate the data and derive empirical equations for the 
burning rate. Computational Fluid Dynamics (CFD) modelling 
uses computational simulations to model fluid dynamics inside 
the motor. Considers the interaction between gas and solid, 
including factors like heat transfer and changes in surface area. 
Finite element models divide the motor into finite elements to 
analyse the mechanical and thermal behaviour of solid propellant 
during burning. May include thermo-structural coupling to 
capture thermo-mechanical interactions. Key Considerations: 
propellant properties, understanding propellant properties such 
as chemical composition, grain size, and additives is crucial for 
accurate modelling. Environmental Conditions like temperature 
and atmospheric pressure influence the burning rate and should 
be considered in calculations. Experimental validation results 
from analytical and numerical methods should be validated 
through practical experiments to ensure accuracy and reliability. 
The development and application of these methods require 
advanced knowledge in thermodynamics, fluid mechanics, and 
computational modelling, reflecting the multidisciplinary nature 
of solid propellant rocket motor design.

In the works [1], [2], the calculation of the steady-state burning 
rate of solid fuel was carried out using the mass conservation 
equation ρu = ρgug where ug - the flame propagation velocity in 
the gas phase. Another method for calculating the steady-state 
burning rate, also proposed by Ya.B. Zeldovich [1], [2], involves 
the use of the heat balance equation in the k–phase, which is 
expressed as: λfo = ρcuo(Tso −TN ). In this case, to calculate uo, 
it is necessary to know the analytical expressions for Tso and fo. 
In works [1], [2], it was assumed that Tso = const, and the heat 
balance equation was considered valid even for non-stationary 
combustion regimes.

The calculations for the steady combustion velocity are reduced 
to solving the heat balance equation in the k–phase. To solve 
this equation, one needs to know the dependence of the steady 
combustion velocity on pressure and initial temperature, obtained 
either from experiments or the theory of steady combustion. 
This approach to calculating the steady combustion velocity is 
justified because the combustion rate, considered in quasisteady 
state conditions, behaves similarly to the steady-state conditions, 
with the same temperature gradient at the surface of the condensed 
phase. In other words, the quasi-steady combustion velocity is 
determined solely by the instantaneous values of pressure and 
temperature gradient and is currently not linked to the temperature 
distribution throughout the volumes of the condensed phase.

Thus, for the stationary case, the heat balance equation was 
considered valid, extending to the nonstationary combustion 
regime. Novozhilov generalized Zeldovich’s theory of non-
stationary combustion to the case of variable temperature of the 
hot surface, fundamentally preserving the main idea of accounting 
for the quasi-stationarity of the process and using it as a link for 
the stationary dependence of the combustion rate on pressure.

The approach to calculating non-stationary combustion velocity 
is justified by considering the combustion rate at the moment in 
a quasi-stationary regime, which equals the rate in a stationary 
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regime with the same temperature gradient at the condensed phase 
surface. In this way, the quasi-stationary combustion velocity is 
solely determined by the instantaneous pressure and temperature 
gradient and is not currently linked to the temperature distribution 
throughout the condensed phase volume. Therefore, the heat 
balance equation valid for the stationary case is adopted for non-
stationary combustion. Novozhilov extended Zeldovich’s theory of 
non-stationary combustion to cases with changing temperatures on 
the burning surface. He utilized the stationary combustion law and 
the dependency of combustion velocity on surface temperature, 
coupled with vitamin equations for heat flow. Vozhilov introduced 
an integral equation for calculating non-stationary combustion 
velocity, applied to processes far from the influence of initial 
conditions. However, its use in developing a calculation method 
for non-stationary combustion velocity is significantly challenging, 
requiring a specific dependency for surface temperature and heat 
flow.

In Novozhilov’s work [42], an integral equation is introduced for 
calculating the non-stationary combustion velocity, applied to 
processes occurring far from the influence of initial conditions. 
The use of this equation in developing methods for calculating 
non-stationary combustion velocity faces significant challenges, 
both due to its need for a specific dependency for the surface 
temperature of combustion and heat flux into the k–phase. 
Romanov’s articles at [47]–[49] provide a calculation for non-
stationary combustion velocity formulae.

In works [19], [21], [22], equations (1) and (2) were used to 
calculate the combustion rate in combination with various 
equations for heat flux. Analytical expressions for some specific 
cases of pressure variation over time were first obtained in work 
[19]. However, the practical use of these expressions, even for 
specific cases, is quite limited primarily because they contain 
functions of a complex argument, requiring the development of 
sufficiently complex calculation methods. In the works of B.V. 
Novozhilov [21], [36], a general integral equation for calculating 
non-stationary combustion velocity has been derived, which needs 
to be complemented with specific dependencies for the surface 
temperature of combustion and heat flux into the combustion 
phase.

Let’s consider various existing descriptions of the physical-
mathematical aspects of the combustion process of solid fuel based 
on the results of theoretical and experimental studies outlined in 
the works of both domestic and foreign researchers. This review of 
works dedicated to the study of heat transfer from the gas phase to 
condensation reveals a significant divergence of opinions among 
different researchers. Each work essentially employs its own 
model for calculating heat flux. The fundamental principles of the 
theory of chain branching combustion reactions, including those 
introduced by Academician Semenov, are presented. Currently, 
these principles serve as the theoretical basis for calculating the 
heat flux from the gas phase to the condensed phase. The review 
also covers existing methods for calculating the burning rate of 
solid fuel, demonstrating that these methods may only apply to 
specific cases of pressure variation over time or possess such 
a general nature that additional research is required for their 
application in specific calculation.

Physico-Mathematical Model of Non-Stationary Combustion 
of Solid Fuel
The physico-mathematical model of non-stationary solid fuel 
combustion adopted in this study is based on the findings of 

works [19], [21], [22], with certain refinements and additions. The 
assumptions made during the model construction are primarily 
formulated in work [21]
1.	 The solid fuel is homogeneous and isotropic
2.	 The combustion surface is a plane; heat release in the 

combustion phase occurs only on the combustion surface
3.	 The flame front is a plane parallel to the combustion surface; 

heat release in the “dark” zone does not occur
4.	 Processes occurring behind the flame front (secondary 

reactions, combustion of dispersed particles) do not affect 
the combustion rate

5.	 The processes of solid-phase decomposition and combustion 
in the gas phase occur much faster than the heating of the 
combustion phase, i.e., the gas phase is considered non-
inertial.

All processes are considered in a one-dimensional setup in 
a coordinate system attached to the combustion surface. The 
positive direction of the longitudinal coordinate is considered as 
the direction into the solid fuel.

The accepted assumptions have been confirmed by experimental 
publications [1], [19], [21], [26] and [27]. The proposed physical 
model allows for the mathematical formulation of the problem 
of nonstationary combustion velocity of solid fuel and the 
introduction of a linear integral equation. In such a problem 
formulation, the non-stationary combustion velocity depends not 
only on the instantaneous temperature gradient, as is the case in 
a quasi-stationary regime but is determined by the entire history 
of the combustion process. To convert the calculation of the non-
stationary combustion velocity into an integral equation and find 
the solution to this equation, subsequent paragraphs will address 
the processes occurring in the gas phase and at the combustion 
surface. Additionally, the combustion problem will be formulated 
and solved with an initial condition for the non-stationary equation, 
involving heat and k–phase.

The Equation for Heat Propagation in the k–phase
Experimental studies of the solid fuel combustion process indicate 
that the expanding contribution to the non-stationarity of this 
process is associated with the condensed phase. In existing 
physics-mathematical models, the inertia in the k–phase is taken 
into account by the heat conduction equation. According to the 
work of researchers [16], [21] and [40], and others, the heat 
propagation equation in the k–phase has the following form:

                                                                                      (4)

The boundary conditions for equation (4) in a general form are 
given by

                                                                                      (5)
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                                                                                      (7)

The initial condition in a general form is given by

                                                                                      (8)
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The heat release in the k–phase is accounted for by the heat balance equation on the combustion surface.

λgfg(t) = λf(t) + ρu(t)Qs. (9)

Here, fg - the temperature gradient at the combustion surface from the gas phase side. In the cited works,
particularly in works [15], [20], [29] and [40], it is demonstrated that the depth of the heated k–phase layer
is very small, and the temperature changes in the k–phase reaction layer are always very small compared
to the temperature difference Ts − TN . This fact allows us to conclude that, with good approximation,
the extent of the reaction zone can be considered equal to zero. Thus, the chemical reaction of k–phase
decomposition practically occurs only on the combustion surface where the temperature of the k–phase
is maximally different from Ts. To fulfill this assumption, it is necessary to assume that the function
W tends to 0 at low temperatures. Despite the fact that according to Arrhenius levels, at sufficiently
low T values, the function W becomes negligibly small for the precise mathematical formulation of this
condition.
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The heat release in the k–phase is accounted for by the heat balance 
equation on the combustion surface

                                                                                          (9)

Here, fg - the temperature gradient at the combustion surface 
from the gas phase side. In the cited works, particularly in works 
[15], [20], [29] and [40], it is demonstrated that the depth of the 
heated k–phase layer is very small, and the temperature changes in 
the k–phase reaction layer are always very small compared to the 
temperature difference Ts − TN . This fact allows us to conclude 
that, with good approximation, the extent of the reaction zone can 
be considered equal to zero. Thus, the chemical reaction of k–phase 
decomposition practically occurs only on the combustion surface 
where the temperature of the k–phase is maximally different from 
Ts. To fulfill this assumption, it is necessary to assume that the 
function W tends to 0 at low temperatures. Despite the fact that 
according to Arrhenius levels, at sufficiently low T values, the 
function W becomes negligibly small for the precise mathematical 
formulation of this condition.

Specification of the Initial Condition
Clearly state the objective of the goal or purpose of defining 
the initial conditions. Provide a brief description of the system 
or process under consideration. Identify the relevant variables 
that define the state of the system at the initial time. Clearly list 
any assumptions made regarding the initial condition. Express 
the initial condition mathematically, using appropriate symbols 
and equations. For example, the initial conditions. If applicable, 
include any boundary conditions that might affect the initial state 
of the system. Identify any dependencies between variables or 
parameters that influence the initial condition.

To specify the initial condition (8), we assume that the beginning of 
the process is the moment when combustion of the fuel started at a 
rate of uo and at a pressure of po after the igniter is triggered. Thus, 
we consider that in the combustion phase at the initial moment, a 
stationary temperature distribution (Michelson distribution) has 
formed, which can be obtained from (4), (5), (7) under

                                const, Ts = Tso   = const:

                                                                                   (10)

Specification of the Boundary Conditions
When developing a specification for boundary conditions, it’s 
crucial to provide clear and comprehensive information about the 
constraints or requirements at the system’s boundaries. Here’s a 
generic example of how you might outline the specification of 
boundary conditions. Clearly state the goal or purpose of defining 
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boundaries or interfaces within the system. List the variables 
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t) at x = xb and y = yb. Provide a physical interpretation of the 
boundary conditions. Explain what each condition represents in 
the context of the system. Specify the types of boundary conditions 
(e.g., Dirichlet, Neumann, mixed) and their significance.

We will obtain an analytical expression for Ts(t) from the Arrhenius 
equation (2), writing it for the current moment as well as for the 
moment t = 0:
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Equation (11) establishes a unique relationship between the surface 
temperature and the combustion rate.

We will obtain an analytical expression for f(t) from the definition 
of the heat flux transmitted by thermal conductivity
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Here, Tg(t) - the temperature of the flame front, h(t) - the width of 
the “dark” zone. In accordance with the concept of the nature of 
the hydrogen oxidation reaction progression outlined in k–phase 
and the dependencies obtained from experimental studies of the 
induction period of chain-branching reactions [32], [33], let’s 
adopt the formula for the induction period.
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Here, τg(t) is the induction period, A1 and A2 are the concentrations 
of hydrogen and oxygen in the products of fuel gasification, τ*, 
Eg, ν1, ν2 are constants specific to the particular type of fuel. 
Since, according to the mass conservation equation, vg = ρu(t)/
ρg (vg - gas outflow velocity from the burning surface), and h(t) 
= vgτg, then from (12) and (13), considering the equation of state 
and the equations determining the concentrations of gas mixture 
components before combustion, we obtain
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fuel. Writing equations (9) and (14) for the current moment in 
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Dependencies (11) and (15) specify the functions Ts(t) and f(t), 
i.e., the boundary conditions (5) and (6). Boundary conditions (7) 
do not require specification.

The Fundamental Solution of the Heat Conduction Equation 
in the k–phase
The heat conduction equation, also known as the heat equation, 
is a partial differential equation that describes the distribution of 
heat in a given region over time. The fundamental solution of 
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surface. The positive direction of the longitudinal coordinate is considered as the direction into the solid
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[27]. The proposed physical model allows for the mathematical formulation of the problem of non-
stationary combustion velocity of solid fuel and the introduction of a linear integral equation. In such
a problem formulation, the non-stationary combustion velocity depends not only on the instantaneous
temperature gradient, as is the case in a quasi-stationary regime but is determined by the entire history
of the combustion process. To convert the calculation of the non-stationary combustion velocity into an
integral equation and find the solution to this equation, subsequent paragraphs will address the processes
occurring in the gas phase and at the combustion surface. Additionally, the combustion problem will
be formulated and solved with an initial condition for the non-stationary equation, involving heat and
k–phase.

7 The equation for heat propagation in the k–phase

Experimental studies of the solid fuel combustion process indicate that the expanding contribution to the
non-stationarity of this process is associated with the condensed phase. In existing physics-mathematical
models, the inertia in the k–phase is taken into account by the heat conduction equation. According to
the work of researchers [16], [21] and [40], and others, the heat propagation equation in the k–phase has
the following form:

∂T

∂t
= æ

∂2T

∂x2
+ u(t)

∂T

∂x
. (4)

The boundary conditions for equation (4) in a general form are given by:

T (0, t) = Ts(t), (5)

dT

dx
(0, t) = f(t), (6)

lim
x→∞

T (x, t) = TN , lim
x→∞

dT

dx
(x, t) = 0. (7)

The initial condition in a general form is given by:

T (x, 0) = TN + φ(x). (8)

The heat release in the k–phase is accounted for by the heat balance equation on the combustion surface.

λgfg(t) = λf(t) + ρu(t)Qs. (9)

Here, fg - the temperature gradient at the combustion surface from the gas phase side. In the cited works,
particularly in works [15], [20], [29] and [40], it is demonstrated that the depth of the heated k–phase layer
is very small, and the temperature changes in the k–phase reaction layer are always very small compared
to the temperature difference Ts − TN . This fact allows us to conclude that, with good approximation,
the extent of the reaction zone can be considered equal to zero. Thus, the chemical reaction of k–phase
decomposition practically occurs only on the combustion surface where the temperature of the k–phase
is maximally different from Ts. To fulfill this assumption, it is necessary to assume that the function
W tends to 0 at low temperatures. Despite the fact that according to Arrhenius levels, at sufficiently
low T values, the function W becomes negligibly small for the precise mathematical formulation of this
condition.
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8 Specification of the initial condition

Clearly state the objective of the goal or purpose of defining the initial conditions. Provide a brief
description of the system or process under consideration. Identify the relevant variables that define the
state of the system at the initial time. Clearly list any assumptions made regarding the initial condition.
Express the initial condition mathematically, using appropriate symbols and equations. For example, the
initial conditions. If applicable, include any boundary conditions that might affect the initial state of the
system. Identify any dependencies between variables or parameters that influence the initial condition.

To specify the initial condition (8), we assume that the beginning of the process is the moment when
combustion of the fuel started at a rate of uo and at a pressure of po after the igniter is triggered. Thus,
we consider that in the combustion phase at the initial moment, a stationary temperature distribution

(Michelson distribution) has formed, which can be obtained from (4), (5), (7) under
∂T

∂t
= 0, u(t) = uo =

const, Ts = Tso = const:

φ(x) = (Tso − TN ) exp
(
−uox

æ

)
. (10)

9 Specification of the boundary conditions

When developing a specification for boundary conditions, it’s crucial to provide clear and comprehensive
information about the constraints or requirements at the system’s boundaries. Here’s a generic example
of how you might outline the specification of boundary conditions: Clearly state the goal or purpose of
defining the boundary conditions. Provide a concise description of the system or process under consid-
eration. Identify the different boundaries or interfaces within the system. List the variables that are
relevant to the boundary conditions. Express the boundary conditions mathematically, using appropriate
symbols and equations. For example, boundary condition: f(x, y, t) = g(x, y, t) at x = xb and y = yb.
Provide a physical interpretation of the boundary conditions. Explain what each condition represents in
the context of the system. Specify the types of boundary conditions (e.g., Dirichlet, Neumann, mixed)
and their significance.

We will obtain an analytical expression for Ts(t) from the Arrhenius equation (2), writing it for the
current moment as well as for the moment t = 0:

Ts(t) = TN + (Tso − TN )
1 + γθ lnU

1− γ lnU
, (11)

or
Ts(t)− TN = (Tso − TN )V (U).

Here,
U(t) = u(t)/uo, γ = RTso/Es,

θ = TN/(Tso − TN ), V (U) =
1 + γθ lnU

1− γ lnU

.

Equation (11) establishes a unique relationship between the surface temperature and the combustion
rate.

We will obtain an analytical expression for f(t) from the definition of the heat flux transmitted by
thermal conductivity:

λgfg(t) = −λg[Tg(t)− Ts(t)]/h(t). (12)

Here, Tg(t) - the temperature of the flame front, h(t) - the width of the “dark” zone. In accordance with
the concept of the nature of the hydrogen oxidation reaction progression outlined in k–phase and the
dependencies obtained from experimental studies of the induction period of chain-branching reactions
[32], [33], let’s adopt the formula for the induction period.

τg = τ∗
exp

(
Eg

RTg

)

Aν1
1 Aν2

2

. (13)

Here, τg(t) is the induction period, A1 and A2 are the concentrations of hydrogen and oxygen in the
products of fuel gasification, τ∗, Eg, ν1, ν2 are constants specific to the particular type of fuel. Since,
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Here, τg(t) is the induction period, A1 and A2 are the concentrations of hydrogen and oxygen in the
products of fuel gasification, τ∗, Eg, ν1, ν2 are constants specific to the particular type of fuel. Since,
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according to the mass conservation equation, vg = ρu(t)/ρg (vg - gas outflow velocity from the burning
surface), and h(t) = vgτg, then from (12) and (13), considering the equation of state and the equations
determining the concentrations of gas mixture components before combustion, we obtain:

λgfg = −λg
[Tg − Ts]p

2ν

Ku(t)
. (14)

Here, K = τ∗ρ(RTg)
2ν exp

(
Eg

RTg

)
/(zν1

1 zν2
2 ), 2ν = 1 + ν1 + ν2, z1, z2 - molar fractions of hydrogen

and oxygen in the products of fuel gasification. The quantities K and ν depend only on the type of
fuel. Writing equations (9) and (14) for the current moment in time and for the moment t = 0, after
transformations, we obtain:

f(t) = −Uuo

æ
(Tso − TN )[(1− σ)W (t)

P 2ν

U2
+ σ] (15)

or

f(t) = −uo

æ
(Tso − TN )UQ.

P (t) = p(t)
po

, Q(t, U) = (1− σ)P
2ν

U2 W (U) + σ, W (U) =
1− γη lnU

1− γ lnU
, η =

Tg

(Tg − Tso)
, σ =

Qs

c(Tso − TN )
.

Dependencies (11) and (15) specify the functions Ts(t) and f(t), i.e., the boundary conditions (5) and
(6). Boundary conditions (7) do not require specification.

10 The fundamental solution of the heat conduction equation
in the k–phase

The heat conduction equation, also known as the heat equation, is a partial differential equation that
describes the distribution of heat in a given region over time. The fundamental solution of the heat
conduction equation in the k–phase refers to the solution that represents the temperature distribution for
a point source of heat at a given instant in a medium characterized by a thermal conductivity parameter.
The fundamental solution for this equation is often associated with the Green’s function.

In more complex situations or in multiple dimensions, the heat conduction equation and its fundamen-
tal solution involve additional variables and terms. The solution methodology may also vary depending
on the specific boundary and initial conditions of the problem. The solution typically takes the form of
an integral or series, and its specific expression depends on the boundary and initial conditions of the
problem. The fundamental solution is a Green’s function for the heat conduction equation and plays a
crucial role in solving more complex heat conduction problems by convolving it with the initial conditions.

Understanding the fundamental solution is crucial in analyzing heat conduction problems, as it pro-
vides insights into how temperature evolves over time in response to localized heat sources, and it forms
the basis for solving more general heat conduction problems through convolution integrals.

Using the methods developed by the authors in [37], [38], applied to the classical heat conduction
equation, the fundamental solution (containing arbitrary functions) of equation (4) has been found:

T (x, t) = T1(x, t) + T2(x, t) + C,

T1(x, t) =
1√
π

∞∫

−∞

F (z)e−s2 ds,

T2(x, t) =

√
æ

π

t∫

0

Φ(τ)e−Ψ2
∗

dτ√
t− τ

.

(16)

Here, F and Φ are arbitrary functions of their arguments, C is an arbitrary constant, s and τ are
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the heat conduction equation in the k–phase refers to the solution 
that represents the temperature distribution for a point source of 
heat at a given instant in a medium characterized by a thermal 
conductivity parameter. The fundamental solution for this equation 
is often associated with the Green’s function.

In more complex situations or in multiple dimensions, the 
heat conduction equation and its fundamental solution involve 
additional variables and terms. The solution methodology may also 
vary depending on the specific boundary and initial conditions of 
the problem. The solution typically takes the form of an integral 
or series, and its specific expression depends on the boundary 
and initial conditions of the problem. The fundamental solution 
is a Green’s function for the heat conduction equation and plays 
a crucial role in solving more complex heat conduction problems 
by convolving it with the initial conditions.

Understanding the fundamental solution is crucial in analyzing heat 
conduction problems, as it provides insights into how temperature 
evolves over time in response to localized heat sources, and it 
forms the basis for solving more general heat conduction problems 
through convolution integrals.

Using the methods developed by the authors in [37], [38], applied 
to the classical heat conduction equation, the fundamental solution 
(containing arbitrary functions) of equation (4) has been found
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Here, F and Φ are arbitrary functions of their arguments, C is an 
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Substitute the values of the partial derivatives (17) or (18) into equation (4), i.e., the dependence (16)
is indeed a fundamental solution to the heat conduction equation in a multiphase medium, containing
two arbitrary functions. Choose these arbitrary functions to satisfy the initial and boundary conditions.
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Substitute the values of the partial derivatives (17) or (18) into equation (4), i.e., the dependence (16)
is indeed a fundamental solution to the heat conduction equation in a multiphase medium, containing
two arbitrary functions. Choose these arbitrary functions to satisfy the initial and boundary conditions.
To satisfy the initial condition (8), it is sufficient to take F (z) = φ(z) and C0 = TN . Indeed, since

z(x, 0, s) = x and T2(x, 0) = 0, then T (x, 0) =
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φ(x)e−s2 ds+ TN = φ(x) + TN . So,

T1(x, t) =
1
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√
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Let’s choose the second arbitrary function Φ(τ) in such a way that the boundary condition (6) is satisfied.
From (16), (19), and (6) it follows:
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14
The change of integration variable τ = t− x2

4æs2
(s - the new integration variable) in the expression (18)

yields:

∂T2

∂x
(x, t) = − 2√

π

∞

x/2
√
æt

Φ(t− x2

4æs2
)(1 +

Ψ

s
)e−(s+Ψ)2 ds, (20)

where

Ψ = Ψ∗|x=0 =





ξ(t)− µ(τ)

2

æ(t− τ)

, τ ̸= t,

0 , τ = t.

(21)

From (20) follows that lim
x→0

∂T2

∂x
(x, t) = −Φ(t) and, consequently:

Φ(t) =
1√
π

∞

−∞

dφ

dz
(ξ − 2s

√
æt)e−s2ds− f(t).

Finally, the general solution of equation (4) with boundary conditions (6), (7), and initial condition (8)
is given by:

T (x, t) = TN +
1√
π

∞

−∞

φ(x+ ξ − 2s
√
æt)e−s2 ds+

+


æ

π

t

0


 1√

π

∞

−∞

dφ

dz
(µ− 2s

√
æτ)e−s2 ds− f(τ)


 e−Ψ2

√
t− τ

dτ

(22)

Substituting functions (10) and (15), which specify the initial condition and boundary condition (6), into
(22), we obtain:

T (x, t) = TN + (Tso − TN )


E(t)e−

uo
æ x +

√
n√
π

t

0

(UQ(τ)− E(τ)) e−Ψ2 dτ√
t− τ


 . (23)

where E(t) = exp[−n(Y − t)], Y (t) =

t

0

U(τ) dτ, n =
u2
0

æ
=

1

t∗
, t∗ – the quantity known as the

relaxation time of the k–phase or the characteristic time of the k–phase.
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From (20) follows that                                         and,

consequently:

Finally, the general solution of equation (4) with boundary 
conditions (6), (7), and initial condition (8) is given by
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Substituting functions (10) and (15), which specify the initial 
condition and boundary condition (6), into (22), we obtain
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The change of integration variable τ = t− x2

4æs2
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2


æ(t− τ)
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0 , τ = t.
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Substituting functions (10) and (15), which specify the initial condition and boundary condition (6), into
(22), we obtain:
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
 . (23)

where E(t) = exp[−n(Y − t)], Y (t) =

t
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U(τ) dτ, n =
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æ
=
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t∗
, t∗ – the quantity known as the

relaxation time of the k–phase or the characteristic time of the k–phase.
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The change of integration variable τ = t− x2
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Ψ

s
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where

Ψ = Ψ∗|x=0 =
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

ξ(t)− µ(τ)

2


æ(t− τ)
, τ ̸= t,

0 , τ = t.

(21)

From (20) follows that lim
x→0

∂T2
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(x, t) = −Φ(t) and, consequently:

Φ(t) =
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π
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dφ

dz
(ξ − 2s

√
æt)e−s2ds− f(t).

Finally, the general solution of equation (4) with boundary conditions (6), (7), and initial condition (8)
is given by:
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(22)

Substituting functions (10) and (15), which specify the initial condition and boundary condition (6), into
(22), we obtain:

T (x, t) = TN + (Tso − TN )


E(t)e−

uo
æ x +

√
n√
π

t

0

(UQ(τ)− E(τ)) e−Ψ2 dτ√
t− τ


 . (23)

where E(t) = exp[−n(Y − t)], Y (t) =

t

0

U(τ) dτ, n =
u2
0

æ
=

1

t∗
, t∗ – the quantity known as the

relaxation time of the k–phase or the characteristic time of the k–phase.
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