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Introduction 
The classical Maxwell equations can be considered as a 
theorem about the symmetry of electric and magnetic fields. 
However, this symmetry is broken by the absence of a 
magnetic charge. In Dirac proposed his idea of a magnetic 
monopole [1]. Since then, this idea has been the subject of 
lively discussion. 
 
J.S. Schwinger paid much attention to the problem of 
magnetic charge. For example, in he presented his own 
understanding of the monopole in the context of photon 
sources [2]. In he constructed a quantum field theory which 
includes both electric and magnetic charges [3]. He also 
presented a different view from Dirac. He considered Dirac's 
view to be asymmetric and offered his own view, which he 
believed to be symmetric. His quantum field theory is 
relativistically invariant, but restricts the quantization 
condition more than Dirac's [4]. In another article he argues 
that relativistic renormalization of two charge types is an 
important part of electromagnetic field theory [5]. 
 
 
 

P. Goddard considers a gange group in which the magnetic 
charge appears as a coefficient and completely determines 
the topological quantum number of the solution [6]. 
 
The quantum mechanical problem of the motion of electric 
and magnetic charges in the field of a magnetic charge is 
considered in the article "Magnetic charge quantization and 
angular momentum" [7]. 
 
In the article by S.T. Bramwell, a modification of Maxwell's 
equations with electric and magnetic charges is proposed [8]. 
 
The approach proposed below is reminiscent of the idea of 
Bramwell [8]. The first step of this approach is to formulate 
the concept of an electric charge as a rotating mass [9]. This 
allows to rewrite all equations of electrodynamics in 
mechanical dimensions and to construct a system that 
generalizes the classical Maxwell equations and assumes the 
existence of a magnetic charge [10]. The description of all 
quantities in mechanical dimensions makes it possible to 
establish a direct relationship between the magnitude of the 
electric and the magnetic charge of the electron. The 
existence of two combined properties in an electron allows a 
generalization of the formula for the Lorentz force. 
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Magnetic and electric charges 
It was assumed that electric charge is induced by rotating of 
the bigger circle of the torus [10]: 

           𝑒𝑒 = 𝑚𝑚𝜔𝜔1 = 7.072 × 10−10  kg⋅rads , (1) 

where e is the electric charge, m is the electron’s mass, ω1 is 
angular velocity of the torus bigger circumference. 
The dimension of the charge (1) results from the assumption 
that the electric charge of the electron is a mass rotation. This 
assumption is considered in as hypnosis, i.e., as an assertion 
which must be confirmed experimentally [1]. The authors 
believe that the first step on the way to such confirmation is 
an experiment defining the wavelength of the electron and 
the frequency determined by it (1). This means that we 
exclude the dimension "Coulomb" from the system SI and 
obtain a mechanical system of the dimension for any 
electrodynamic value (see the transformation of the system 
SI into a mechanical one) [10]. The mechanical system for 
electrodynamic quantities is also used below. 
 
The rotation (1) also produces a moment which is given by 
Planck's constant 

                  ћ1 = 1.0546 × 10−34  kg⋅m
2⋅rad
s . (2) 

The magnetic field is generated by the two-dimensional 
rotation of the smaller rings of the torus. This rotation 
induces the two-dimensional vector of the spin of the 
electron [9]: 

                          ћ⃗ 23 = (ћ2, ћ3),                              (3) 

where 

    ћ2 = 1
2 (1.0546 × 10−34 sin𝜔𝜔1 𝑡𝑡) kg⋅m

2⋅rad
s , (4) 

     ћ2 = 1
2 (1.0546 × 10−34 cos𝜔𝜔1 𝑡𝑡) kg⋅m

2⋅rad
s . (5) 

Two-dimensional angular momentum (3) gives the magnetic 
properties of the electron, its spin. Three-dimensional 
angular momentum 

                            ћ⃗ = (ћ1, ћ2, ћ3) (6) 

specifies the electric and magnetic properties of the electron 
[9]. 
 
The use of mechanical dimensions to describe 
electrodynamic quantities makes it possible to describe the 
electric constant mechanically [10, §3.1] 

                      𝜀𝜀0 = 1.7251 × 108  kg⋅rad
2

m3 . (7) 

and magnetic constant 

                 𝜇𝜇0 = 1
𝜀𝜀0𝑐𝑐2 = 6.4498 × 10−26  m⋅s2

kg⋅rad2. (8) 

The term magnetic charge is not defined in [10] (§2). This 
shall be made up for in the present work. 
 

From the classical Maxwell equations, it follows that the 
electric fields E and the magnetic fields B are connected by 
the equation [11, §18.4]: 

                              𝐸𝐸 = ±𝑐𝑐𝑐𝑐, (9) 

where c is the speed of light. 
 
The classical Maxwell equations do not predict the sign in 
(9) because divB = 0, i.e., the magnetic charge is assumed to 
be zero. The generalized Maxwell's equations give a minus 
in (9) [10] (§2.2). 
 
The assumption of zero magnetic charge also raises the 
following question. The mathematical essence of Maxwell's 
equations requires that one of the fields �⃗�𝐸  or �⃗�𝑐  must be polar 
and the other must be an axial vector. This means that the 
speed of light c in (9) must be pseudoscalar, i.e., it must 
describe the tangential velocity [m⋅rad/s] but not the 
translational velocity [m/s]. This problem becomes essential 
in generalized electrodynamics. Its solution makes it 
possible to correctly define the magnetic charge. 
 
At the time of writing the monograph, the mechanical 
structure of the electron was not yet understood [10]. It was 
assumed that the electric charge must be an ordinary scalar 
and the magnetic charge a pseudoscalar. When the 
mechanical model of the electron was constructed, it was 
found that the situation was reversed: the electric charge was 
pseudoscalar and the magnetic charge was an ordinary 
number, i.e., the correlation (9) is valid for the charges: 

    𝑒𝑒 =– �̂�𝑐𝑏𝑏 ⇒  𝑏𝑏 =– 𝑒𝑒/�̂�𝑐  = −2.359 × 10−18  kg𝑚𝑚. (10) 

where b is the magnetic charge and ĉ is the tangential speed 
of light [m⋅rad/s]. To avoid misunderstanding, the tangential 
velocity is denoted by ĉ. The symbol c is left for the 
translational speed of light. 
 
Generalized electrodynamic force 
Let us verify that two electric charges (1) induce the 
Coulomb force 

                         𝐹𝐹𝐶𝐶𝐶𝐶 = 𝑒𝑒1𝑒𝑒2
4𝜋𝜋𝜀𝜀0𝑟𝑟2  [

kg⋅m
s2 ]. (11) 

We have obtained the force as a result of the interaction 
between two electric charges defined in (1). It is obtained by 
substituting (10) into (11) instead of (1): 

                        𝐹𝐹𝑏𝑏1𝑏𝑏2 = 𝑏𝑏1𝑏𝑏2
4𝜋𝜋𝜀𝜀0𝑟𝑟2  [

kg
m⋅rad2]. (12) 

We have obtained mass density per radian squared instead 
of force. 
 
Conclusion: The magnetic charges of the electrons do not 
interact in the static. The static force is defined only by the 
electric charges of the electrons. 
 
In the case of moving electrons, the picture changes. Let us 
consider the case when the first electron moves with the 
translational velocity v2 and the second electron remains 
stationary. 
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                    𝐹𝐹𝑣𝑣1 = 𝑏𝑏1𝑣𝑣1𝑒𝑒2
4𝜋𝜋𝜀𝜀0𝑟𝑟2  [

kg⋅m
s2⋅rad]. (13) 

We have obtained a force per radian. The magnetic charge 
of the moving electron interacts with the electric charge of 
the resting electron. This force is c/v1 weaker than the 
Coulomb force. When both electrons are moving, two forces 
occur. The first 

                   𝐹𝐹𝑣𝑣1𝑣𝑣2 = 𝑏𝑏𝑣𝑣1𝑏𝑏𝑣𝑣2
4𝜋𝜋𝜀𝜀0𝑟𝑟2  [

kg⋅m
s2⋅rad2]. (14) 

This force is c2/v1v2 weaker than the Coulomb force. The 
second force in this group arises from the interaction of the 
electric charges of the moving electrons: 

                  𝐹𝐹𝑒𝑒1𝑣𝑣1,𝑒𝑒2𝑣𝑣2 = (𝑒𝑒1𝑣𝑣1−𝑒𝑒2𝑣𝑣2)2

4𝜋𝜋𝜀𝜀0𝑐𝑐̂2𝑟𝑟2  [ kg⋅m
s2⋅rad2]. (15) 

Force (14) disappears when at least one of the electrons is at 
rest. In this case, the force (15) reduces to (14). The Lorentz 
force, which is usually considered in today's physics, 
belongs to the class (14). 

 
The force (13) can be called a "semi-dynamic" force. It 
occurs when one electron is static and only the second 
electron is moving. In present-day electrodynamics, it is 
assumed to be zero. The description of this force and its 
experimental verification can be found in Example 4 [10, 
§2.7]. 
 
In general, a force occurs between moving electrons. The 
force (14) arises as an interaction between magnetic charges 
of two electrons and the forces (15) between two electric 
charges of two moving electrons. This means, in particular, 
that the Lorentz force formula is not sufficient to describe all 
electrodynamic forces. The general formula for these forces 
is obtained in the framework of generalized electrodynamics. 
Let us consider and explain one of three equivalent formulas 
for the forces in generalized electrodynamics, namely (2.4.2) 
in [10]. 
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The interacting bodies here are electrons. 𝐹𝐹 21 is the force acting from electron 2 on electron 1. The symbol of electron q is 
used to denote a set of electrical and magnetic properties. It is convenient when it is not necessary to consider electric and 
magnetic charges separately. If we want to consider separately the forces defined by the interaction of electric and magnetic 
charges, the formula (16) is as follows: 
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Here e1 and e2 are electric charges of the electrons, b1 and b2 are magnetic charges of the corresponding electrons. The magnetic 
and electric charges have opposite sign in the accordance with the definition (10). 
 
Example 
The forces acting on charges can be considered as a pair of forces with a lever as the radius vector ohm. For this pair, the well-
known statement in mechanics about the equality and oppositeness of the moments of force applies. Unlike in the case of a 
lever, however, this moment also exists along the lever (radius vector between the charges). This manifest itself as Newton's 
third law, i.e., radial forces. These forces stretch or compress the radius vector (lever). 
 
Let us look more closely at the analogy with mechanics. The two radial terms in the first curly bracket, the Ampère force, are 
the forces that stretch or compress the rubber stick. These forces satisfy Newton's third law. Two speed terms describe the 
situation with the lever. This pair of forces fulfils the law of symmetry of the moment of force. 
 
What does modern physics have to say about this? The Lorentz force consists of a radial and a velocity term in 
the first vector bracket. It does not satisfy Newton's law or the law of the lever. Whittaker adds another velocity term to the 
Lorentz force. His force already fulfils the law of the lever. So, all magnetic forces have already been described. It is just that 
their inner connection has not been recognized, and the Whittaker formula is hardly known today. 
 
Let us use the example of the magnetic forces. 
Let's write down the trigonometric form that corresponds to (16). 
Let θ1 be the angle between 𝑟𝑟 21 and 𝑣𝑣 1; θ2 is the angle between 𝑟𝑟 21 and 𝑣𝑣 2; θ3 is the angle between 𝑣𝑣 1 и 𝑣𝑣 2; θ4 is the angle 
between 𝑟𝑟 21 and (𝑣𝑣 1 − 𝑣𝑣 2); θ5 is the angle between 𝑟𝑟 21 and (𝑎𝑎 1 − 𝑎𝑎 2); θ6 is the angle between 𝑟𝑟 21 and (𝑣𝑣 1 × 𝑣𝑣 2); θ7 is the angle 
between (𝑟𝑟 21 × 𝑣𝑣 2) and 𝑎𝑎 1; θ8 is the angle between (𝑟𝑟 21 × 𝑣𝑣 1) and 𝑎𝑎 2; θ9 is the angle between (𝑟𝑟 21 × 𝑣𝑣 1) and (𝑟𝑟 21 × 𝑣𝑣 2). Then 

𝐹𝐹 21 = 𝑒𝑒1𝑒𝑒2
4𝜋𝜋𝜀𝜀0𝑟𝑟21

3 𝑟𝑟 21 +

+ 𝑏𝑏1𝑏𝑏2
4𝜋𝜋𝜀𝜀0𝑟𝑟21

3 {−𝑣𝑣 1𝑣𝑣2𝑟𝑟21 cos 𝜃𝜃1 − 𝑣𝑣 2𝑣𝑣1𝑟𝑟21 cos 𝜃𝜃2 + 𝑟𝑟 21𝑣𝑣1𝑣𝑣2(2 cos 𝜃𝜃3 − 3 sin 𝜃𝜃1 sin 𝜃𝜃2 cos 𝜃𝜃9)} +

+𝑏𝑏1𝑒𝑒2 + 𝑏𝑏2𝑒𝑒1
4𝜋𝜋𝜀𝜀0𝑟𝑟21

3 𝑐𝑐2 {
(𝑣𝑣 2 − 𝑣𝑣 1)𝑟𝑟𝑣𝑣1𝑣𝑣2 cos 𝜃𝜃6 sin 𝜃𝜃3

𝑐𝑐 + 𝑟𝑟 21𝑟𝑟21[𝑎𝑎1𝑣𝑣2 sin 𝜃𝜃2 cos 𝜃𝜃7 − 𝑎𝑎2𝑣𝑣1 sin 𝜃𝜃1 cos 𝜃𝜃8]
𝑐𝑐 +

+3𝑟𝑟 21
𝑐𝑐 [(𝑣𝑣1 − 𝑣𝑣2)(𝑣𝑣1 ⋅ 𝑣𝑣2)] cos 𝜃𝜃4 cos 𝜃𝜃6} +

+ 𝑒𝑒1𝑒𝑒2
4𝜋𝜋𝜀𝜀0𝑟𝑟21

3 𝑐𝑐2 {[𝑟𝑟 21(𝑣𝑣 1 − 𝑣𝑣 2)2(1 − 3 cos2 𝜃𝜃4) + 2(𝑣𝑣 1 − 𝑣𝑣 2).𝑟𝑟21|𝑣𝑣 1 − 𝑣𝑣 2| cos 𝜃𝜃4] +
                     +[𝑟𝑟 21𝑟𝑟21|𝑎𝑎 1 − 𝑎𝑎 2| cos 𝜃𝜃5 − (𝑎𝑎 1 − 𝑎𝑎 2)𝑟𝑟21

2 ]}                                                               (16b) 

Let two electrons move along parallel straight lines l1 and l2 with identical and codirectional velocities 𝑣𝑣 1 = 𝑣𝑣 2 = 𝑣𝑣 . The 
angle θ3 between 𝑣𝑣 1 and 𝑣𝑣 2 is zero, so cosθ3 = 1. The angle between vectors (𝑟𝑟 21 × 𝑣𝑣 1) and (𝑟𝑟 21 × 𝑣𝑣 2) is zero, so cosθ9 = 1. 
The angles θ1 and θ2 are equal and both depend on the position of electrons q1 and q2 on lines l1 and l2. Therefore, 
sinθ1 = sinθ2 = sinθ, cosθ1 = cosθ2 = cosθ. 
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Figure 1: Two electrons move along parallel straight lines 
with the same velocity. 
All forces except magnetic are equal to zero. Magnetic force 

𝐹𝐹 21 = 𝑏𝑏1𝑏𝑏2
4𝜋𝜋𝜀𝜀0𝑟𝑟21

3 {−2𝑣𝑣 𝑣𝑣𝑟𝑟21 cos 𝜃𝜃 + 𝑟𝑟 21𝑣𝑣2(2 − 3 sin2 𝜃𝜃)} (17) 

If θ = 0 (Figure 2) 
 

          
 
Figure 2: Two electrons move along one straight lines with 
the same velocity, second charge behind the first. 
those the distance between lines l1 and l2 is equal to zero. The 
direction of the radius-vector 𝑟𝑟 21 coincides with the direction 
𝑣𝑣 1 and 𝑣𝑣 2, the electron q1 is ahead of q2. Then (16b) takes 
the form 
   

         𝐹𝐹 21 = 𝑏𝑏1𝑏𝑏2
4𝜋𝜋𝜀𝜀0𝑟𝑟21

3 {−2𝑣𝑣 𝑣𝑣𝑟𝑟21 + 2𝑟𝑟 21𝑣𝑣2} (18) 

 
The directions of 𝑣𝑣  and 𝑟𝑟 21 coincide, so 

                             𝐹𝐹 21 = 0 (19) 
 
Conclusion: There is no force interaction between the 
electron q2 and the electron q1, which are ahead of q2. 
Later we will talk about the Coulomb interaction between 
electrons, but we will not consider it. Here we are talking 
only about dynamic interaction. 
Let now θ = 90°. 

                
 
Figure 3: Two electrons move with equal velocity on 
parallel straight lines opposite each other. 

𝐹𝐹 21 = 𝑏𝑏1𝑏𝑏2
4𝜋𝜋𝜀𝜀0𝑟𝑟21

3 {𝑟𝑟 21𝑣𝑣2(2 − 3)} = − 𝑏𝑏1𝑏𝑏2
4𝜋𝜋𝜀𝜀0𝑟𝑟21

3 𝑟𝑟 21𝑣𝑣2 (20) 

The force is directed against 𝑟𝑟 21, the electron q1 is attracted 
by q2, as are all electrons q1 on this normal in parallel lines. 
The dynamic force contradicts the Coulomb force. 
 
Now let θ = 180°, the first electron is behind the second 
(Figure 4). 
 

        
 
Figure 4: Two charges move along the same straight line at 
the same speed, with the second charge ahead of the first. 

𝐹𝐹 21 = 𝑏𝑏1𝑏𝑏2
4𝜋𝜋𝜀𝜀0𝑟𝑟21

3 {−2𝑣𝑣 𝑣𝑣𝑟𝑟21 − 2𝑟𝑟 21𝑣𝑣2} = − 𝑏𝑏1𝑏𝑏2
4𝜋𝜋𝜀𝜀0𝑟𝑟21

3 4𝑟𝑟 21𝑣𝑣2 (21) 

Radial and velocity forces have combined to help the 
Coulomb sweep out stragglers; attractive forces overcome 
the Coulomb when 4v2 > c2, i.e., when v is greater than half 
c. The electrons stick together in clusters along l2. This is 
known from experiments. 
 
Consider separately the radial forces 𝐹𝐹 𝑟𝑟 and the velocity 
forces 𝐹𝐹 𝑣𝑣 that make up 𝐹𝐹 21. The radial forces are given in 
parentheses in (16b). They are zero if 

                          2– 3 sin2 𝜃𝜃 = 0. (22) 

           
In the interval (54.7°, 125.3°) 𝐹𝐹 𝑟𝑟 is negative, it attracts the charges q1 which are on the straight line l1 in this interval, which 
contradicts Coulomb's assumption. In the intervals (0°, 54.7°] and [125.3°, 180°) it is positive and supports Coulomb's (Figure 
5). 
 

 
Figure 5: The distribution of forces when two charges move along parallel lines with the same speed. 
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If we let the distance d between the lines l1 and l2 tend to 
zero, we get that in the boundary between the charges q1 and 
q2 only the normal force 𝐹𝐹 𝑟𝑟𝑛𝑛 acts, the tangential radial force 
disappears and cancels each other. If we integrate this local 
force over the entire length of the line l1 and l2, we conclude 
that the current lines l1 and l2 attract each other. Since the 
curly bracket indicating the magnetic field is preceded by a 
coefficient inverse to r3, the attractive force between the 
segments of the streamlines decreases inversely 4πd2ε0 as the 
lines move apart. 
 
The forces 𝐹𝐹 𝑣𝑣 are directed against the velocity of the motion. 
They decrease by 4πd2ε0 as the distance d between the lines 
increases. When θ increases from 0° to 90°, 𝐹𝐹 𝑣𝑣 decreases 
from its maximum value to zero. Here it is directed against 
the velocity of the charges. Then it changes sign and reaches 
its maximum at 180°. 
 
If the velocities 𝑣𝑣 1 and 𝑣𝑣 2 are oppositely directed, then in our 
argument the sign simply changes. If l1 and l2 are isolated 
conductors of current, then they will repel each other. If they 
are currents of free electrons, then electrical forces come into 
play when the velocities change in this way. Instead of the 
difference of the velocities, the sums of the velocities appear 
here so that they are not equal to zero, and this assumption 
was made when considering all the examples. 
 
 
 

Discussion 
Let us assume that the surrounding system consists of a 
closed-circuit L′ through which a direct current I′ flows, and 
consider one of its current elements 𝐼𝐼′𝑑𝑑𝑙𝑙 ′, which can be 
represented as a charge q′ moving with a velocity 𝑣𝑣 ′, under 
the condition q′ = I′dt, 𝑣𝑣 ′ = 𝑑𝑑𝑙𝑙 ′/𝑑𝑑𝑑𝑑. Imagine a test charge q 
moving with velocity 𝑣𝑣 , which is also a current element 
𝐼𝐼𝑑𝑑𝑙𝑙 = 𝑞𝑞𝑣𝑣 . Then we obtain the Grassmann formula [12]: 

𝑑𝑑𝑓𝑓 = 𝐼𝐼⋅𝐼𝐼′

𝑐𝑐2𝑟𝑟3 𝑑𝑑𝑙𝑙 × (𝑑𝑑𝑙𝑙 
′ × 𝑟𝑟 ) = 𝐼𝐼⋅𝐼𝐼′

𝑐𝑐2𝑟𝑟3 {(𝑟𝑟 ⋅ 𝑑𝑑𝑙𝑙 )𝑑𝑑𝑙𝑙 
′ − (𝑑𝑑𝑙𝑙 ⋅ 𝑑𝑑𝑙𝑙 ′)𝑟𝑟 } (23) 

If we substitute the value of the charge for the currents, we 
get 

      𝑑𝑑𝑓𝑓 21 =
𝑞𝑞1𝑞𝑞2
𝑐𝑐2𝑟𝑟213

{𝑣𝑣 2(𝑟𝑟 21 ⋅ 𝑣𝑣 1)⏞      
−3

− 𝑟𝑟 21(𝑣𝑣 1 ⋅ 𝑣𝑣 2)⏞      
−1

} (23a) 

The terms in (17a) are half of the first term and the second 
term in the magnetic part of (16) with reversed sign. 
 
Marinov notes that the force 𝑑𝑑𝑓𝑓  with which the current 
element 𝐼𝐼′𝑑𝑑𝑙𝑙 ′ acts on the current element 𝐼𝐼𝑑𝑑𝑙𝑙  is neither equal 
nor opposite in sign to the force with which 𝐼𝐼𝑑𝑑𝑙𝑙  acts on 𝐼𝐼′𝑑𝑑𝑙𝑙 ′ 
[13]. This is contrary to Newton's third law. To eliminate this 
asymmetry of the Grassmann formula, Marinov assumed 
that the force with which 𝐼𝐼′𝑑𝑑𝑙𝑙 ′ acts on 𝐼𝐼𝑑𝑑𝑙𝑙  and the force with 
which 𝐼𝐼𝑑𝑑𝑙𝑙  acts on 𝐼𝐼′𝑑𝑑𝑙𝑙 ′ can be represented as follows: 

𝑑𝑑𝑓𝑓 = (𝑑𝑑𝑓𝑓 − 𝑑𝑑𝑓𝑓 ′)/2, 𝑑𝑑𝑓𝑓 ′ = (𝑑𝑑𝑓𝑓 ′ − 𝑑𝑑𝑓𝑓 )/2 
 

 
Then, instead of the Grassmann formula, the author obtains the Marinov formula: 

𝑑𝑑𝑓𝑓 = 𝐼𝐼⋅𝐼𝐼′

2𝑐𝑐2𝑟𝑟3 {𝑑𝑑𝑙𝑙 × (𝑑𝑑𝑙𝑙 
′ × 𝑟𝑟 ) + 𝑑𝑑𝑙𝑙 ′ × (𝑑𝑑𝑙𝑙 × 𝑟𝑟 )} = 𝐼𝐼⋅𝐼𝐼′

𝑐𝑐2𝑟𝑟3 {
1
2 (𝑟𝑟 ⋅ 𝑑𝑑𝑙𝑙 

′)𝑑𝑑𝑙𝑙 + 1
2 (𝑟𝑟 ⋅ 𝑑𝑑𝑙𝑙 )𝑑𝑑𝑙𝑙 

′ − (𝑑𝑑𝑙𝑙 ⋅ 𝑑𝑑𝑙𝑙 ′)𝑟𝑟 } (24) 

If we put the value of the charge instead of the currents, we get 

 𝑑𝑑𝑓𝑓 21 =
𝑞𝑞1𝑞𝑞2
𝑐𝑐2𝑟𝑟213

1
2 {𝑣𝑣 1(𝑟𝑟 12 ⋅ 𝑣𝑣 2)
⏞      

−2

+ 𝑣𝑣 2(𝑟𝑟 12 ⋅ 𝑣𝑣 1)⏞      
−3

− 2𝑟𝑟 12(𝑣𝑣 1 ⋅ 𝑣𝑣 2)⏞        
−1

} (24a) 

Formula (24a) is the first, second and third terms in the magnetic part (16) with reversed sign. 
Two other formulas are known for the force with which one current element acts on another current element. The Ampere 
formula, which was established in 1823-25 [14]: 

 𝑑𝑑2𝑓𝑓 = 𝐼𝐼⋅𝐼𝐼′

𝑐𝑐2𝑟𝑟5 {3(𝑟𝑟 ⋅ 𝑑𝑑𝑙𝑙 )(𝑟𝑟 ⋅ 𝑑𝑑𝑙𝑙 
′) − 2(𝑑𝑑𝑙𝑙 ⋅ 𝑑𝑑𝑙𝑙 ′)𝑟𝑟2}𝑟𝑟  (25) 

and the Whittaker formula, obtained by him in 1910 [15]: 

 𝑑𝑑𝑓𝑓 = 𝐼𝐼⋅𝐼𝐼′

𝑐𝑐2𝑟𝑟3 {(𝑟𝑟 ⋅ 𝑑𝑑𝑙𝑙 
′)𝑑𝑑𝑙𝑙 + (𝑟𝑟 ⋅ 𝑑𝑑𝑙𝑙 )𝑑𝑑𝑙𝑙 ′ − (𝑑𝑑𝑙𝑙 ⋅ 𝑑𝑑𝑙𝑙 ′)𝑟𝑟 } (26) 

Substituting the value of the charge instead of the currents, we obtain 

 𝑑𝑑𝑓𝑓 21 =
𝑞𝑞1𝑞𝑞2
𝑐𝑐2𝑟𝑟213

{3𝑟𝑟 12𝑟𝑟212
(𝑟𝑟 12 ⋅ 𝑣𝑣 1)(𝑟𝑟 12 ⋅ 𝑣𝑣 2)

⏞              
4

− 2𝑟𝑟 12(𝑣𝑣 1 ⋅ 𝑣𝑣 2)⏞        
−1

} (25a) 

Formula (25a) is the first and fourth terms in the magnetic part of (16). 

 𝑑𝑑𝑓𝑓 21 =
𝑞𝑞1𝑞𝑞2
𝑐𝑐2𝑟𝑟213

{𝑣𝑣 1(𝑟𝑟 12 ⋅ 𝑣𝑣 2)⏞      
−2

+ 𝑣𝑣 2(𝑟𝑟 12 ⋅ 𝑣𝑣 1)⏞      
−3

− (𝑣𝑣 1 ⋅ 𝑣𝑣 2)𝑟𝑟 12⏞      
−1

} (26a) 

Formula (26a) is half of the first, second, and third terms in the magnetic part of (16). 
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Assis shows the derived force between two-point charges from field theory up to second order in v/c based on the work of 
Liénard, Wiechert and Schwarzschild, which was first obtained by O’Rahilly as [16, 17] 

 𝐹𝐹 21 = 𝑞𝑞1 {
𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑟𝑟2
[�̂�𝑟 (1 + �⃗�𝑣 2⋅�⃗�𝑣 2

2𝑐𝑐2 −
3
2
(�̂�𝑟⋅�⃗�𝑣 2)2

𝑐𝑐2 − 𝑟𝑟 ⋅�⃗�𝑎 2
2𝑐𝑐2 ) −

𝑟𝑟�⃗�𝑎 2
2𝑐𝑐2]} + 𝑞𝑞1𝑣𝑣 1 × {

𝑞𝑞2
4𝜋𝜋𝜀𝜀0

1
𝑟𝑟2
�⃗�𝑣 2×�̂�𝑟
𝑐𝑐2 } (27) 

In this formula q1 is the test charge and q2 is the source charge generating the electric and magnetic fields; �̂�𝑟 = 𝑟𝑟 /𝑟𝑟, and both 
𝑟𝑟  as well as �̂�𝑟 are pointing from q2 to q1. The velocity 𝑣𝑣 2 and acceleration 𝑎𝑎 2 denotes the acceleration of the point charge. If 
we introduce the notation used in our article, we obtain the following expression: 

𝐹𝐹 21 =
𝑞𝑞1𝑞𝑞2𝑟𝑟 21
4𝜋𝜋𝜀𝜀0𝑟𝑟213

 1 2 21
21 3

0

7
5 109 31

1 2 212 2 2
21 2 21 2 21 21 2 2 21 1 2 2 21 13 2 2

0

4

1 3 ( ) ( ) 2 ( ) ( )
24

q q r
F

πε r

q q rr v r v r r a r a r v v v r v
πε r c r

− −−

= +

  
   + −  −  − −  +   

  
                            (28a) 

 
In O'Rahilly's formula, the last term in curly brackets is the 
third term of the magnetic forces (16) with the sign reversed. 
The last term in square brackets is the first term in magnetic 
force (16) with reversed sign. The first term in square 
brackets is the fifth term (the first term in square brackets of 
the electric forces) assuming that the velocity of the first 
charge is zero. This assumption is also valid for other forces 
represented by electric forces in (16). 
 
The second term is the seventh term (the product of the 
coefficient in the third square bracket and the second term in 
parentheses). The third term is the ninth term (the first term 
in square brackets describing the accelerated motion). The 
fourth term is the tenth term (the second term in the same 
brackets in (16)). 
Here is the final formula for the Weber force with which two 
charges act on each other: 

                 𝐹𝐹 = 𝑞𝑞1𝑞𝑞2𝑟𝑟 
4𝜋𝜋𝜀𝜀0𝑟𝑟3

(1 − �̇�𝑟2

2𝑐𝑐2 +
𝑟𝑟�̈�𝑟
𝑐𝑐2) (29) 

Here 𝑟𝑟  is the radius connecting the charges, �̇�𝑟 is the rate of 
change of the distance between the charges, and �̈�𝑟 is the 
acceleration of the change of the distance between the 
charges. If we introduce the following notation 𝑟𝑟 21 = 𝑟𝑟 2 −
𝑟𝑟 1, we get Weber's formula acting from the side of the second 
charge to the first in our notation: 

𝐹𝐹 21 =
𝑞𝑞1𝑞𝑞2
4𝜋𝜋𝜀𝜀0𝑟𝑟213

𝑟𝑟 21 +
𝑞𝑞1𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑟𝑟213 𝑐𝑐2
(𝑟𝑟 21(𝑟𝑟 21(𝑎𝑎 1 − 𝑎𝑎 2))⏞          

9

− 12 𝑟𝑟 21(𝑣𝑣 1 − 𝑣𝑣 2)
2

⏞          
−5

)

 (29a) 
Weber's formula is part of the electric forces. This is the first 
term in the last square bracket and the first term in the first 
square bracket of the electric forces in (16). 
 
 
 

Conclusions 
The formula for the generalized electrodynamic force is 
based on the hypothesis of the existence of a magnetic 
charge of the electron. It generalizes the force formula 
proposed by Neumann (p. 82), Grassmann, Ampère, 
Whittaker (p. 91), Weber, Lorenz [10, 12-15, 18, (2.1.11)]. 
It explains the cluster effect observed in accelerators, the 
experiments of G.V.Nikolaev, P. Graneau and others 
[19,20]. 
 
All of these forces were determined based on experiments, 
so in some cases there are variations in the constant 
coefficients and signs that determine the direction of the 
force. 
 
Let us concentrate on the magnetic forces. They were all 
determined in an experiment with current-carrying wires, 
i.e., under conditions where the electromagnetic forces listed 
in (16) do not occur. Formula (16) is the result of solving 
Maxwell's equations. These solutions describe the electric 
and magnetic fields generated by moving electrons. Do these 
fields agree with the experiment? Let us check this with the 
example of the Lorentz force, which describes the force due 
to the field generated by the second electron. We have: 

𝐹𝐹 = 𝑞𝑞2𝑣𝑣 2 × �⃗�𝐵 (𝑣𝑣2) =
𝑞𝑞1𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑟𝑟212 𝑐𝑐2
[𝑣𝑣 1 × (𝑟𝑟 21 × 𝑣𝑣 2)] =

𝑞𝑞1𝑞𝑞2
4𝜋𝜋𝜀𝜀0𝑟𝑟212 𝑐𝑐2

[𝑟𝑟 21(𝑣𝑣 1 ⋅ 𝑣𝑣 2) − 𝑣𝑣 2(𝑣𝑣 1𝑟𝑟 21)] (30) 

We have obtained two terms of the magnetic forces in (16), 
which agree with the Grassmann force and the magnetic part 
of the O'Reilly force. But (16) contains two more symmetric 
terms 𝑟𝑟 21(𝑣𝑣 1 ⋅ 𝑣𝑣 2) − 𝑣𝑣 1(𝑣𝑣 2 ⋅ 𝑟𝑟 21). In (16) this often looks 
like 2𝑟𝑟 21(𝑣𝑣 1 − 𝑣𝑣 2) − 𝑣𝑣 2(𝑣𝑣 1 ⋅ 𝑟𝑟 21) − 𝑣𝑣 1(𝑣𝑣 2 ⋅ 𝑟𝑟 21).  
Whittaker's formula is very close to this form, but instead of 
2𝑟𝑟 21(𝑣𝑣 1 ⋅ 𝑣𝑣 2) it contains only 𝑟𝑟 21(𝑣𝑣 1 ⋅ 𝑣𝑣 2). In answering the 
question of the reason for the loss of one, as in Whittaker, or 
even two terms, as in Grassmann and O'Reilly, we come to 
the problem of describing electric and magnetic fields at the 
present time. 
 

 

 
Assis shows the derived force between two-point charges from field theory up to second order in v/c based on the work of 
Liénard, Wiechert and Schwarzschild, which was first obtained by O’Rahilly as [16, 17] 

 𝐹𝐹 21 = 𝑞𝑞1 {
𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑟𝑟2
[�̂�𝑟 (1 + �⃗�𝑣 2⋅�⃗�𝑣 2

2𝑐𝑐2 −
3
2
(�̂�𝑟⋅�⃗�𝑣 2)2

𝑐𝑐2 − 𝑟𝑟 ⋅�⃗�𝑎 2
2𝑐𝑐2 ) −

𝑟𝑟�⃗�𝑎 2
2𝑐𝑐2]} + 𝑞𝑞1𝑣𝑣 1 × {

𝑞𝑞2
4𝜋𝜋𝜀𝜀0

1
𝑟𝑟2
�⃗�𝑣 2×�̂�𝑟
𝑐𝑐2 } (27) 

In this formula q1 is the test charge and q2 is the source charge generating the electric and magnetic fields; �̂�𝑟 = 𝑟𝑟 /𝑟𝑟, and both 
𝑟𝑟  as well as �̂�𝑟 are pointing from q2 to q1. The velocity 𝑣𝑣 2 and acceleration 𝑎𝑎 2 denotes the acceleration of the point charge. If 
we introduce the notation used in our article, we obtain the following expression: 

𝐹𝐹 21 =
𝑞𝑞1𝑞𝑞2𝑟𝑟 21
4𝜋𝜋𝜀𝜀0𝑟𝑟213

 1 2 21
21 3

0

7
5 109 31

1 2 212 2 2
21 2 21 2 21 21 2 2 21 1 2 2 21 13 2 2

0

4

1 3 ( ) ( ) 2 ( ) ( )
24

q q r
F

πε r

q q rr v r v r r a r a r v v v r v
πε r c r

− −−

= +

  
   + −  −  − −  +   

  
                            (28a) 

 
In O'Rahilly's formula, the last term in curly brackets is the 
third term of the magnetic forces (16) with the sign reversed. 
The last term in square brackets is the first term in magnetic 
force (16) with reversed sign. The first term in square 
brackets is the fifth term (the first term in square brackets of 
the electric forces) assuming that the velocity of the first 
charge is zero. This assumption is also valid for other forces 
represented by electric forces in (16). 
 
The second term is the seventh term (the product of the 
coefficient in the third square bracket and the second term in 
parentheses). The third term is the ninth term (the first term 
in square brackets describing the accelerated motion). The 
fourth term is the tenth term (the second term in the same 
brackets in (16)). 
Here is the final formula for the Weber force with which two 
charges act on each other: 

                 𝐹𝐹 = 𝑞𝑞1𝑞𝑞2𝑟𝑟 
4𝜋𝜋𝜀𝜀0𝑟𝑟3

(1 − �̇�𝑟2

2𝑐𝑐2 +
𝑟𝑟�̈�𝑟
𝑐𝑐2) (29) 

Here 𝑟𝑟  is the radius connecting the charges, �̇�𝑟 is the rate of 
change of the distance between the charges, and �̈�𝑟 is the 
acceleration of the change of the distance between the 
charges. If we introduce the following notation 𝑟𝑟 21 = 𝑟𝑟 2 −
𝑟𝑟 1, we get Weber's formula acting from the side of the second 
charge to the first in our notation: 

𝐹𝐹 21 =
𝑞𝑞1𝑞𝑞2
4𝜋𝜋𝜀𝜀0𝑟𝑟213

𝑟𝑟 21 +
𝑞𝑞1𝑞𝑞2

4𝜋𝜋𝜀𝜀0𝑟𝑟213 𝑐𝑐2
(𝑟𝑟 21(𝑟𝑟 21(𝑎𝑎 1 − 𝑎𝑎 2))⏞          

9

− 12 𝑟𝑟 21(𝑣𝑣 1 − 𝑣𝑣 2)
2

⏞          
−5

)
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Weber's formula is part of the electric forces. This is the first 
term in the last square bracket and the first term in the first 
square bracket of the electric forces in (16). 
 
 
 

Conclusions 
The formula for the generalized electrodynamic force is 
based on the hypothesis of the existence of a magnetic 
charge of the electron. It generalizes the force formula 
proposed by Neumann (p. 82), Grassmann, Ampère, 
Whittaker (p. 91), Weber, Lorenz [10, 12-15, 18, (2.1.11)]. 
It explains the cluster effect observed in accelerators, the 
experiments of G.V.Nikolaev, P. Graneau and others 
[19,20]. 
 
All of these forces were determined based on experiments, 
so in some cases there are variations in the constant 
coefficients and signs that determine the direction of the 
force. 
 
Let us concentrate on the magnetic forces. They were all 
determined in an experiment with current-carrying wires, 
i.e., under conditions where the electromagnetic forces listed 
in (16) do not occur. Formula (16) is the result of solving 
Maxwell's equations. These solutions describe the electric 
and magnetic fields generated by moving electrons. Do these 
fields agree with the experiment? Let us check this with the 
example of the Lorentz force, which describes the force due 
to the field generated by the second electron. We have: 

𝐹𝐹 = 𝑞𝑞2𝑣𝑣 2 × �⃗�𝐵 (𝑣𝑣2) =
𝑞𝑞1𝑞𝑞2
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We have obtained two terms of the magnetic forces in (16), 
which agree with the Grassmann force and the magnetic part 
of the O'Reilly force. But (16) contains two more symmetric 
terms 𝑟𝑟 21(𝑣𝑣 1 ⋅ 𝑣𝑣 2) − 𝑣𝑣 1(𝑣𝑣 2 ⋅ 𝑟𝑟 21). In (16) this often looks 
like 2𝑟𝑟 21(𝑣𝑣 1 − 𝑣𝑣 2) − 𝑣𝑣 2(𝑣𝑣 1 ⋅ 𝑟𝑟 21) − 𝑣𝑣 1(𝑣𝑣 2 ⋅ 𝑟𝑟 21).  
Whittaker's formula is very close to this form, but instead of 
2𝑟𝑟 21(𝑣𝑣 1 ⋅ 𝑣𝑣 2) it contains only 𝑟𝑟 21(𝑣𝑣 1 ⋅ 𝑣𝑣 2). In answering the 
question of the reason for the loss of one, as in Whittaker, or 
even two terms, as in Grassmann and O'Reilly, we come to 
the problem of describing electric and magnetic fields at the 
present time. 
 



Citation: Klyushin Yaroslav (2023) On the Magnetic Charge of an Electron and the Generalized Electrodynamic Forces. Journal of Physics & Optics Sciences. 
SRC/JPSOS/257. DOI: doi.org/10.47363/JPSOS/2023(5)225

J Phy Opt Sci, 2023                  Volume 5(5): 8-8

in which the first is moving, we already know from experiment. 
Formula (16) describes the interaction of two fields generated 
by two charges.

Let us look at the magnetic forces in (16) in a little more detail. 
They are two radial terms, the second of which corresponds to 
the Ampère force. Radial forces, of course, satisfy Newton’s 
third law. But velocity forces generally do not satisfy this law, 
but the law of moment of forces [2, 10]. 

The authors plan to concentrate their future efforts on the study 
of electromagnetic forces, since they have apparently not yet 
been considered in electrodynamics.
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