
J Arti Inte & Cloud Comp, 2023 Volume 2(1): 1-3

Review Article Open Access

Optimizing Observability: A Deep Dive into AWS Lambda Logging

Senior Lead Software Engineer, Richmond, VA, USA

Balasubrahmanya Balakrishna

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Balasubrahmanya Balakrishna, Senior Lead Software Engineer, Richmond, VA, USA.

Received: March 04, 2023; Accepted: March 14, 2023; Published: March 22, 2023

Keywords: AWS Lambda, Cloud Watch, Cloud Watch Logs
Insights, AWS Power tools for Lamda

Introduction
AWS Lambda's sophisticated architecture and event-driven
execution methodology, inherent to the serverless design, present
a novel approach to developing applications. Even though Lambda
has a built-in logging interface with AWS Cloud Watch, its proper
use necessitates a sophisticated grasp of its advantages and
shortcomings. With a particular emphasis on logging, this article
explores the landscape of AWS Lambda observability, removing
any confusion and providing strategies for success.

Lambda, by default, seamlessly integrates with AWS Cloud
Watch for logging. However, ensuring that functions have proper
permissions to emit these logs is critical. Even if a Lambda function
doesn't explicitly emit logs, Lambda captures essential data about
invocations, a facet that will be explored in detail throughout this
series. The platform captures standard output (STDOUT) and
standard error (STDERR) streams, providing a comprehensive
view of function execution.

Although engineers can utilize pre-existing runtime-logging
frameworks, this paper clarifies, certain limitations linked to
conventional logging libraries. Crucial concerns arise around how
easy it is for humans to read log lines and how best to optimize
them for search engines. We address these issues by delving into

the application of JMES Path for effective log stream searches and
investigating extra data that shows up in log lines in the Lambda
space that becomes useful.

This article presents AWS Lambda Power tools, a robust library
that streamlines the intricacies of logging in recognition of the
necessity for structured logging. Lambda power tools provides
a high-level overview of its features and how it contributes to
structured and relevant logs in the AWS Lambda environment,
freeing engineers to concentrate on business requirements by
abstracting away the heavy lifting. This exploration aims to
provide developers with the skills and information necessary to
fully utilize AWS Lambda logging for reliable observability in
serverless architectures.

Logging in AWS Lambda
Logs are produced in a particular format for every function call.
START, END, and REPORT log lines are standard for function
invocation with RequestId that ties an invocation, as shown in
Figure 1

Figure 1: AWS Log lines - START, END and REPORT

ISSN: 2754-6659

ABSTRACT
Ensuring the reliability and performance of AWS Lambda functions is contingent upon effective observability as serverless computing becomes an essential
component of contemporary application development. This paper explores the crucial function of logging in AWS Lambda and clarifies its importance to
observability. The importance of serverless systems and the difficulties they provide for conventional monitoring techniques are discussed in the introduction.
The paper clarifies the core ideas of observability and places them in the context of the event-driven paradigm of AWS Lambda.

Highlighting the interaction with CloudWatch Logs, the paper delves into the native logging features of AWS Lambda. It offers best practices for optimizing
logging strategy, such as using structured logging and taking asynchronous and distributed systems into account.

The study highlights the concrete influence of observability on system reliability by presenting case studies from real-world scenarios in which efficient
logging in AWS Lambda was crucial in locating and fixing problems. To address the changing requirements of serverless application development, the
conclusion highlights the current issues and potential developments in AWS Lambda logging and calls for more investigation and study.

Citation: Balasubrahmanya Balakrishna (2023) Optimizing Observability: A Deep Dive into AWS Lambda Logging. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-170. DOI: doi.org/10.47363/JAICC/2023(2)158

J Arti Inte & Cloud Comp, 2023 Volume 2(1): 2-3

These logs' REPORT line, sample shown in Figure 2, which offers
thorough information on the function call, is crucial:
•	 Duration provides information about the function's runtime

and processing time.
•	 Memory size indicates how much a function has been allotted,

affecting Lambda costs.
•	 Max Memory Used details the exact amount of memory the

function uses while running.
•	 Init Duration is unique to cold starts and represents the time

needed for initialization.

Figure 2: AWS Log REPORT line

Figure 2 shows the function execution lasted 99.13 ms, utilized 55
MB of memory, and had a configured memory setting of 128MB.
The presence of Init Duration indicates that this invocation was
a cold start.

The scant information from this one invocation emphasizes the
necessity of thoroughly analyzing all invocations to identify any
patterns. This study aims to identify patterns without the laborious
process of going through Lambda logs by hand. Alternatively, use
CloudWatch Log Insights methodically sift through all logs and
spot patterns [1]. The given query calculates metrics for well-
informed decision-making on the function, focusing on cold starts.
To simplify statistical calculations, the query, shown in Figure 3,
splits the data into 3-minute periods and selectively analyzes the
REPORT line, screening for the presence of Init Duration, which
is suggestive of cold beginnings.

Figure 3: Cloud Watch Log Insights Query for Cold Start

Figure 4: CloudWatch Log Insights Result of Cold Start

Let's enhance the previous query, illustrated in Figure 5, to
identify all warm starts within the same log stream and assess
the performance of the functions. The addition of p95 and p99
aims to provide a nuanced perspective on performance metrics.

Figure 5: Cloud Watch Log Insights Query to Measure Performance

Conclusively, the aggregated data from all invocations indicates
a mean execution time of 21.2157 ms, with a peak memory usage
not exceeding 57 MB. The p95 metric reflects a 51.34 ms duration,
while the p99 metric indicates a maximum duration of 96.87 ms.

Rationale
The above illustration explores the capability of JMES Path within
Cloud Watch Log Insights, emphasizing its role in enhancing the
search and analysis of log streams. By leveraging JMES Path
queries, users can pinpoint relevant data, filter logs based on
specific criteria, and extract meaningful information, ultimately
facilitating a more efficient and targeted approach to log analysis
within the Cloud Watch environment.

Employing a conventional logging library in any programming
language for Lambda functions necessitates extra effort to render
logs queryable. Inadequate implementation could adversely affect
the performance of the Lambda function. To illustrate, Python's
standard logging library inherently involves acquiring and releasing
a master lock on the thread to process log responses. Manual tuning
becomes imperative to guarantee the output adheres to JSON
syntax, allowing seamless querying via Cloud Watch Insights.
This process also involves auto-discovering fields, ensuring their
immediate accessibility for search functionalities [2].

The aws-lambda-power tools for Python Logger simplifies the
configuration requirements for producing compliant records
while augmenting the features usually associated with the stdlib
logging library [3]. All you need to do is give the Logger the
native dictionary you want to log and it will take care of the rest,
automating the procedures of stream configuration, tracing, and
serialization following AWS best practices. This method adheres to
recommended principles for AWS Lambda functions and provides
a more transparent and effective solution to handle logging tasks.

Following are some visible benefits of using AWS power tools
for Lambda:
•	 Managed by AWS as an open-source solution, creating a

solution from scratch is unnecessary.
•	 It effortlessly captures crucial Lambda fields, including

context and cold start information.
•	 Flexibility is provided to append extra keys to logs as required,

facilitating customization.
•	 The option to include a correlation ID enhances end-to-end

filter	@type	=	"REPORT"
			|	parse	@message	/Init	Duration:	(?<init>\S+)/
 | stats count() as total,
 count(init) as coldStarts,
 avg(init) as avgInitDuration,
 max(init) as maxInitDuration,
				min(@duration)	as	minDuration,
				max(@duration)	as	maxDuration,
				avg(@duration)	as	avgDuration,
				avg(@maxMemoryUsed)/1000/1000	as	memoryused
 by bin (3min)

filter	@type	=	"REPORT"
			|	filter	@message	not	like	/Init	Duration:/
 | stats count() as total,
			|	min(@duration)	as	minDuration,
			|	max(@duration)	as	maxDuration,
			|	avg(@duration)	as	avgDuration,
			|	max(@maxMemoryUsed)/1000/1000	as	
maxMemUsed,
			|	pct(@duration,	95)	as	p95,
			|	pct(@duration,	99)	as	p99

Citation: Balasubrahmanya Balakrishna (2023) Optimizing Observability: A Deep Dive into AWS Lambda Logging. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-170. DOI: doi.org/10.47363/JAICC/2023(2)158

J Arti Inte & Cloud Comp, 2023 Volume 2(1): 3-3

Copyright: ©2023	 Balasubrahmanya	 Balakrishna.	 This	 is	 an	 open-access	
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

reconciliation and troubleshooting capabilities.
•	 The tool's automated discovery of fields in logs significantly

improves the search experience, ensuring a more efficient
and seamless process.

•	 AWS Powertools for Lambda also supports other Runtimes.

Conclusion
AWS Lambda logging is essential to serverless architectures'
successful observability. Although native CloudWatch integrations
provide a starting point, problems occur with manual parsing and
the best possible log structure. These intricacies are simplified
using AWS Lambda Powertools, guaranteeing adherence to AWS
standard practices. While Powertools and other tools provide
automatic log discovery and serialization, the strength of JMESPath
in CloudWatch Log Insights improves search possibilities. Through
comprehension of Lambda logging intricacies and the adoption
of purpose-built solutions, developers may extract pragmatic
insights, execute efficient troubleshooting, and enhance serverless
function performance for an application environment that is more
robust and expandable.

References
1. Analyzing log data with Cloud Watch Logs Insights. Amazon

Cloud	Watch	Logs-User	Guide	https://docs.aws.amazon.com/
AmazonCloudWatch/latest/logs/AnalyzingLogData.html.

2. Supported logs and discovered fields. Amazon Cloud
Watch	 Logs-User	 Guide	 https://docs.aws.amazon.com/
AmazonCloudWatch/latest/logs/CWL_AnalyzeLogData-
discoverable-fields.html.

3. Logger.	Power	tools	for	AWS	Lambda	(Python)	https://docs.
powertools.aws.dev/lambda/python/latest/core/logger/.

