
J Arti Inte & Cloud Comp, 2022 Volume 1(4): 1-3

Review Article Open Access

Optimizing AWS Lambda Performance: Unveiling the Relationship
between Memory Allocation, CPU Power and Cost Efficiency

Senior Lead Software Engineer, Richmond, VA, USA

Balasubrahmanya Balakrishna

Journal of Artificial Intelligence &
Cloud Computing

*Corresponding author
Balasubrahmanya Balakrishna, Senior Lead Software Engineer, Richmond, VA, USA.

Received: October 04, 2022; Accepted: October 14, 2022; Published: October 22, 2022

Keywords: AWS Lambda, AWS Step Function, AWS Power
Tunning, Chudnovsky Algorithm

Background
Practioners can concentrate on writing code instead of worrying
about maintaining the underlying infrastructure. Practitioners
typically look into two main strategies to optimize function
performance assigning the right amount of memory to a function
and optimizing the speed at which code executes.

Code Optimization for Speed
For the best possible function performance, efficient code
execution is essential. Various strategies, such as code reworking
and algorithmic enhancements, to reduce execution times and
boost productivity.

The Role of Memory Allocation
While optimizing Lambda functions, one must choose the
optimal memory allocation. This study explores the proportional
relationship between configured memory and the CPU allocated
to a function, emphasizing how memory settings directly affect
function performance and overall cost [1].

Proportional Relationship to CPU Allocation
The memory configurations are directly proportional to the CPU
resources allotted to a Lambda function [1]. This relationship
emphasizes the importance of choosing the correct memory
configuration for the required processing power and effectiveness.

Cost Implications of Memory Allocation
The chosen memory configuration directly affects both the
execution costs and the performance of Lambda functions.
Engineers must balance optimizing performance and ensuring
cost-effectiveness since memory allocation is connected to the
total cost in the AWS Lambda pricing scheme [2]. By utilizing
the AWS price calculator, engineers can acquire more insights
into the financial impacts of different memory settings. Engineers
can use this tool to make informed decisions about memory
allocation, considering both performance requirements and
financial constraints.

Determining Optimal Memory Allocation for AWS Lambda
Functions
Introduction to Example Lambda Function
An overview of a Python Lambda function (in Figure 1) that
implements the Chudnovsky algorithm is given in this section.
The example emphasizes the effect of memory allocation on the

ISSN: 2754-6659

ABSTRACT
This technical paper examines, emphasizing AWS Lambda, the crucial relationship between memory use, cost-effectiveness and performance in server less
applications. We highlight the significance of memory allocation, look into factors that affect consumption, and offer methods for locating and resolving
memory-related problems.

An essential part of our research is the relationship between CPU power assignment and Lambda execution time. We illustrate the significant influence of
CPU power on execution time and operating expenses using a Lambda function from the real world. We present a sample Lambda function and examine
its performance with different memory setups.

The AWS Lambda Power Tuning framework results, intended to identify the most economical memory configuration automatically are compared against
manual memory determination in the article. Empirical evidence evaluates the framework's success in maximizing performance and cost.

The report concludes by synthesizing significant findings and providing practitioners with practical suggestions. This study adds significant knowledge to
server less computing by offering real-world examples, empirical support, and contrasts between automated and human memory tuning. By addressing the
direct relation of memory allocation to cost-effectiveness and its implications on server less application performance, the work advances our understanding
of the complex balance necessary for optimal resource management.

Citation: Balasubrahmanya Balakrishna (2022) Optimizing AWS Lambda Performance: Unveiling the Relationship between Memory Allocation, CPU Power and
Cost Efficiency. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-171. DOI: doi.org/10.47363/JAICC/2022(1)159

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 2-3

function's performance and cost, providing a practical basis for
clarifying the ideas discussed in the paper [3, 4].

Figure 1: Lambda Function Implementing Chudnovsky Algorithm

The Chudnovsky algorithm is a fast method for calculating the
digits of π, based on Ramanujan's π formulae. The Chudnovsky
brothers published it in 1988 [4].

Manual Determination of Memory Settings
Lambda simplifies configuration, allowing for a focus on
developing innovative solutions. The memory setting stands out
as the primary configuration option influencing performance.
Function configuration allows memory adjustments from 128 to
10240 MB in 1 MB increments, with increased memory directly
correlating with added CPU power. Refer to Figure 1 to see a
Python Lambda function illustrating the impact of memory on
performance. Start with a memory setting of 128 MB and set the
timeout to 15 minutes.

Execute the function in Fig 1 and take note of the execution
duration. Then, increase the memory to 512 MB and rerun
the function. What is the new execution time? Further, double
the memory to 1024 MB and observe the resulting execution
duration. Continue incrementing the memory until reaching a
point where additional memory no longer yields performance
gains. Identify this saturation point. Applying this strategy to the
Lambda Function in Figure 1 and executing with memory settings
of 128 MB, 512 MB, 1 GB, 2 GB, 3 GB, and 4 GB, we see the
trend shown in Figure 2.

Figure 2: Memory (MB) Vs. Billed Duration (ms) for the Lambda
Function Shown in Figure 1

Observation
With each doubling of memory, the execution duration decreases
by approximately 50%, illustrating a direct correlation between
memory and CPU power. In the case of this application, the
breakeven point is around 2GB of memory. Allocating more
than 2GB of memory does not enhance performance and incurs
costs without corresponding benefits. Fine-tuning the function in
Figure 1 may be necessary for further performance optimization.

Power Tuning with AWS Lambda
The process above outlines a manual approach wherein a
Lambda function is systematically run with varying memory
settings to discern the correlation between memory allocation and
performance. Although this approach offers insightful information
about the best memory setup for specific functions, managing
several Lambda functions in a team setting might be difficult. As
organizations maintain numerous Lambda functions to support
diverse applications, the manual iteration across different memory
settings becomes cumbersome and time-consuming. In such
scenarios, the need for a more scalable and automated approach
arises, allowing teams to efficiently manage and optimize the
performance of many Lambda functions simultaneously. This
shortcoming introduces the necessity for tools and frameworks
that streamline the process of determining and fine-tuning memory
settings across various Lambda functions, ensuring efficiency and
ease of management within a team environment.

AWS provides an open-source solution known as Lambda Power
Tuning, offering engineers a comprehensive tool to assess the
performance of their Lambda functions across different memory
settings [5]. This tool empowers engineers to make well-informed
decisions regarding the optimal memory configuration, balancing
performance enhancements with cost considerations. The
functionality of Lambda Power Tuning is facilitated through the
deployment of a Step function workflow and a set of Lambda
functions specifically designed for testing and cleanup purposes
[6]. This robust tool streamlines the evaluation process, enabling
engineers to fine-tune their Lambda functions for optimal
performance while managing associated costs effectively.

Figure 3 and Figure 4 below show the AWS Lambda Power Tuning
Step function workflow deployed in AWS and executing the
function for ten iterations at various memory settings.

Citation: Balasubrahmanya Balakrishna (2022) Optimizing AWS Lambda Performance: Unveiling the Relationship between Memory Allocation, CPU Power and
Cost Efficiency. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-171. DOI: doi.org/10.47363/JAICC/2022(1)159

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 3-3

Copyright: ©2022 Balasubrahmanya Balakrishna. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Figure 3: AWS Lambda Power Tuning Execution Result

The results produced by AWS Lambda Power Tuning align with
the manual discovery, indicating that the optimal memory setting
for achieving the best execution time is 2 GB. This correlation
underscores the tool's effectiveness in automating the evaluation
process and substantiates the reliability of its output in identifying
the most performance-efficient memory configuration.

AWS Lambda Power Tuning offers a variety of configurations,
providing flexibility to achieve specific and targeted settings for
optimal performance and cost-effectiveness [5].

Figure 4: AWS Lambda Power Tuning Results

Conclusion
The critical topics of memory allocation in AWS Lambda functions
have been covered in this technical paper, focusing on how
memory allocation directly affects costs and performance. We have
demonstrated the complex link between memory, CPU power, and
function execution time by analyzing the manual determination
of memory settings and applying the Chudnovsky algorithm to an
illustrative Lambda function example. The investigation illustrated
the difficulties of managing several Lambda functions within a
team by showcasing the manual method of repeatedly modifying
memory and tracking performance improvements.

We introduced and illustrated the effectiveness of the AWS
Lambda Power Tuning framework in automating the evaluation
process. The best memory configuration for the example program
is confirmed to be 2 GB by the tool, which agrees with manual
findings. Additionally, Lambda Power Tuning offers a variety of
options, giving developers a scalable and effective way to achieve
desired settings that strike a balance between cost and performance.

Developers and teams looking to optimize their AWS Lambda
functions can use the insights in this paper as a guide. In the world

of serverless computing, resource optimization is critical. The
increasing need for scalable, economical, and efficient solutions
makes using tools such as Lambda Power Tuning essential.
By enabling developers to make well-informed decisions,
this research advances our understanding of memory use in
serverless architectures and eventually improves the efficiency
and affordability of serverless applications.

References
1. Memory and computing power. AWS Lambda Operator Guide

https://docs.aws.amazon.com/lambda/latest/operatorguide/
computing-power.html.

2. Cost optimization. AWS Lambda Operator Guide https://docs.
aws.amazon.com/lambda/latest/operatorguide/cost-optimize.
html.

3. Chudnovsky David, Chudnovsky Gregory (1988)
Approximation and complex multiplication according to
Ramanujan. Pi: A Source Book 596-622.

4. Chudnovsky algorithm. Wikipedia https://en.wikipedia.org/
wiki/Chudnovsky_algorithm.

5. AWS Lambda Power Tuning. AWS Application
h t t p s : / / s e r v e r l e s s r e p o . a w s . a m a z o n . c o m /
a p p l i c a t i o n s / a r n : a w s : s e r v e r l e s s r e p o : u s - e a s t -
1:451282441545:applications~aws-lambda-power-tuning.

6. Alexcasalboni / aws-lambda-power-tuning. GitHub https://
github.com/alexcasalboni/aws-lambda-power-tuning#what-
does-the-state-machine-look-like.

