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Optogenetic Cardiac Pacing 
Optogenetics uses light to control the activities of living tissues 
such as neurons and heart as a new biological technique that 
combines optics and genetics. Optical coherence tomography 
(OCT) can provide novel three-dimensional (3D) imaging and 
when combined with OCT, optical coherence microscopy (OCM) 
provides high resolution imaging that are 50x - 100x greater 
than conventional ultrasound, MRI, or CT [1-10]. OCT systems 
have already been successfully used in interventional cardiology, 
ophthalmology and optometry and dermatology [11-13]. 

Optogenetic actuators including channelrhodopsin (ChR), 
halorhodopsin (NpHR), and archaerhodopsin can provide neuronal 
or cardiac control (bacterio-opsin) [14,15]. ChRs are sensory 
photoreceptors (rhodopsins) while NpHR is a chloride ion-specific 
light-gated ion and archaerhodopsin is the bacterio-opsin family 
of receptor proteins [14-22].

Optogenetics was named the Method of the Year 2010 and the 
“Breakthroughs of the Decade” by the research journals Nature 
Methods and Science, respectively (https://www.medinc.co.uk/
optogenetics-breakthrough-of-the-decade-by-dr-zulfiquar/).
 In 2015 the first Drosophila heart study using OCT was reported 
on the Discovery channel and in the Boston Globe (Light - powered 
hearts?” https://www.bostonglobe.com/lifestyle/2015/10/25/light-
powered-hearts/ETWV7DZU6pwMNm1P59TLGL/story.html).

Drosophila Heart in Optogenetic Pacing
Marked morphological and functional changes in the Drosophila 
heart during development were observed in a longitudinal study. 
In the pupal stage the heartbeat is reduced dramatically and stops 
beating during pupae. A circadian clock gene dCry was shown to 

affect heart development and functioning [23].

An optogenetic pacing system has clearly showed mCherry 
fluorescence signal in the heart of a ChR2-mCherry transgenic fly 
compared to a wild-type control fly [24]. Successful optogenetic 
pacing of ChR2-expressing Drosophila at different developmental 
stages was shown [25]. Red light increases the excitability of the 
heart tissue and flies expressing ReaChR. Optogenetic fly models 
were able to be tachypaced under red light stimulation [26,27]. 

Cardiac Arrhythmia by Optogenetic Pacing 
Optogenetics can treat cardiac arrhythmias [28]. Several 
experimental models showed photosensitive ion channels and 
pumps (opsins) by optogenetic pacing of cardiac preparations and 
the opsins can precisely stimulate or silence electrophysiological 
activity in cardiac cells [29,30]. Cardiomycytes that express 
ChR2 can sensitively activate Ca2+ signaling properties and 
transgenic mice expressing ChR2 can control heart muscles in 
vivo [28,30]. Stimulation of Gs-signaling by optogenetics showed 
a light sensitive Gs-protein coupled receptor in mice cardiac tissue 
[31]. Cardiac excitable media demonstrated in heart precisely to 
influence cardiac function and overall dynamics [32]. Near-infrared 
(NIR) light has the ability to penetrate tissue and therefore has the 
potential to manipulate cardiovascular diseases non-invasively 
[33]. Greater tissue depths are achieved with the red-shifted opsins 
than conventional blue-sensitive channel-rhodopsins [30]. Taken 
together these studies have increased our understanding of cardiac 
physiology.

Electronic device therapy (i.e., implantable pacemakers and 
cardioverter–defibrillators [ICDs]) largely provide the basis for 
current management of cardiac arrhythmias [34]. Arrhythmias such 
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ABSTRACT
Optogenetics combines the biological techniques of optics and genetics and uses light to control the activities of living tissues such as neurons and heart. 
Optogenetic actuators including channelrhodopsin (ChR), halorhodopsin (NpHR), and archaerhodopsin specifically provide for neuronal or cardiac 
controls. The clinical translation of cardiac optogenetics will include human and larger mammalian animal model applications and ultimately optogenetics 
may have the power to restore normal heart rhythm. 
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as atrial fibrillation (AF) can be treated by rapid antitachycardia 
pacing [35]. Mice cardiomyocytes showed electric shock functions 
in electrical defibrillation and elderly humans and Drosophila 
may similarly significantly reduce heart rate via electrical pacing 
[36,39]. Rhythm disturbances were associated with an increase 
in age and light intensity was associated with NpHR stopping the 
heart rate in Drosophila [40,41].

Glutamatergic neurons provide extensive innervation to the adult 
heart in Drosophila metamorphosis. Pacemaker action potentials 
was demonstrated in muscles of the first abdominal cardiac 
chamber [42]. KCNQ1 mutant Drosophila showed abnormal 
contractions and fibrillations and KCNQ1 in humans is related 
to myocardial repolarization [43]. 

Drosophila genetic screens identify genes related to their functions. 
EGFR signaling regulates adult cardiac function while mutants in a 
fly orthologue of epidermal growth factor (EGF) rhomboid 3 have 
enlarged cardiac chambers and the Notch ortholog weary (wry) 
is associated with dilated cardiomyopathy [44,45]. Insulin-IGF 
receptor signaling showed regulation of age-dependent changes 
in cardiac function [46]. 

Chronic stability and excellent biocompatibility were achieved 
in small animals through multimodal and multisite pacing 
studies [47]. Direct viral delivery and functionality of opsins in 
cardiomyocytes has been demonstrated in vitro [34]. A cell line 
can stably express the excitatory opsin, ChR2 in vitro between 
the ChR2-expressing donor cells and host cardiomyocytes [48]. 
Expression of the light activated ChR2 can stimulate heart muscle 
in vitro and in mice demonstrated precise localized stimulation, 
constant prolonged depolarization of cardiomyocytes and cardiac 
tissue, Ca2+ homeostasis, electrical coupling and arrhythmogenic 
spontaneous extra beats [49]. The delivery of ChR2 transgene 
to several ventricular sites by diffuse illumination of hearts 
resulted in electrical synchronization and significant shortening 
of ventricular activation times [50]. Cardiac nonmyocytes in 
mouse hearts showed myocyte AP-like signals in cryoinjured scar 
border tissue indicating direct evidence of effects of heterocellular 
electrotonic coupling in the whole heart on cardiac electrical 
connectivity [51]. A high vulnerability to tachycardia of optically 
tachypaced human induced pluripotent stem -cardiomyocytes 
in 3D engineered heart tissue can be effectively terminated by 
ryanodine receptor stabilization, sodium or potassium channel 
inhibition [52]. Cultured mouse embryos showed optogenetic 
pacing with 4D (3D + time) OCT structural and Doppler imaging, 
which demonstrated that embryonic hearts can provide function 
efficiently and produce strong blood flows [48]. Expressing the 
Channelrhodopsin-2 (ChR2) transgene at one or more ventricular 
sites in rats allowed optogenetic pacing of the hearts at different 
beating frequencies with blue-light illumination [50]. 

OCT and Its Clinical Applications in Heart 
OCT requires optical stimulation to be delivered safely and 
with long-term efficiency. OCT can assess coronary vasculature 
in cardiovascular medicine and several clinical systems have 
become commercially available. Patients who have stable coronary 
artery disease can be assisted by OCT for a more detailed lumen 
segmentation. On the other hand, in patients with acute coronary 
syndrome, OCT can offer 100% detection of intraluminal thrombus 
with in comparison to coronary angioscopy which detected plaques 
in 79% and stenosis in 24% of patients [53-57]. 

Optogenetics in the Future
The optogenetics field has made significant progress in heart research 

from its inception almost a decade ago. The clinical translation of 
cardiac optogenetics for human application is moving towards use as 
a tool in larger mammalian animal models [58]. Optogenetics may 
restore normal heart rhythm to increase the overall quality of life 
and action potential duration of ChR2- or NpHR can be modulated 
in opsin-expressing rat cardiomyocytes [34,59-61]. Optogenetics 
may potentially have a therapeutic role in treating heart diseases. 

Drosophila genetic screens using OCT can identify additional 
cardiovascular-related genes and assess pre-clinical drug 
development cardio toxicity, which account for approximately 
20% of withdrawal of drugs from development [62,63]. Cardio 
toxicity measures by electrophysiology are often low through put 
and efficient high throughput screening tools that significantly 
reduce cost are needed [34,62-64]. Overall, optogenetics is high 
throughput and automated tool for use in evaluating cardio toxicity.
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