
J Arti Inte & Cloud Comp, 2022           Volume 1(4): 1-4

Review Article Open    Access

Optimizing Observability: A Deep Dive into AWS Lambda Metrics

Senior Lead Software Engineer, Richmond, VA, USA

Balasubrahmanya Balakrishna

Journal of Artificial Intelligence & 
Cloud Computing

*Corresponding author
Balasubrahmanya Balakrishna, Senior Lead Software Engineer, Richmond, VA, USA.

Received: November 07, 2022; Accepted: November 16, 2022; Published: November 25, 2022

Keywords: AWS Lambda, CloudWatch, CloudWatch Metrics, 
AWS Powertools for Lamda

Background: AWS Cloud Watch Metrics
Two methods are available with AWS Lambda for gathering and 
examining metrics:

1. Default Option
Without requiring any setup, the default configuration streamlines 
the monitoring process for users by automatically gathering and 
presenting critical metrics [1].

2. Custom Option
AWS Lambda allows users to set custom metrics for more 
customized observability [2]. By allowing the gathering of 
particular data points, this option makes it possible to monitor 
and analyze data in a more detailed and unique manner.

Lambda Emits a Default Set of Metrics:
Invocation Metrics
Provides information about the outcome of an Invocation.
E.g., Invocations, Errors, Throttles, Dead Letter Errors, Destination 
Delivery Failures, Provisioned Concurrency Invocations, 
Provisioned Concurrency Spillover Invocations.
•	 Dead Letter Errors and Destination Delivery Failures are 

applicable for Async invocations

Performance Metrics
Provides data about the performance outcome of a single 
invocation.
E.g., Duration, Post Runtime Extension Duration, Iterator Age, 
Offset Lag.
•	 Duration is rounded to the nearest millisecond

•	 PostRuntimeExtensionDuration is applicable with Lambda 
extensions

•	 IteratorAge applies to stream-based
•	 Offsetlag applies to self-managed Kafka or MSK

Concurrency Metrics
Provides data about the aggregate count of instances processing 
events.
 E.g., Concurrent Executions, Provisioned Concurrent Executions, 
Provisioned Concurrency Spillover Invocations, Provisioned 
Concurrency Utilization, Unreserved Concurrent Executions.
•	 Information can be at the function, version, alias, or region 

scope
•	 Unreserved Concurrent Executions represents a region and 

provides the number of events that function without reserved 
concurrency are processing

•	 Concurrent Executions gives the number of function instances 
processing requests

•	 Provisioned Concurrent Executions gives the number of function 
instances processing events on provisioned concurrency

•	 Provisioned Concurrency Utilization gives the value 
Provisioned Concurrent Executions divided by the amount 
of provisioned concurrency for a version or alias

Metrics come with predefined retention and resolution periods, 
as shown in the table below:
Resolution Period Retention Period
<1 min* 3 hours
60 sec 15 days
300 sec 63 days
3600 sec 455 days

ISSN: 2754-6659

ABSTRACT
The importance of observability in AWS Lambda systems is examined in this technical article, which focuses on using Python and the AWS Lambda 
Powertools to improve monitoring capabilities. With serverless computing, AWS Lambda has emerged as a critical service that lets developers concentrate 
on writing code rather than maintaining infrastructure. Nonetheless, troubleshooting, performance improvement, and guaranteeing the dependability 
of serverless apps depend on effective observability. Using specially designed Python Serverless Restful API and AWS Lambda Powertools, this article 
thoroughly analyzes important AWS Lambda metrics, their interpretation, and techniques to improve observability while running serverless applications 
in the AWS Lambda environment.

The author will use Python with the AWS Lambda Powertools, implemented as a Lambda layer, to facilitate seamless integration for custom metrics and 
advanced observability features.



Citation: Balasubrahmanya Balakrishna (2022) Optimizing Observability: A Deep Dive into AWS Lambda Metrics. Journal of Artificial Intelligence & Cloud Computing. 
SRC/JAICC-172. DOI: doi.org/10.47363/JAICC/2022(1)160

J Arti Inte & Cloud Comp, 2022           Volume 1(4): 2-4

Initially, data points published at a shorter interval undergo 
aggregation for prolonged storage. As an illustration, when data 
is gathered at a 1-minute frequency, it remains accessible at a 
1-minute resolution for 15 days. Following this initial period, the 
data persists but undergoes further aggregation, retrievable only 
at a 5-minute resolution.

Beyond the 63-day mark, the aggregated data experiences 
another level of consolidation, becoming accessible with a 1-hour 
resolution. These evolving resolutions cater to different needs over 
time, balancing granularity with long-term storage efficiency.

Furthermore, the metrics maintain a retention period of 15 months 
before entering a rolling-out phase. This structured approach to 
data retention ensures a balance between historical depth and 
resource optimization.

The table below provides the appropriate usage of statistics for 
each metric type:
Metric Type Statistic to Use
Invocation Metrics Sum
Performance Metrics Average/Max/Percentile Stats
Concurrency Metrics Max

Introduction
Application Load Balancer (ALB)-fronted Lambda API 
Architecture
In this exploration, we will spotlight the practical implementation 
of observability concepts through an Application Load Balancer 
(ALB)-fronted Lambda API architecture, as depicted in Figure 1. 
This architectural choice underscores the real-world applicability 
of the discussed observability strategies.

Figure 1: High-Level Architecture of ALB-Fronted Lambda API

Purpose-Built Lambda Function with AWS Powertools
The key AWS Lambda metrics, their interpretation, and strategies 
to elevate observability throughout this paper. By utilizing Python 
and AWS Lambda Powertools, the aim is to empower developers 
and system administrators with practical insights into building 
resilient, high-performing, serverless applications. The chosen 
architectural context and purpose-built function serve as tangible 
examples of the efficacy of these observability strategies in real-
world scenarios.

Optimizing Metric Generation: Leveraging Cloudwatch EMF 
and Lambda Powertools
Leveraging CloudWatch EMF
Custom metrics can be generated inside a chosen namespace by 
facilitating the ingestion of logs containing application data using 
the CloudWatch Embedded Metrics Format (EMF)[3]. These 
customized metrics are crucially produced asynchronously. A 
single EMF object can aggregate 100 metrics within a custom 
namespace. It is not recommended to synchronously report a 
statistic to CloudWatch Metrics since it hurts function scalability 
and code performance. Steer clear of such methods.

Figure 2: EMF Output in CloudWatch Logs

It is highly advised for developers working with Python, Typescript, 
or Java to utilize AWS Lambda Powertools [4]. This toolbox offers 
a lot of functionality, including analytics, tracing, logging, and 
other features. Most notably, it makes it possible to generate logs 
in the proper EMF format quickly.

Exploring Metric Math Capabilities
Although Metric Math is a feature often disregarded, it is more 
comprehensive than AWS Lambda and Amazon CloudWatch 
[5]. Once a measure is recorded in CloudWatch, you can use 
mathematical expressions to create new time series based on the 
existing metrics, whether custom or built-in. One well-known 
example in AWS Lambdas is calculating the mistake rate by 
dividing the Errors metric by the Invocation metric. Metric analysis 
gains further adaptability by allowing alarms to be created using 
metrics-related math calculations.

Lambda Function with AWS Powertools Producing Default 
Metrics on Invocation
The default metrics (Figure 4) are automatically generated as 
part of the default behavior when the Application Load Balancer 
(ALB) executes the sample API using AWS Powertools for Python, 
shown in Figure 3. As the code shows, custom metrics have yet 
to be expressly defined.



Citation: Balasubrahmanya Balakrishna (2022) Optimizing Observability: A Deep Dive into AWS Lambda Metrics. Journal of Artificial Intelligence & Cloud Computing. 
SRC/JAICC-172. DOI: doi.org/10.47363/JAICC/2022(1)160

J Arti Inte & Cloud Comp, 2022           Volume 1(4): 3-4

Figure 3: Purpose-Built Lambda Function with AWS Powertools

Figure 4: CloudWatch Metrics Generated By Default

Lambda Function with AWS Powertools Produces Custom 
Metrics on Invocation
Augment the code mentioned above by introducing custom metrics 
to gain deeper insights into business-level metrics. The modified 
code snippet below (Figure 5) demonstrates the incorporation of 
custom metrics. It's important to note that this example merely 
scratches the surface of the extensive capabilities that Powertools 
offers for accomplishing a wide range of tasks.

Figure 5: Modified API with Custom Metrics

Within the code, we have established a custom namespace labeled 
BooksService and populated it with business-level metrics. Figure 
6 and Figure 7 below illustrate the specific metric within this 
custom namespace.

Figure 6: Custom Namespace



Citation: Balasubrahmanya Balakrishna (2022) Optimizing Observability: A Deep Dive into AWS Lambda Metrics. Journal of Artificial Intelligence & Cloud Computing. 
SRC/JAICC-172. DOI: doi.org/10.47363/JAICC/2022(1)160

J Arti Inte & Cloud Comp, 2022           Volume 1(4): 4-4

Copyright: ©2022 Balasubrahmanya Balakrishna. This is an open-access 
article distributed under the terms of the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited.

Figure 7: Custom Metrics

Conclusion
AWS Lambda is a critical player in the serverless computing space, 
freeing developers from the burden of managing infrastructure 
in favor of writing code. This exploration of observability 
optimization in AWS Lambda environments has revealed a variety 
of tactics meant to improve accuracy and efficiency. Exploring 
default metrics categories like Performance, Concurrency, and 
Invocation has helped us establish a solid foundation for debugging 
and monitoring.

Furthermore, a potentially has appeared with the advent of AWS 
Lambda Powertools, which are smoothly linked with Python. One 
helpful step toward a more sophisticated observability framework 
is using the CloudWatch Embedded Metrics Format (EMF) and the 
advice to use Powertools for metric creation, tracing, and logging.

Beyond the technical details, investigating Metric Math capabilities 
and adding custom metrics under a namespace designated explicitly 
for them (such as "BooksService") highlight the breadth of analysis 
possible with AWS Lambda and CloudWatch.

As we go through the observability's complexities, it is clear that 
this journey is about more than just measurements and codes-it's 
about making decisions based on intelligent facts. Refinements 
for optimal system knowledge and responsiveness are prioritized, 
whether avoiding anti-patterns like synchronous metric publication 
or utilizing Metric Math for meaningful computations.

Essentially, the cooperative synergy of AWS Lambda, CloudWatch, 
Python, and Powertools provides a comprehensive approach to 
observability, which guarantees the identification of problems and 
proactive optimization for continued performance. Developers and 
system administrators can create a serverless environment that 
functions effectively and changes dynamically in response to the 
needs of the applications it supports by following best practices, 
avoiding hazards, and utilizing the capabilities offered. Pursuing 
increased observability is a process rather than a destination, and 
this investigation is the first step toward a day when AWS Lambda 
applications function at their best.

References
1. Metrics collected by Lambda Insights. Amazon 

CloudWatch User Guide https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/Lambda-Insights-
metrics.html.

2. Publish custom metrics. Amazon CloudWatch User Guide 
https://docs.aws.amazon.com/AmazonCloudWatch/latest/

monitoring/publishingMetrics.html.
3. Setting alarms on metrics created with the embedded metric 

format. Amazon CloudWatch User Guide https://docs.
aws.amazon.com/AmazonCloudWatch/latest/monitoring/
CloudWatch_Embedded_Metric_Format_Alarms.html

4. Metrics. AWS Powertools for AWS Lambda (Python) https://
docs.powertools.aws.dev/lambda/python/latest/core/metrics/.

5. Use metric math. Amazon CloudWatch User Guide 
https://docs.aws.amazon.com/AmazonCloudWatch/latest/
monitoring/using-metric-math.html.


