
J Arti Inte & Cloud Comp, 2024           Volume 3(4): 1-13

Review Article Open    Access

Optimizing LLM Deployments through Inference Backends

USA

Ashish Bansal

Journal of Artificial Intelligence & 
Cloud Computing

*Corresponding author
Ashish Bansal, USA.

Received: July 08, 2024; Accepted: July 15, 2024; Published: July 29, 2024

Keywords: Generative AI, LLM Inference, LLM Inference 
Backends

Introduction
As Generative AI is becoming very promise to revolutionize 
various companies utilizing these technologies in variety of 
application to boost productivity, improving client experience 
and lower- ing cost to serve clients. While these Large language 
models (LLMs) seems very promising but they come with their 
issue of utilizing them in real time solutions as it require nuanced 
performance benchmarks. But they aren’t the only systems that 
are hard to boil down to just one number.

AI applications that produce human-like text, such as chatbots, 
virtual assistants, language translation, text generation, and more, 
are built on top of Large Language Models (LLMs).

Deploying LLMs in production-grade applications, companies 
faces performance challenges with running these models and 
consideration in optimizing your deployment with an LLM infer- 
ence engine or server becomes important.

In this paper we are going to explore the different LLM inference 
engines and servers available to deploy and serve LLMs in 
production. We’ll take a look at vLLM, LMDeploy, TensorRT-
LLM, Triton Inference Server, RayLLM with RayServe, and 
HuggingFace Text Generation Inference.

Choosing the right inference backend for serving large language 
models (LLMs) is crucial. It not only ensures an optimal user 
experience with fast generation speed but also improves cost 
ef- ficiency through a high token generation rate and resource 
utilization. Today, developers have a variety of choices for 
inference backends created by reputable research and industry 
teams. How- ever, selecting the best backend for a specific use 
case can be challenging.This forces companies to consider multiple 
factors when serving inference from LLMs:
1. How to get high performance (high throughput and inference 

accuracy)
2. How to ensure it’s cost-effective (affordable access to GPUs 

at scale)
3. How to create a good user experience (low latency)

ISSN: 2754-6659

ABSTRACT
As model size increases, especially in the area of natural language processing, models expand past the number of parameters that can fit on a single GPU 
memory—requiring multiple GPUs to run inference on these models without skirting performance. But, as teams scale across more GPUs, the cost to serve 
inference scales, too—often outpacing what a company can afford and make these implementation profitable for organisation. Another consideration is 
that many LLM- based services run in real time, so low latency is a must to deliver great user experiences.

Teams today need an efficient way to serve inference from LLMs that allows infrastructure to scale across multiple GPUs—without breaking the bank. In 
this paper we will discuss about differ- ent llm inference backends that can be utilised to serve these llm for high performance, low cost and much robust 
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that many LLM- based services run in real time, so low latency is a must to deliver great user experiences

Teams today need an efficient way to serve inference from LLMs that allows infrastructure to scale across multiple GPUs—without breaking the bank. In 
this paper we will discuss about differ- ent llm inference backends that can be utilised to serve these llm for high performance, low cost and much robust 
implementation
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These inference backends were evaluated using two key metrics:
•	 Time to First Token (TTFT): Measures the time from 

when a request is sent to when the first token is generated, 
recorded in milliseconds. TTFT is important for applications 
requiring immediate feedback, such as interactive chatbots. 
Lower latency improves perceived perfor- mance and user 
satisfaction.

•	 Token Generation Rate: Assesses how many tokens the 
model generates per second dur- ing decoding, measured in 
tokens per second. The token generation rate is an indicator 
of the model’s capacity to handle high loads. A higher rate 
suggests that the model can ef- ficiently manage multiple 
requests and generate responses quickly, making it suitable 
for high-concurrency environments.

LLM Inference Backend Concepts
Let’s deep dive into various LLM Inference Backends that are 
widely available and are open source make them easy to adopt 
and contribute making the deployment easy and customize them 
for variety of use cases. These depends on specific use case, the 
size of your model, the number of requests you need to handle, 
and the latency requirements of your application.
There are two main concepts while we dive into Inference 
Backends:

•	 Inference Engines run the models and are responsible for 
everything needed for the genera- tion process.

Figure 1: Inference Server and Inference Engine

•	 Inference Servers handle the incoming and outgoing HTTP 
and gRPC requests from end users for your application, collect 
metrics to measure your LLM’s deployment performance, 
and more.

LLM Inference Engines
vLLM: an open-source library for fast LLM inference and serving. 
vLLM utilizes PagedAtten- tion, our new attention algorithm that 
effectively manages attention keys and values. vLLM equipped 
with PagedAttention redefines the new state of the art in LLM 
serving: it delivers up to 24x higher throughput than HuggingFace 
Transformers, without requiring any model architecture changes.

It is the core technology that makes LLM serving affordable even 
for a small research team like LMSYS with limited compute 
resources.

PagedAttention, an attention algorithm inspired by the classic idea 
of paging in operating systems. Unlike the traditional attention 
algorithms, PagedAttention allows storing continu- ous keys 
and values in non-contiguous memory space. Specifically, 
PagedAttention partitions the KV cache of each sequence into KV 

blocks. Each block contains the key and value vec- tors for a fixed 
number of tokens, which we denote as KV block size(B). During 
the attention computation, the PagedAttention kernel identifies and 
fetches different KV blocks separately. PagedAttention algorithm 
allows the KV blocks to be stored in non-contiguous physical 
mem- ory,which enables more flexible paged memory management 
in vLLM. vLLM offers LLM in- ferencing and serving with SOTA 
throughput, Paged Attention, Continuous batching, Effcient KV 
cache, Quantization (GPTQ, AWQ, FP8), and optimized CUDA 
kernels. 

Figure 2: HuggingFace TGI Server

TensorRT-LLM: TensorRT-LLM is another inference engine that 
accelerates and optimizes in- ference performance for the latest 
LLMs on NVIDIA GPUs. LLMs are compiled into TensorRT 
Engine and then deployed with a triton server to leverage inference 
optimizations such as In-Flight Batching (reduces wait time and 
allows higher GPU utilization), paged KV caching, MultiGPU-
MultiNode Inference, and FP8 Support. TensorRT-LLM is Created 
by NVIDIA,Several models are supported out of the box, including 
Falcon, Gemma, GPT, Llama, and more. An important limitation 
of TensorRT LLM is that it was built for Nvidia hardware. Also, 
whichever GPU you use to compile the model, you must use the 
same for inference. It also leverages PagedAttention, which frees 
up memory allocation more dynamically than traditional atten- 
tion approaches and In-flight batching.

Hugging Face Text Generation Inference: Text Generation 
Inference (TGI) is a toolkit for de- ploying and serving Large 
Language Models (LLMs). TGI enables high-performance text 
gen- eration for the most popular open-source LLMs, including 
Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and T5. TGI 
supports various hardware ranging from GPU, TPU, Gaudi to 
In- frentia. Hugging Face develops and distributes it under the 
HFOILv1.0 license, permitting commercial use provided it serves 
as an auxiliary tool within the product or service offered rather 
than the main focus. The main challenges it addresses are:
• High-performance text generation. TGI uses techniques 

like Tensor Parallelism (a tech- nique used to fit a large 
model in multiple GPUs) and dynamic batching (batching 
prompts together on the fly inside the server) to optimizse 
the performance of popular open- source LLMs, including 
models like StarCoder, BLOOM, GPT-NeoX, Llama, and T5.

• Effcient resource usage. Features like continuous batching, 
optimized code, and Ten- sor Parallelism allow TGI to handle 
multiple requests simultaneously while minimizing resource 
usage.

• Flexibility. TGI supports a variety of safety and security 
features like watermarking, logit warping (modifies the logits 
of specific tokens by infusing a bias value into them) for 
bias control, and stop sequences to ensure responsible and 
controlled LLM usage.
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RayLLM with RayServe: RayLLM is an LLM serving solution 
for deploying AI workloads and open source LLMs with native 
support for continuous batching, quantization, and streaming. It 
provides a REST API similar to the one from OpenAI, making 
it easy to cross test.

RayServe is a scalable model for building online inference APIs. 
Ray Serve is built on top of Ray, allowing it to easily scale to 
many machines. Ray Serve has native support for autoscal- 
ing, multi-node deployments, and scale to zero in response to 
demand for your application. RayServe uses Continuous batching, 
quantization, and streaming with vLLM, Out-of-the-box support 
for vLLM and Tensor-RTLLM.

Ray minimizes the complexity of running your distributed 
individual and end-to-end machine learning workflows with these 
components:

• Scalable libraries for common machine learning tasks such 
as data preprocessing, dis- tributed training, hyperparameter 
tuning, reinforcement learning, and model serving.

• Pythonic distributed computing primitives for parallelizing 
and scaling Python applica- tions.

• Integrations and utilities for integrating and deploying a 
Ray cluster with existing tools and infrastructure such as 
Kubernetes, AWS, GCP, and Azure.

LMDeploy: is a toolkit for compressing, deploying, and serving 
LLM, developed by the MM- Razor and MMDeploy teams. It 
has the following core features:

•	 Effcient Inference: LMDeploy delivers up to 1.8x higher 
request throughput than vLLM, by introducing key features 
like persistent batch(a.k.a. continuous batching), blocked 
KV cache, dynamic splitfuse, tensor parallelism, high-
performance CUDA kernels and so on.

•	 Effective Quantization: LMDeploy supports weight-only 
and k/v quantization, and the 4-bit inference performance 
is 2.4x higher than FP16. The quantization quality has been 
confirmed via OpenCompass evaluation.

•	 Effortless Distribution Server: Leveraging the request 
distribution service, LMDeploy facilitates an easy and effcient 
deployment of multi-model services across multiple ma- 
chines and cards.

•	 Interactive Inference Mode: By caching the k/v of attention 
during multi-round dialogue processes, the engine remembers 
dialogue history, thus avoiding repetitive processing of 
historical sessions.

•	 Excellent Compatibility: LMDeploy supports KV Cache 
Quant, AWQ and Automatic Pre- fix Caching to be used 
simultaneously.

Triton Inference Server: enables teams to deploy any AI model 
from multiple deep learning and machine learning frameworks, 
including TensorRT, TensorFlow, PyTorch, ONNX, Open- VINO, 
Python, RAPIDS FIL, and more. Triton supports inference across 
cloud, data center, edge and embedded devices on NVIDIA GPUs, 
x86 and ARM CPU, or AWS Inferentia. Triton Inference Server 
delivers optimized performance for many query types, including 
real time, batched, ensembles and audio/video streaming. Triton 
inference Server is part of NVIDIA AI Enterprise, a software 
platform that accelerates the data science pipeline and streamlines 
the development and deployment of production AI. The following 

figure 3 shows the Triton In- ference Server high-level architecture. 
The model repository is a file-system based repository of the 
models that Triton will make available for inferencing. Inference 
requests arrive at the server via either HTTP/REST or GRPC or 
by the C API and are then routed to the appropriate per-model 
scheduler. Triton implements multiple scheduling and batching 
algorithms that can be configured on a model-by-model basis. 
Each model’s scheduler optionally performs batching of inference 
requests and then passes the requests to the backend corresponding 
to the model type. The backend performs inferencing using the 
inputs provided in the batched requests to produce the requested 
outputs. The outputs are then returned.

Triton supports a backend C API that allows Triton to be extended 
with new functionality such as custom pre- and post-processing 
operations or even a new deep-learning framework.

The models being served by Triton can be queried and controlled 
by a dedicated model man- agement API that is available by HTTP/
REST or GRPC protocol, or by the C API.

Readiness and liveness health endpoints and utilization, throughput 
and latency metrics ease the integration of Triton into deployment 
framework such as Kubernetes.

In the next section, we will see how these backends benchmark 
with various scenarios.

 

Figure 3: Triton Inference Server high-level architecture

Figure 4: Inference Backends
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Benchmark
Benchmark setup:
Hardware:
GPU: 1x NVIDIA A10G 24GB
Memory: 64GB
Software:
Guest OS: Ubuntu 22.04 NVIDIA Driver Version: 536.67 CUDA 
Version: 12.2
PyTorch: 2.1.1
Model: meta-llama/Llama-2-7b
Prompt Length: 512 (with some random characters to avoid 
cache).
Max Tokens: 200
• bs: Batch Size. bs=4 indicates the batch size is 4.
• TPS: Tokens Per Second.
• QPS: Queries Per Second.
• FTL: First Token Latency, measured in milliseconds. 

Applicable only in stream mode. 
Results are in the figure5

Figure 5: Inference Backends bechmarks

Conclusion
The field of LLM inference optimization is rapidly evolving and 
heavily researched. The best inference backend available today 
might quickly be surpassed by newcomers. Based on our bench- 
marks and usability studies conducted at the time of writing, we 
will recommend to test your de- sired model for various scenarios 
[1-8].

Overall vLLM manages to maintain a low TTFT even as user 
loads increase, and its ease of use can be a significant advantage 
for many users.
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