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Introduction
Quantum confined gases are among the most interesting and excite 
topics of investigation. While most theory and experiments are 
concerned with three-dimensional systems, we have still many 
important and surprising aspects for confinements considered 
to be one-dimension. Nevertheless, dealing with one-dimension 
system, one always faces the necessity to introduce perturbation 
on the system.

The main question for any variant of perturbative methods is how 
to control the convergence if neither an explicit form of high-
order approximations nor the exact solutions are available. To 
overcome this difficulty, an idea has been developed, in which the 
perturbation algorithm can be supplemented by a set of functions 
controlling the convergence of the approximation sequence [1]. 
Those are called the control functions, and they have been first 
explored and used for describing anharmonic crystals properties 
[1-6]. Control functions were defined by a minimal-difference 
condition and have also been applied to several models [2, 7-15]. 
The choice of conditions for control functions has been mainly 
heuristic. There are no studies for confined Bose gas in a one-
dimensional parabolic potential containing a quartic power term.

To justify the option condition to define the control functions, 
it was shown that perturbation theory could be formulated as a 
renormalization group theory [16-20]. With this view, control 

functions can be defined from a fixed-point condition, whose 
particular variants yield either the minimal-difference or minimal-
sensitivity conditions? As far as a renormalization group can 
be considered, as a kind of dynamical system, it was natural to 
reformulate perturbation theory to the language of dynamical 
theory [21-23]. This reformulation not only makes the theory more 
logical but also permits to define stability conditions related to 
the problem convergence. The so-called controlled perturbation 
theory. Approaches like this can find a great deal of applications 
in confined Bose-Einstein Condensate (BEC). 

In this study, we have demonstrated the method of controlled 
perturbation theory to the case of a confined Bose gas in an one-
dimensional parabolic potential containing a quartic power term. 
The paper is organized as follows. In Section 2, we formulate 
the model on perturbation theory, and in Section 3 we start by 
explaining the method through the application of a confined Bose 
gas in a quartic potential. In conclusion Section 3, we summarize 
the results and encourage experimental studies to study such 
properties in bosonic gases.

Materials and Methods
Dominated (Controlled) Perturbation Theory
Consider that we are interested in the behavior of a real function 
f(s) where s is a real variable, namely the coupling parameter. 
The f(s) function can be defined by a complicated equation which 
not have an exact solution and therefore, only an approximate 
numerical solution can be found. Nevertheless, we can find the 
asymptotic expansion
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ABSTRACT
Perturbation theory can be reformulated as dynamic theory applied to crystals and gases. Here we concentrate our attention on the stability conditions that 
allow controlling the convergence of approximation sequences. These ideas are illustrated by calculating the energy levels and critical coupling parameter 
of a one-dimensional confined Bose gas.
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                                                                                    (1)

it is, in the weak-coupling limit. On the other hand, we can also 
derive the asymptotic expansion in the strong coupling limit, in 
the form

                                                                                    (2)

where βj are arranged in the decreasing order, βj >βj+1.

To achieve the fast convergence of the divergent series control 
functions are implemented through of a multiplicative algebraic 
transformation and by using also the self-similar approximation, 
yielding to the self-similar root approximation

                                                                                           (3)
where k is the order of the approximation taken, Aj are the 
coefficients, and nj are the potences, which are to be defined by 
considering the strong-coupling limit of the approximant in Eq. 
(3) and equating it to the strong-coupling expansion in Eq. (2). 
This way can be called the left-to-right crossover [1, 3-15].

In general, it could be possible to go to the opposite way, i.e., 
from the right to the left. That is, we could construct a nested-root 
approximant starting from the strong-coupling asymptotic form of 
Eq. (2) and then define the corresponding coefficients and powers 
by equating to the asymptotic expansion of Eq. (1). However, 
the right-to-left crossover results in approximants usually are 
less accurate than the left-to-right crossover formulas. This is 
connected to the fact that the weak-coupling expansions have, 
as a rule, zero radius of convergence, while the strong-coupling 
ones have a finite radius of convergence. The accuracy of the 
left-to-right crossover approximants is usually better than that of 
the right-to-left ones because of the larger region of applicability 
of the strong-coupling expansion in Eq. (2) as compared to the 
region of validity of the weak-coupling expansion in Eq. (1). In 
fact, the latter can be valid for s≪1, hence its region of validity 
is inside the interval (0,1). In contrast, the strong-coupling form, 
derived for s>>1, has the region of applicability inside the interval 
(1,∞). Therefore, the self-similar crossover approximant must be 
fitted to the asymptotic expansion that possesses the larger region 
of validity.

When considering the strong-coupling limit s→∞ for the 
approximant of Eq. (3), we need to know the relation between the 
powers nj and the numbers j=1,2,… Among all possible relations, 
we must choose that one which is the most general, imposing 
no restrictions on the powers βj. It is possible to show that the 
condition

                                                                                 (4)

provides a general way of expanding the form of Eq. (3), valid 
for any k=1,2,… and any arbitrary βj.

Under the criterion of Eq. (4), and rewriting the approximant in 
Eq. (3) in the form

where x ≡ s-1, it is easy to expand the latter in powers of x. 
Comparing the resulting expansion with the strong-coupling limit 
in Eq. (2) we obtain

                                                                                          
(5)                           

with 1 ≤ j ≤ k–1. The values of nj, defined by Eq. (5), are in 
compliance with the criterion showed in Eq. (4) because of the 
inequality βj – βj-1<0.

The first-order self-similar approximant in Eq. (3) is

where

The second-order approximant in Eq. (3) takes the form

in which

In the third order, we find

where
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The method of constructing self-similar crossover formulas is also 
applicable to asymptotic expansions more general than showed 
in Eq. (1), for instance to series	

                                                                                           (6)

in which αj are arbitrary positive powers arranged in the increasing 
order as

                                                                                           (7)

Then, instead of Eq. (3), we obtain the self-similar approximant

                                                                                            (8)

The criterion showed in Eq. (4) transforms to the inequality

                                                                                            (9)                      

and, in the place of Eqs. (5), we find

                                                                                           (10)

with j=1,2,…, k – 1.

The described method makes it possible to construct analytical 
interpolative formulas for the whole range of the coupling 
parameter. The method can also be used for interpolating 
any functions of other variables, provided the corresponding 
asymptotic expansions are available.

Results
Confined Bose Gas in a Quartic Potential
To illustrate the ideas of the approach we have chosen as example 
a confined Bose gas model. Suppose we need to find the energy 
levels of a confined Bose gas represented by one-dimensional 
anharmonic oscillator with the Hamiltonian

                                                                                         (11)

Where x E (-∞,∞) and the coupling, or anharmonicity, parameter 
g ≥ 0. It is worth nothing that several problems of quantum 
mechanics can be reduced to oscillator-type models by a special 
change of variables [24, 25].

We also would like to emphasize that our aim here is not simply 
the calculation of the energy levels but the demonstration of the 
self-similar perturbation theory [2].

It is natural to start from the confined Bose gas whose Hamiltonian,

                                                                                        (12)   
 

Which contains an unknown control parameter u. For convenience  
we introduce the notation

                                                                                        (13)

for the k-order approximation of the spectrum. The quantum 
index n=0,1,2… in Ek and Fk is not written explicitly for the sake 
of brevity.

The sequence {F_k (g,u)}        is to be obtained by Rayleigh-

Schrödinger perturbation theory starting from

                                                                               (14)

In that follows we shall need the notation

                                                                                (15)

The first four approximations, under a fixed u, are

                                                                                             (16)

in which

                                                                               (17)

we get the equation

                                                                               (18)

as a result of which

                                                                              

Substituting the solution u1 (g) from Eq. (18), into Eq. (16), we 
define

                                                                              (19)

Then, from Eq. (16) we have

                                                                                              (20)
 



Citation: Alexsandro G de Sousa, Vanderlei S Bagnato, Albérico BF da Silva, Ana C Mora Tello, Valter A Nascimento (2022) One-Dimensional Confined Bose Gas in 
a Quartic Potential: Calculation of the Energy Levels and the Critical Coupling Parameter. Journal of Physics & Optics Sciences. SRC/JPSOS/197. 
DOI: doi.org/10.47363/JPSOS/2022(4)172

J Phy Opt Sci, 2022          Volume 4(5): 4-6

In the region of g>0, the energy (Eq. 13) is positive for small |g|, and, as g diminishes, the energy becomes zero at a critical value gc. 
The latter can be found from the definition

                                                                                 (21)

The form of the Eq. (20) shows that equality in Eq. (21) holds 

true for                         Then, for the ground-state level with 

n = 0, one finds

                                                                                 (22)
 
the solution of Eq. (18) needs to satisfy the boundary condition u1 (g)→1, as g→0. Such a solution is

                                                                                                                            (23)

                                                                                       
the control function in Eq. (23) is real for g ≤ gn, where

                                                                                     (24)
  

and complex roots of Eq. (23) appear only after g ≤ gn [26, 27].

Asymptotic expansions in the weak- and strong-coupling limits can be written for arbitrary energy levels. For illustrative purpose, we 
shall write down expansions for the ground state (n=0) and we shall plot the graphics of expansions in function of coupling parameter.

For the ground state, when n=0 and γ=1, function in Eq. 10 yields for the real parts

                                                                                                                    
                                                                                                             (25)

while the imaginary parts are

                                                                                       (26)

In the strong-coupling limit, when, g→∞, for the ground state we obtain the real parts

 
                                                                                                                                                                              (27)

And the imaginary parts

                                                                                                                                                                               (28)

Varying the coupling parameter g, we can analyze graphically the behavior of the asymptotic expansions in the weak- and strong-
limits for the ground state and calculate the real parts in Figures 1 and 2.
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Figure 1: Real parts of the approximations in the weak-coupling 
limit, a) Re f1 (g) (solid line) and b) Re f2 (g) (dashed line) as 
function of the different values for the coupling parameter (g).

Figure 2: Real parts of the approximations in the strong-coupling 
limit, a) Ref1 (g) (solid line) and b) Ref2 (g) (dashed line) as function 
of the different values for the coupling parameter (g).

In the strong-coupling limit, when,g→∞, for the ground state, 
we obtain graphically the imaginary parts of the approximations 
for the different values of the coupling parameter g in Figure 3.

Figure 3: Imaginary parts of the approximations in the strong-
coupling limit, a) Imf1  (g) (solid line) and b) Imf2  (g) (dashed line) 
as function of the different values for the coupling parameter (g).

The accuracy of the real parts of the approximations in Eq. (20) 
is sufficiently good; the maximal error in the first order is -3.3% 
and in the second order is 2%. In the case of the corresponding 
imaginary parts, the maximal error for g>g_n is about of 10%. 

Conclusions 
The knowledge of the ground state energy for non-harmonic 
potentials is an important challenge, in view of the high possibilities 
of application that we can have involving Bose condensates. The 
presence of non-harmonic terms and their influence both on the 
thermodynamic properties and on the hydrodynamic properties 
of the system, such as collective modes, and others, creates new 
possibilities of exploration for trapped quantum gases. In this 
study, we present the use of the controlled perturbation method 
to verify the system ground state energy values in one dimension. 
Despite several ways of calculating the approximate ground state 
energy when non-harmonic terms are present, the controlled 
perturbative method allows to obtain a greater degree of precision. 
Furthermore, the method used here allows its use in situations 
where the non-harmonic term is not just a small variation of the 
problem, but situations where the coupling term is arbitrarily 
large. Thanks to the possibility of introducing control functions, 
the convergence of the method can be guaranteed. Although we 
have carried out the proof for the one-dimensional system, the 
two- and three-dimensional cases can be seen as natural extensions 
of the problem, despite demanding a little more mathematical 
concern. An important practical example for us to apply deals 
with the almost unidimensional confines reached when we have 
extremely unbalanced cigar traps with extremely high anisotropy. 
Such traps could, in principle, be obtained experimentally and 
critical properties of the condensate obtained could be investigated 
both theoretically and experimentally.
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