
J Arti Inte & Cloud Comp, 2024 Volume 3(4): 1-13

Review Article Open Access

Optimizing LLM Deployments through Inference Backends

USA

Ashish Bansal

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Ashish Bansal, USA.

Received: July 08, 2024; Accepted: July 15, 2024; Published: July 29, 2024

Keywords: Generative AI, LLM Inference, LLM Inference
Backends

Introduction
As Generative AI is becoming very promise to revolutionize
various companies utilizing these technologies in variety of
application to boost productivity, improving client experience
and lower- ing cost to serve clients. While these Large language
models (LLMs) seems very promising but they come with their
issue of utilizing them in real time solutions as it require nuanced
performance benchmarks. But they aren’t the only systems that
are hard to boil down to just one number.

AI applications that produce human-like text, such as chatbots,
virtual assistants, language translation, text generation, and more,
are built on top of Large Language Models (LLMs).

Deploying LLMs in production-grade applications, companies
faces performance challenges with running these models and
consideration in optimizing your deployment with an LLM infer-
ence engine or server becomes important.

In this paper we are going to explore the different LLM inference
engines and servers available to deploy and serve LLMs in
production. We’ll take a look at vLLM, LMDeploy, TensorRT-
LLM, Triton Inference Server, RayLLM with RayServe, and
HuggingFace Text Generation Inference.

Choosing the right inference backend for serving large language
models (LLMs) is crucial. It not only ensures an optimal user
experience with fast generation speed but also improves cost
ef- ficiency through a high token generation rate and resource
utilization. Today, developers have a variety of choices for
inference backends created by reputable research and industry
teams. How- ever, selecting the best backend for a specific use
case can be challenging.This forces companies to consider multiple
factors when serving inference from LLMs:
1. How to get high performance (high throughput and inference

accuracy)
2. How to ensure it’s cost-effective (affordable access to GPUs

at scale)
3. How to create a good user experience (low latency)

ISSN: 2754-6659

ABSTRACT
As model size increases, especially in the area of natural language processing, models expand past the number of parameters that can fit on a single GPU
memory—requiring multiple GPUs to run inference on these models without skirting performance. But, as teams scale across more GPUs, the cost to serve
inference scales, too—often outpacing what a company can afford and make these implementation profitable for organisation. Another consideration is
that many LLM- based services run in real time, so low latency is a must to deliver great user experiences.

Teams today need an efficient way to serve inference from LLMs that allows infrastructure to scale across multiple GPUs—without breaking the bank. In
this paper we will discuss about differ- ent llm inference backends that can be utilised to serve these llm for high performance, low cost and much robust
implementation the major LLMs known today include billions of parameters. Either its ChatGPT-3 from OpenAI, Claude from Anthropic or LLama from
Meta, the generative AI models are continuously increasing their parameters and this brings its own challenges to imple- ment these technologies for Real-
World applications and easy to run these on devices.

As model size increases, especially in the area of natural language processing, models expand past the number of parameters that can fit on a single GPU
memory—requiring multiple GPUs to run inference on these models without skirting performance. But, as teams scale across more GPUs, the cost to serve
inference scales, too—often outpacing what a company can afford and make these implementation profitable for organisation. Another consideration is
that many LLM- based services run in real time, so low latency is a must to deliver great user experiences

Teams today need an efficient way to serve inference from LLMs that allows infrastructure to scale across multiple GPUs—without breaking the bank. In
this paper we will discuss about differ- ent llm inference backends that can be utilised to serve these llm for high performance, low cost and much robust
implementation

Citation: Ashish Bansal (2024) Optimizing LLM Deployments through Inference Backends. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-E128.
DOI: doi.org/10.47363/JAICC/2024(3)E128

J Arti Inte & Cloud Comp, 2024 Volume 3(4): 2-4

These inference backends were evaluated using two key metrics:
•	 Time to First Token (TTFT): Measures the time from

when a request is sent to when the first token is generated,
recorded in milliseconds. TTFT is important for applications
requiring immediate feedback, such as interactive chatbots.
Lower latency improves perceived perfor- mance and user
satisfaction.

•	 Token Generation Rate: Assesses how many tokens the
model generates per second dur- ing decoding, measured in
tokens per second. The token generation rate is an indicator
of the model’s capacity to handle high loads. A higher rate
suggests that the model can ef- ficiently manage multiple
requests and generate responses quickly, making it suitable
for high-concurrency environments.

LLM Inference Backend Concepts
Let’s deep dive into various LLM Inference Backends that are
widely available and are open source make them easy to adopt
and contribute making the deployment easy and customize them
for variety of use cases. These depends on specific use case, the
size of your model, the number of requests you need to handle,
and the latency requirements of your application.
There are two main concepts while we dive into Inference
Backends:

•	 Inference Engines run the models and are responsible for
everything needed for the genera- tion process.

Figure 1: Inference Server and Inference Engine

•	 Inference Servers handle the incoming and outgoing HTTP
and gRPC requests from end users for your application, collect
metrics to measure your LLM’s deployment performance,
and more.

LLM Inference Engines
vLLM: an open-source library for fast LLM inference and serving.
vLLM utilizes PagedAtten- tion, our new attention algorithm that
effectively manages attention keys and values. vLLM equipped
with PagedAttention redefines the new state of the art in LLM
serving: it delivers up to 24x higher throughput than HuggingFace
Transformers, without requiring any model architecture changes.

It is the core technology that makes LLM serving affordable even
for a small research team like LMSYS with limited compute
resources.

PagedAttention, an attention algorithm inspired by the classic idea
of paging in operating systems. Unlike the traditional attention
algorithms, PagedAttention allows storing continu- ous keys
and values in non-contiguous memory space. Specifically,
PagedAttention partitions the KV cache of each sequence into KV

blocks. Each block contains the key and value vec- tors for a fixed
number of tokens, which we denote as KV block size(B). During
the attention computation, the PagedAttention kernel identifies and
fetches different KV blocks separately. PagedAttention algorithm
allows the KV blocks to be stored in non-contiguous physical
mem- ory,which enables more flexible paged memory management
in vLLM. vLLM offers LLM in- ferencing and serving with SOTA
throughput, Paged Attention, Continuous batching, Effcient KV
cache, Quantization (GPTQ, AWQ, FP8), and optimized CUDA
kernels.

Figure 2: HuggingFace TGI Server

TensorRT-LLM: TensorRT-LLM is another inference engine that
accelerates and optimizes in- ference performance for the latest
LLMs on NVIDIA GPUs. LLMs are compiled into TensorRT
Engine and then deployed with a triton server to leverage inference
optimizations such as In-Flight Batching (reduces wait time and
allows higher GPU utilization), paged KV caching, MultiGPU-
MultiNode Inference, and FP8 Support. TensorRT-LLM is Created
by NVIDIA,Several models are supported out of the box, including
Falcon, Gemma, GPT, Llama, and more. An important limitation
of TensorRT LLM is that it was built for Nvidia hardware. Also,
whichever GPU you use to compile the model, you must use the
same for inference. It also leverages PagedAttention, which frees
up memory allocation more dynamically than traditional atten-
tion approaches and In-flight batching.

Hugging Face Text Generation Inference: Text Generation
Inference (TGI) is a toolkit for de- ploying and serving Large
Language Models (LLMs). TGI enables high-performance text
gen- eration for the most popular open-source LLMs, including
Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and T5. TGI
supports various hardware ranging from GPU, TPU, Gaudi to
In- frentia. Hugging Face develops and distributes it under the
HFOILv1.0 license, permitting commercial use provided it serves
as an auxiliary tool within the product or service offered rather
than the main focus. The main challenges it addresses are:
• High-performance text generation. TGI uses techniques

like Tensor Parallelism (a tech- nique used to fit a large
model in multiple GPUs) and dynamic batching (batching
prompts together on the fly inside the server) to optimizse
the performance of popular open- source LLMs, including
models like StarCoder, BLOOM, GPT-NeoX, Llama, and T5.

• Effcient resource usage. Features like continuous batching,
optimized code, and Ten- sor Parallelism allow TGI to handle
multiple requests simultaneously while minimizing resource
usage.

• Flexibility. TGI supports a variety of safety and security
features like watermarking, logit warping (modifies the logits
of specific tokens by infusing a bias value into them) for
bias control, and stop sequences to ensure responsible and
controlled LLM usage.

Citation: Ashish Bansal (2024) Optimizing LLM Deployments through Inference Backends. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-E128.
DOI: doi.org/10.47363/JAICC/2024(3)E128

J Arti Inte & Cloud Comp, 2024 Volume 3(4): 3-4

RayLLM with RayServe: RayLLM is an LLM serving solution
for deploying AI workloads and open source LLMs with native
support for continuous batching, quantization, and streaming. It
provides a REST API similar to the one from OpenAI, making
it easy to cross test.

RayServe is a scalable model for building online inference APIs.
Ray Serve is built on top of Ray, allowing it to easily scale to
many machines. Ray Serve has native support for autoscal-
ing, multi-node deployments, and scale to zero in response to
demand for your application. RayServe uses Continuous batching,
quantization, and streaming with vLLM, Out-of-the-box support
for vLLM and Tensor-RTLLM.

Ray minimizes the complexity of running your distributed
individual and end-to-end machine learning workflows with these
components:

• Scalable libraries for common machine learning tasks such
as data preprocessing, dis- tributed training, hyperparameter
tuning, reinforcement learning, and model serving.

• Pythonic distributed computing primitives for parallelizing
and scaling Python applica- tions.

• Integrations and utilities for integrating and deploying a
Ray cluster with existing tools and infrastructure such as
Kubernetes, AWS, GCP, and Azure.

LMDeploy: is a toolkit for compressing, deploying, and serving
LLM, developed by the MM- Razor and MMDeploy teams. It
has the following core features:

•	 Effcient Inference: LMDeploy delivers up to 1.8x higher
request throughput than vLLM, by introducing key features
like persistent batch(a.k.a. continuous batching), blocked
KV cache, dynamic splitfuse, tensor parallelism, high-
performance CUDA kernels and so on.

•	 Effective Quantization: LMDeploy supports weight-only
and k/v quantization, and the 4-bit inference performance
is 2.4x higher than FP16. The quantization quality has been
confirmed via OpenCompass evaluation.

•	 Effortless Distribution Server: Leveraging the request
distribution service, LMDeploy facilitates an easy and effcient
deployment of multi-model services across multiple ma-
chines and cards.

•	 Interactive Inference Mode: By caching the k/v of attention
during multi-round dialogue processes, the engine remembers
dialogue history, thus avoiding repetitive processing of
historical sessions.

•	 Excellent Compatibility: LMDeploy supports KV Cache
Quant, AWQ and Automatic Pre- fix Caching to be used
simultaneously.

Triton Inference Server: enables teams to deploy any AI model
from multiple deep learning and machine learning frameworks,
including TensorRT, TensorFlow, PyTorch, ONNX, Open- VINO,
Python, RAPIDS FIL, and more. Triton supports inference across
cloud, data center, edge and embedded devices on NVIDIA GPUs,
x86 and ARM CPU, or AWS Inferentia. Triton Inference Server
delivers optimized performance for many query types, including
real time, batched, ensembles and audio/video streaming. Triton
inference Server is part of NVIDIA AI Enterprise, a software
platform that accelerates the data science pipeline and streamlines
the development and deployment of production AI. The following

figure 3 shows the Triton In- ference Server high-level architecture.
The model repository is a file-system based repository of the
models that Triton will make available for inferencing. Inference
requests arrive at the server via either HTTP/REST or GRPC or
by the C API and are then routed to the appropriate per-model
scheduler. Triton implements multiple scheduling and batching
algorithms that can be configured on a model-by-model basis.
Each model’s scheduler optionally performs batching of inference
requests and then passes the requests to the backend corresponding
to the model type. The backend performs inferencing using the
inputs provided in the batched requests to produce the requested
outputs. The outputs are then returned.

Triton supports a backend C API that allows Triton to be extended
with new functionality such as custom pre- and post-processing
operations or even a new deep-learning framework.

The models being served by Triton can be queried and controlled
by a dedicated model man- agement API that is available by HTTP/
REST or GRPC protocol, or by the C API.

Readiness and liveness health endpoints and utilization, throughput
and latency metrics ease the integration of Triton into deployment
framework such as Kubernetes.

In the next section, we will see how these backends benchmark
with various scenarios.

Figure 3: Triton Inference Server high-level architecture

Figure 4: Inference Backends

Citation: Ashish Bansal (2024) Optimizing LLM Deployments through Inference Backends. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-E128.
DOI: doi.org/10.47363/JAICC/2024(3)E128

J Arti Inte & Cloud Comp, 2024 Volume 3(4): 4-4

Copyright: ©2024 Ashish Bansal. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Benchmark
Benchmark setup:
Hardware:
GPU: 1x NVIDIA A10G 24GB
Memory: 64GB
Software:
Guest OS: Ubuntu 22.04 NVIDIA Driver Version: 536.67 CUDA
Version: 12.2
PyTorch: 2.1.1
Model: meta-llama/Llama-2-7b
Prompt Length: 512 (with some random characters to avoid
cache).
Max Tokens: 200
• bs: Batch Size. bs=4 indicates the batch size is 4.
• TPS: Tokens Per Second.
• QPS: Queries Per Second.
• FTL: First Token Latency, measured in milliseconds.

Applicable only in stream mode.
Results are in the figure5

Figure 5: Inference Backends bechmarks

Conclusion
The field of LLM inference optimization is rapidly evolving and
heavily researched. The best inference backend available today
might quickly be surpassed by newcomers. Based on our bench-
marks and usability studies conducted at the time of writing, we
will recommend to test your de- sired model for various scenarios
[1-8].

Overall vLLM manages to maintain a low TTFT even as user
loads increase, and its ease of use can be a significant advantage
for many users.

References
1. https://lmdeploy.readthedocs.io/en/latest/installation.html.
2. https://medium.com/@zaiinn440/best-llm-inference-engine-

tensorrt-vs-vllm-vs-lmdeploy-vs-mlc-llm-e8ff033d7615.
3. https://www.koyeb.com/blog/best-llm-inference-engines-

and-servers-to-deploy-llms-in-production.
4. https://www.baseten.co/blog/understanding-performance-

benchmarks-for-llm-inference/.
5. https://docs.nvidia.com/deeplearning/triton-inference-server/

user-guide/docs/userguide/architecture.ht.
6. Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng,

Lianmin Zheng, et al. (2023) Effcient Memory Management
for Large Language Model Serving with PagedAttention
arXiv https://doi.org/10.48550/arXiv.2309.06180
arXiv:2309.06180.

7. https://huggingface.co/docs/text-generation-inference/en/
index.

8. Ruiyang Qin, Dancheng Liu, Zheyu Yan, Zhaoxuan Tan,
Zixuan Pan, et al. (2024) Empirical Guidelines for Deploying
LLMs onto Resource- constrained Edge Devices arXiv https://
doi.org/10.48550/arXiv.2406.03777.

