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Introduction
We explore the temporal domains in which the Earth’s weather 
and climate systems reside via the analyses of several revealing 
environmental data sets that are sufficiently lengthy and complete 
and which overlap. To pursue that exploration we consider the 
presently accepted characterizations of “weather” and “climate”, 
per se, in addition to “seasonal”, “sub-seasonal” and climate 
“variability”, and climate “trends”. Further, we address how these 
characterizations are determined. The characterizations of these 
general terms may seem obvious but that is not the case across 
the spectrum of the broadly defined atmospheric and oceanic 
communities.

In the AMS “Glossary of Weather and Climate with Related 
Oceanic & Hydrologic Terms” “weather is the state of the 
atmosphere, mainly with respect to its effect on life and human 
activities at a particular time, as defined by the various weather 
elements and consists of short term, minutes to weeks, variations 
of the atmosphere [4,5].” There are no oceanic or hydrology 
definitions of weather in the glossary. The on-line dictionary 

<http//www.Dictionary.com> states, “weather is the state of the 
atmosphere at a place and time as regards heat, dryness, sunshine, 
wind and rain”. Again, there are no comparable definitions of the 
weather of the ocean or of hydrologic weather and the on-line 
dictionary directs the reader to “climate” when one googles the 
“weather of the ocean”.

Geer defines “climate” as “the total of all statistical weather 
information that helps to describe the variation of weather at a 
given place for a specified interval of time” [4,5]. In the AMS 
Glossary, these definitions of weather and climate apply only to the 
atmosphere, although on the cover it states, “with related oceanic 
and hydrologic terms”. The on-line <http//www.Dictionary.com> 
of climate are in keeping with the AMS Glossary. On a seemingly 
similar tact, with an additional caveat, NOAA’s National Center 
for Environmental Information (NCEI) defines climate in terms of 
being “the synthesis of weather of some locality, averaged over a 
span of 30 years, beginning and ending in a calendar year ending 
in ‘zero’. The NCEI synthesis purportedly includes “extremes 
in weather behavior recorded during that 30 year period or for 
the period of record.” This definition has several contradictory 
elements in it. For example, a 30-year average of hourly data will 
not reveal extremes in weather behavior. A “box and whisker” 
decomposition of 30 years of hourly data would provide this kind
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 of information, but not a 30-year temporal average [6].

The above definitions seem logical, in that if you average hourly 
temperatures at a particular location for three consecutive months, 
then you get the seasonal 3- month average. However, the time 
series of various state variables may actually have energy in and of 
itself, at the 3-month period. Therefore, variability in phenomena 
ranging seconds, minutes, hours, days and weeks, may occupy one 
broad peak in the energy spectrum and then there may be spectral 
gaps between two weeks, two months, three months or even 
six months. Two, three and six monthly phenomena may again 
be stand-alone, for example, as the Madden-Julian Oscillation 
propagates and seasons advance and the Earth moves on its axis 
relative to the Sun, with broad spectral peaks. Annually, oceanic 
waters sterically rise and drop every three to six months as a 
function of latitude in response to absorption of the Sun’s radiation 
by the ocean during late Spring to Summer to Fall periods, and 
then the ocean releases its heat to the atmosphere from late Fall 
to Winter to Spring [7,8].There is year-to-year variability in the 
atmosphere and the ocean. Moreover, there are longer period 
forcing such as multi-year, the 11-year and 22-year Solar Cycles, 
and the 18.6-year Lunar Nodal and 19-year Metonic Cycles of 
oceanic astronomical tides [9,10]. Thus, one could argue that while 
mathematically correct, none of the definitions of weather and 
climate cited above, and which ignore seasonal to sub-seasonal 
climate, is physically plausible by extension. Further, there may be 
a fundamental misunderstanding of what actually constitutes the 
weather and climate, and of seasonal and sub-seasonal variability 
therein, of the Earth’s atmosphere and ocean. So what of other 
selected definitions of “weather”?

Orlanski provided an overview of the spatial and temporal scales 
of atmospheric weather phenomena [11]. Orlanski introduced the 
concept of a spectral range, which he extended from “micro” or 
seconds to minutes, “convective” or minutes to tens of minutes, 
“meso-gamma” from tens of minutes to hours, “meso-beta” from 
hours to a day, “meso-alpha” from a day to several days, “synoptic” 
from several days to a week and “planetary” from a week to several 
weeks. The spatial scales associated with the increasing time 
scales, also increased. While in Orlanski’s view, the phenomena 
could interact, he speculated that they co-existed independently 
of each other. No temporal mathematical averaging was necessary 
in his definitions of “weather”.

A view of oceanic short-term to long-term phenomena is in Hill 
and Rahmstorf [12,13]. Oceanic phenomena range extend in 
time and space from capillary waves, surface gravity waves, 
internal waves, the astronomical tides, atmospherically driven 
phenomena  such as fronts, storms and high and low pressure 
systems, seiches, western boundary currents, planetary waves and 
the over-turning meridional circulation belt. Oceanic turbulence 
ranges from the microscale to macroscale to mesoscale, with 
horizontal scales smaller than millimeters (mms) to larger than 100 
kilometers (kms) and vertical scales smaller than mms to larger 
than 100 meters (ms), with temporal scales of milliseconds to many 
months.  However, at smaller scales, the so-called microscales, 
these constraints become weak and turbulent motions cross density 
surfaces. In the upper ocean, microscale turbulence is generated 
by surface winds, air-sea cooling and evaporation. In the ocean 
interior, microscale turbulence develops when internal waves 
develop strong shears and break, much like surface gravity waves.

Regarding the definition of an environmental time series “trend”, 
the Glossary of Weather and Climate is curiously silent, and not 
mentioned [4,5]. However, Geer does present the definition of a 

“normal” as the “average value of a weather element (temperature, 
precipitation, humidity) over a uniform and relatively long interval 
covering at least three consecutive 10-year periods, such as those 
defining the climatological standard normal”. This definition is 
in keeping with the NOAA-NCEI “30-year normal”; in other 
words a static trend. However, intellectually speaking a 30-year 
normal does not constitute a trend. Rather, the 30-year normal is 
a static number, which takes a step, to a new 30-year average, 
every ten years, beginning and ending with a year ending in zero. 
Presumably, the tacit assumption is that one connects the 10 year 
updated average values with a series of lines with differing slopes 
and this constitutes the NCEI trends in environmental data. As 
such, it is just a single one computed and updated every new 
decade ending with a zero, a “static normal”.

In our context, we see no physical reason why a “normal” should 
be a 30-year average and be locked-in as a single, static number 
produced in consecutive ten-year periods ending in calendar 
years ending with a ‘zero”. We believe that the description of 
the “base modality” of a changing environment, as represented 
by a state variable, should represent how that  variable changes 
cumulatively over the length of the period being measured, i.e., 
the entire  time series of the variable. Therefore, we recognize 
the “NOAA normal” as a static number produced as a 30-year 
average, updated every 10 years on a decade ending with a zero. 
We hus prefer to introduce the concept of a “dynamic normal”. 
Our “dynamic normal” would be a mathematically tractable and 
physically meaningful contribution to the definition of a “trend”. 
We define our “dynamic normal” as a moving value that fits a trend 
curve, of a specific environmental time series including all of the 
data collected in the total time series. This begs the question, “How 
do we arrive at such a definition of a trend”? We now review the 
general literature regarding a “trend”.

Several on-line dictionaries, such as <http//www.Dictionary.com> 
offer definitions such as, “a trend is a general direction in which 
something is developing or changing” and Wikipedia (www.
wikipedia.org/wiki/Linear_regression#Trend_line) which defines 
a trend as “the long-term linear movement in time series data after 
other components have been accounted for”. Thus, a trend line 
is drawn through a set of data points, but more properly, their 
position is calculated using statistical techniques such as linear 
regression. Wikipedia also states that a trend as “an inclination 
in a particular direction”. While the Wikipedia definition offers 
more verbiage, the content is essentially the same as that of the 
on-line Dictionary. The James & James Mathematical Dictionary 
definition of a trend is: “the general drift, tendency or bent of a set 
of data” [14]. Chatfiel defines “trend” as “a long term change in 
the mean” [15]. Nevertheless, difficulties with this latter definition 
are what “long term” is and what “the mean” is. Further, how 
can a mean have a trend in it? What if there were variations 
in climatic variables that exhibit a 50-year cycle. What is the 
mean of the 50-146 year cycle? If one were to compute 5 year 
means then the trend would be the line connections of the 10 
points; a purely arbitrary choice. Alternatively, if one had only 
20 years of data, then the 50-year cycle would appear to be a 
trend. However, if there were 120 years of data then the 50 cycle 
would go through two cycles and thus be evident. Therefore, in 
speaking of a “Chatfield trend” we must take into account the 
number and span of observations, and then make a subjective 
assessment as to what constitutes “long term”, but also in how one 
divides a time series into “means” which then create a “trend”. 
Granger  insightfully defined a “trend in mean as comprising all 
frequency components whose wavelength exceeds the length of the 
observed time series” [16]. However, his definition, which showed 
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promise in our estimation, was in the context of economics, and 
thus not recognized by the environmental, geophysical, physical 
or mathematical sciences. In our opinion, all of the definitions 
discussed above are not mathematically well-posed excepting for 
Granger’s, which offered real insight.

In a study of sea level variability and trends, Mitchell et al. and 
Mitchell et al. state that “averaging the water level data over a day, 
a month or a year forces the astronomical tides to be cancelled 
out, leaving behind climate signals”. Actually, left behind from 
such an averaging process is a confused data set. In the words of 
Silver, “you have reduced the signal to the noise” [17]. Likewise, 
averaging weather data is not a recommended approach to de-
convolving the data in an attempt to reveal the internal, intrinsic 
variability buried within a time series of water level data. In 
addition, given the above discussion of how you actually define 
a trend and what the process of de-trending a time series actually 
entails, one cannot easily determine an actual “rate” of sea level 
rise or fall. Prior studies have computed so-called trends of water 
level rise (or falls) using conventional averaging techniques that 
generally lead to a straight line or a series of connected straight-
line segments.  However, in doing so, how is the span of time 
employed in the averaging process determined?  Here, if a time 
series shows no change in the mean, then broadly speaking the 
time series would be “stationary”. Clearly the fact that sea level 
time series have non-zero slopes over record lengths suggests 
that the times series are by intrinsic constitution, “non-stationary” 
and “nonlinear”. The same fundamental principles that apply to 
coastal sea level data, also apply to atmospheric state variable 
data. If you visually interrogate all atmospheric and oceanic 
temperature and water level data sets, and wind time series, there is 
a cross cutting  strong sense of both non-stationary and nonlinear 
temporal variations within the time series. As such, it is not clear 
that any conventional simple averaging process can reflect what 
information is buried in the time series. Therefore, the question 
arises, “is there a mathematically rigorous process that will allow 
a “trend”, yet to be defined, to be calculated?

Wu et al. presented a logical mathematical approach to the definition 
of “a trend” that is appropriate for any continuous time series, 
including those that are non-stationary and nonlinear [18,19]. In 
that work, a trend devolves as an empirically determined function 
within the temporal span of a data set, in which there can be at 
most one extremum. Being intrinsic, the method to derive a trend 
has to be adaptive; that is, it must fit the span of the data. Thus, the 
definition of trend in this publication presumes that a time scale 
exists, dictated by the  temporal span of the data, thus a logical and 
mathematically based definition suggested  previously by Granger 
[16]. All the above requirements suggested to Wu et al. that the 
Empirical Modal Decomposition (EMD) method first presented 
by Huang et al.  As the logical choice for an algorithm that could 
determine the trend in any continuous data set [18-20]. Huang et 
al. employed a Hilbert Transform to decompose continuous time 
series. Moreover, in the process of determining the trend of a data 
time series, internal mode functions (IMFs) of variability buried 
within the time series  are revealed [21,22]. We will pursue this 
approach. We also note that Flandrin et al found occasional cross 
talk between consecutive IMFs [23]. To address this, Wu and 
Huang introduced white noise into the Hilbert Transform (HT) 
and EMD process decomposition, thereby eliminating the cross 
talk and effecting the “Ensemble” EMD or EEMD [19]. The 198 
‘gravest’ intrinsic mode or the lengthiest mode of a time series 
was then determined by employing the EEMD methodology, so 
that there is but one respective extremum, either a  maximum or a 
minimum, in this mode, even though this mode can go up or down 

or up and  down or down and up, in amplitude. They called this 
“gravest mode” the “trend” of the time series. With this definition 
of trend, the variability of the data over intrinsic time scales is 
calculated. We next employ the EEMD method, as presented by 
Wu and Huang to decompose a small set of relatively lengthy state 
variable time series and well-known  planetary climate factors, to 
determine if actual data can help us better understand the  concepts 
of weather, seasonal to sub-seasonal variability, climate variability, 
and trends, and  several relationships therein [19]. It is of note 
that Bothe [24] posed the question “when does weather become 
climate”. We will answer that question.

Data
Data used in our study are representative of atmospheric and 
oceanic state variables covering the suite and spectrum extending 
across high to low frequency phenomena in both the atmosphere and 
the ocean. These data include hourly air temperature, atmospheric 
wind  and coastal water level time series from Charleston, South 
Carolina (SC) and air temperature  data from Fairbanks Alaska 
(AK) and oceanic sea surface temperatures collected via a series  
of National Oceanic & Atmospheric Administration (NOAA) 
GOES satellites. These data are especially key to establishing 
the climate factors utilized in this study. The reasons that  the 
AK and SC data were selected in this study is that the time series 
are continuous and  complete, so that no breaks in the time series 
occurred so no artificial data were introduced. Additionally, while 
many other stations could have been studied, and in fact were, we 
reduced the number to a minimum as the data decompositions all 
showed the same results. Moreover the AK and SC stations are as 
distant from one another as you can get in the U.S.

Higher frequency atmospheric and oceanic data, such as hourly 
samples, are routine in the atmosphere with temperature, pressure 
and other state variable data monitored across the U.S. since 1895, 
and even earlier, and of coastal sea level. This is not the same for 
oceanic time series, with coastal water level data being the most 
consistent and lengthy. In addition  to land based atmospheric data 
and coastal ocean water level data, we also harvested monthly  Solar 
Sun Spot, several well-known climate factor data from the North 
Atlantic and Pacific  Ocean Basins, Global Surface Temperature 
Anomaly (GSTA), Western Boundary Current  (WBC), Oceanic 
Heat and a 17th Century temperature time series from Central 
England (CE). Collectively the data were obtained from NOAA 
NCEI archives, http://www.ncei.noaa.gov/ the Climatic Research 
Unit, UK Meteorology Office, Hadley Centre, 
http://www.cru.uea.ac.uk/cru/info/,http://www.cgd.ucar.edu/
cas/jhurrell/naointro/, html.http://www.esrl.noaa;http://jisao.
washingtonedu/do/PDO.latest, ftp://www.coaps.fsu.edu/pub/
JMASSTIndex/.

We also investigate several time series of climate scale phenomena 
which we obtained from the three sites listed above. We consider 
the time series of Central England (CE), Solar Sun Spot activity, the 
Global Land Surface Temperature Anomaly Time Series (GLSTA), 
Oceanic Heat, the El Niño Southern Oscillation (ENSO), the 
Atlantic Multi-Decadal Oscillation (AMO), the Pacific Decadal 
Oscillation, the Artic Oscillation (AO) and the North Atlantic 
Oscillation (NAO). Monthly data sets are analyzed, as those are 
available from the NCEI website and cover comparable periods to 
the CE time series. The NAO is the normalized pressure difference 
between the Azores and Reykjavik, Iceland. ENSO is a temporal 
scale fluctuation in sea surface temperature and air pressure in the 
equatorial Pacific  Ocean. The AO is an atmospheric circulation 
pattern in which the atmospheric pressure over the Arctic polar 
region varies in opposition with that over middle latitudes [25]. 
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The NAO and the AO are different ways of describing the same 
phenomenon so the AO decomposition is not shown [25]. The 
PDO is the leading principal component of North Pacific monthly 
SST variability, poleward of 20°N. Purportedly, ENSO and the 
PDO have similar spatial climate fingerprints, but very different 
behaviors in time. The Atlantic Multi-decadal Oscillation (AMO) 
is the mean SST between 75˚W and 7.5˚W and south of 60˚N. We 
also consider two very old coastal water level records from San 
Francisco CA and Delfzig, the Netherlands.

Results and Discussion
In Figure 1, the Air Temperature time series and EEMD IMFs for 
Charleston (Top of the Panel is the hourly time series) ranging 
from 0 to 40 °C. In the 73-year hourly time series, we find 18 
Oscillatory EEMD IMF modes and the 19th mode, the overall 
gravest mode, is the trend. The modes are stacked top to bottom 
in order of increasing period (and the range in temperatures in 
°C). Mode 1 is 2-3 hourly (+/-3 °C) Mode 2 is 6-hourly (+/- 5 
°C), Mode 3 is 12 hourly (+/- 10 °C) and Mode 4 is 24 hourly 
(+/-10 °C). Mode 5 is 2-4 days (+/-8 °C), Mode 6 is 5-10 days 
(+/-8 °C), Mode 7 is 1-2 monthly (+/- 8°C), Mode 8 is 3 monthly 
(+/- 8 °C) and Mode 9 is ~ 6 monthly (+/- 3 °C). Mode 10 is yearly 
(+/- 15 °C). Mode 11 is 2-3 years (+/-8  °C), Mode 12 is 3-5 years 
(+/- 2 °C), and Mode 13 is 5-7 years (+/-2 °C). Mode 14 is 10-12  
years (+/- 2 °C), Mode 15 is ~ 20-22 years (+/- 2 °C), IMF 16 is 
32-34 years (+/- 0.5 °C), IMF  17 is ~ 65-70 years (+/- 0.5 °C), 
and Mode 18 is ~ 120-140 years (+/- 0.5 °C), as the first half  of 
a 140 year oscillation. Mode 19 is the 73-year record length trend 
and shows a 2°C rise at the site.

Figure 1: The Air Temperature time series and EEMD IMFs for 
Charleston (Top of the Panel is the hourly time series) ranging 
from 0 to 40°C. In the 73-year hourly time series, we find 18 
Oscillatory EEMD IMF modes and the 19th mode, the overall 
gravest mode, is the trend.

In Figure 2, we see the water level hourly time series and EEMD 
IMFs for Charleston SC (Top of the Panel is the 73 year hourly 
time series) ranging from 0 meters (m) to 4 m. It is of note that the 
tidal range at Charleston is generally less than 2.5 m but one event 
in 1990 upped the overall range record and we chose not to clip the 
data point. There are 18 oscillatory EEMD IMF modes and the 19th 
gravest mode, the trend. The modes are stacked top to bottom in 
order of increasing period (and the range in amplitudes). Mode 1 is 
3-6 hourly, higher harmonics of the M2 Tide (+/-1.0m). Mode 2 is 

the Semi-Diurnal M2 12.42 hourly Tide (+/-2.0m), Mode 3 is the 
inertial signal at ~ 18 hours (+/-0.5m) and Mode 4 is the Diurnal S2 
or 24 hourly (+/-0.5m). Modes 5 and 6 are atmospheric wind driven 
2-4 day (+/-0.5m) and 5-7 day (+/-0.5m), signatures respectively. 
Mode 7 is 14 days or the fortnightly (+/-0.5m) tide. Mode 8 is 
3-monthly (+/-0.2m) and Mode 9 is 6-monthly (+/-0.2m). Mode 10 
is annual (+/-0.2m). Mode 11 is 2-3 years (+/-0.2m), Mode 12 is 
3-5 years (+/-0.05m), and Mode 13 is 5- 7 years (+/-0.05m). Mode 
14 is 11 years (+/-0.05m), Mode 15 is 22 years (+/-0.02m), 16 is  
33 years (+/-0.00002m), 17 is 70 years (+/-0.00005m), and 18 is 
the first half cycle of a 140  year mode (+/-0.00004m). Mode 19 
is the 73-year (record length) trend and shows a water level rise 
of 0.027 m or 0.365 cm/yr. We note that IMF 10 is the “annual” 
mode and is relatively stable with +/- amplitudes of less than 15 
cm. However, in the annually averaged plot (Figure 3a) there is 
a large jump of 25 cm, which occurs in the 1940’s –1950. The 
question is, where is this jump reflected in Figure 4? The answer 
is, in the lower frequency, IMFs of 13–18, all of which are in a 
quasi-decade long upward swing in amplitude.

Figure 2: Hourly Water Level data at Charleston SC dating from 
07/01/1945 through 06/30/2018. The original time series is in the 
top panel. There are 19 EEMD IMF modes presented from Top to 
bottom, in increasing period where IMF 19 is the overall record 
length trend. Units are in Meters.

The Hilbert Energy Spectra (not shown because it requires 
multiple individual figures as a function of frequency bands) 
clearly reveal a spectra continuum with distinct highs and lows 
at periods shorter the very strong signals at 365 days (0.15X10-

5Hz) and at 24 hours  (1.157X10-5Hz). Between a day and a year 
are equally robust signals with periods of 2-10 days, and 2, 3 and 
6 months. This documents a continuum of high frequency short 
period atmospheric variations to lower frequency, longer period 
variability with distinct temporal peaks. One could interpret these 
continua in highlighted bands running through consecutive years 
as “weather” to “seasonal to sub-seasonal” to “annual” variability. 
There are a series of well-defined spectral peaks at 2-4, 5-7, 11, 
22, 33, 70 and 140 years. While the IMFs and the Hilbert (HES) 
spectra indicate changes in amplitude and intensity, representative 
examples of how averages over any time scales can vary are in 
Figure 3.
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Figure 3: Yearly averaged hourly time series of: a. Charleston 
SC; b. San Francisco CA

Figures 3a and 3b, present the time series of yearly average hourly 
water levels for Charleston SC and San Francisco CA. These two 
stations are selected as they are on opposite sides of the U.S. and 
because both have continuously complete, hourly time series. As 
can be seen, one to two year differences of up to 25 cm for the 
overall annual averages of water level are evident. During the 
1920s and into the mid-1930s there were relative lows in both the 
Pacific and Atlantic Ocean basin water level time series as shown 
in Figures 3a and 3b. The San Francisco time series indicates 
that the relative drop started in the mid-1880s. The time series 
then display a 15-year period of rapid rise from the mid-1930s to 
1950, followed by a gradual rise up to the present, with a minor 
slowing over the past decade. These decadal to multi-decadal 
relative drops and rises in the time series are characterized by 
high amplitude, +/- 5 to 20 cm, 1 to 2-year variations. Recall that 
a yearly average, by definition contains all of the internal IMFs 
of variability for that particular year. We will next consider the 
EEMD decomposition of the Charleston water level hourly time 
series and reveal the differences between a “yearly average” and 
an “annual” signal.

We next consider a 70-year hourly temperature data set, from 
Fairbanks AK and subject it to EEMD decomposition (Figure 
4a). Here we find 18 IMFs of temporal variability; including the 
trend as the 18th mode. We find that within the decomposition 
the internal  modes represent: 3-6 hourly; 12 hourly; 24 hourly or 
diurnal; 2-4 days; 6-8 days; 1-2  monthly; 3 monthly; 6 monthly; 
annual; 2-3 years; 5-7 years; 11 years; 22 years; 33 years, and ~ 
65-70 years; for a total of 17 modes in the nearly 69 year time 
series. The 18th mode is the red line in the upper panel. Modes 

9–17 are presented in Figure 4. Using definitions  cited in the text 
above, internal modes 1–6 would be termed “weather” while those 
from 7–11 would be “seasonal” to “sub-seasonal” variability in 
frequency, and 12 through 17 would  be “climate” variability. 
Collectively the 17 oscillating modes constitute a temporally  
modulated continuum of air temperature variability which ranges 
from very high frequency- short period “weather” to seasonal to 
sub-seasonal to annual to inter-annual to decadal to multi –decadal, 
and thus to climate scale variability. In Figure 4, we also see 
modes 7-11 of the Charleston hourly data sets superimposed on 
the Fairbanks AK time series. The overlays are remarkably alike, 
save for Mode C8 from the Charleston data set vs. the Mode 17 
from Fairbanks data set, which is 180° out of phase. Recall that 
Charleston is at latitude of ~ 32.8°N along the southeast coast 
of the U.S. while Fairbanks is at ~ 64.8° N in the far reaches of 
the northwest U.S. This could reflect a flip of the 70-year mode 
in the northern part of the Pacific Ocean Basin (POB) versus 
the southern part of the North Atlantic Ocean Basin (NAOB). 
Missing from the Fairbanks temperature time series is the 140-
year mode. Why, because the time series is a year or two too 
short to capture the first 70 year half of the 140- year oscillation. 
Another question, which Figure 4 vs. Figure 1 addresses, is that 
a temporal  averaging, in this case monthly of the hourly data, of 
the time series of air temperatures at  Charleston does not change 
the lower frequency IMF mode distributions which occur over  
much longer periods of variability and thus are not affected by 
the mathematical monthly  averaging process. This is not the 
case for hourly vs monthly Charleston coastal sea level data, as 
we show later in the text.

Figure 4: EEMD decomposition of the Fairbanks AK hourly 
atmospheric temperature data collected from 01/1946 -11/2014, 
modes 9-17 (note Modes 1-8 are not shown as they are identical to 
those from Charleston SC in Figure 1); b. the EEMD decomposition 
of monthly averaged data from 01/1946-11/2014 at the NWS  
stations in Fairbanks AK (--line) and Charleston SC (--line)

In Figure 5a we present the EEMD of the alongshore wind 
component time series at Charleston. There are 19 modes. Modes 
1-8 are identical to the atmospheric temperature modes shown 
in Figure 1, so not shown. There are 18 Oscillatory EEMD IMF 
modes and the 19th mode, the gravest mode, the trend. The modes 
are stacked top to bottom in order of increasing period (and the 
range in temperatures in °C). Mode 1 is inter-hourly (+/-3) Mode 
2 is 6-hourly (+/- 5), Mode 3 is 12 hourly (+/- 10) and Mode 4 is 
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24 hourly (+/-10). Mode 5 is 2-4 days (+/-8), Mode 6 is 5-7 days 
(+/-8), and Mode 7 is 1-2 monthly (+/- 8). Mode 8 is 3 monthly 
(+/- 8) and Mode 9 is 6 monthly (+/- 3). Mode 10 is annual (+/- 
15). Mode 11 is 2-3 years (+/-8), Mode 12 is 3-5 years (+/- 2), and 
Mode 13 is 5-7 years (+/-2). Mode 14 is 11 years (+/- 2), Mode 
15 is 22 years (+/- 2), 16 is 33 years (+/- 0.5), 17 is 65-70 years 
(+/-0.5), and Mode 18 is 140 years (+/- 0.5), as the first half of 
a 140 year oscillation is evident. Mode 19 is the 73-year record 
length trend and shows about a 2°C rise at the site.

Figure 5: a. EEMD of the hourly alongshore wind component 
at Charleston SC from  12/01/1931-09/30/2011 (the first 8 high 
frequency modes are not shown as they are  identical to Modes 
1-8 in Figure 1); b. HES Spectrum of the Charleston Alongshore  
Wind Time Series presented in the upper panel of (a).

The HES shown in Figure 5b displays rich energetic spectra as 
a function of frequency persisting throughout the entire time 
series. As first presented by Pietrafesa, an FFT  of the same time 
series would show a spectrum with several high frequency bumps 
below 5- 7 days, and then a slow rise into a flat spectrum to lower 
frequencies (< 0.1cpd); not very  revealing. FFTs cannot display 
nonlinear, non-periodic phenomena in any detail [8]. Alternatively, 
in the HES, which deals with nonlinear, non-periodic data, we see 
high to low frequencies at varying energy intensities throughout 
the entire 80-year time series. The HES  energy spectrum suggests 

there are low to high period phenomena represented at all times, 
co-existing, across the entire time series, a manifestation of a suite 
of phenomena with  differing time scales.

We next revisit the EEMD of the Charleston SC hourly water 
level time series, from 1921–2007 (Figure 2). With the hourly 
time series, we found that there are 17 variable modes and a 
trend. Curiously, in this data set, the Metonic Cycle appears to 
be missing. The Metonic Cycle is a period of 19 years that is 
remarkable for being an integer multiple of the solar year and the 
synodic (lunar) month. The Greek Astronomer Meton of Athens 
(5th Century BC) observed that a period of 19 years is exactly equal 
to 235 synodic months and 6,940 days. The difference between the 
two periods (of 19 years and 235 synodic months) is a few hours, 
truly remarkable given the definition of a day and a year. This is 
bothersome that the 19-year cycle appears to be absent. However, 
a closer look at IMF 1 shows  modulations, exactly 19 years long, 
with amplitudes of +/- 2 cm; an important finding. Figure  6 has 
implications or sampling periods of any continuous time series 
and indicates that if you do not have a high enough sampling 
frequency, you could miss very long period, i.e. decadal  to multi-
decadal period, oscillations. It also says that coastal water level 
data contains truly deterministic components; the astronomical 
tides. These are the only deterministic phenomena in the global 
ocean. The spikes shown in the time series presented in Figure 
7 are due to atmospheric wind driven water level events, which 
can reach amplitudes of +/- 90 cm. the atmospheric wind field, 
a stochastic forcing function, is causal and is a strong driver of 
coastal sea level along all coastlines of all continents globally.

Figure 6: EEMD IMF 1 of the Charleston SC hourly coastal water 
level data time series, dating back to 1921, showing the 19-year 
modulation of the decomposition. (Note the missing data point).

The question then arises: Are there naturally occurring phenomena 
which display these 19 internal, intrinsic modes of variability? 
To review, at the high frequency end of the spectrum, in the 
atmospheric, the hourly data, from shorter periods of hours to 
days, should reveal the presence of thermals, fronts, squalls, 
thunderstorms, diurnal variability, mesoscale  events, high and 
low pressure systems, mid-latitude cyclones, tropical cyclones 
extending to  planetary waves, the order of a month, the Madden-
Julian Oscillation of ~ 2 months and then  on to 3 and 6 month 
seasons. Similarly in the ocean, there are hourly internal waves, 
water spouts, higher harmonics of the astronomical tides, tsunamis, 
the Semi-Diurnal Lunar M2  tide, inertial motions, the Diurnal 
Solar S2 tide, several day atmospheric wind driven events  
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listed previously, fronts, 2-12 day Western Boundary Current 
frontal waves, multi-day to several weeks to monthly mesoscale 
eddies, and seasonal steric rises and falls [8]. In the atmospheric 
temperature and wind time series, and in the coastal sea level time 
series, weather phenomena have collectively made their presence 
known in IMFs 1, 2, 3, 4, 5, 6, and 7 while Modes 8, 9 and 10 are 
seasonal to sub-seasonal to Mode 11, which is annual, and Mode 
12 is the U.S. Senate Bill 1331 extent of the sub-seasonal definition 
of 2 years. For Modes 13 – 18, we will investigate some common 
sub-seasonal to multi-yearly to multi- decadal to centennial scale 
signatures, which occur at climate scales.

The monthly data time series and EEMD IMFs of CE, Solar 
activity, the GSTA and ENSO, are shown in Figures 7 a - d. In 
Figure 7a, we consider a time series, collected in a region of 
Central England (CE), dating back to 1659. To our knowledge, 
this is the Earth’s oldest land based, continuous temperature time 
series, available from the Hadley Center. The CE time series and 
its EEMD modal decomposition are in Figure 9 (upper left). IMFs 
of 3 and 6 months, 1-2, 4-7, 11 (the Schwabe Cycle), 22 (the Hale 
Cycle), 33, 65 and 140 years. Solar Sun Spot activity, a potential 
causal agent, displays  IMFs of 3 and 6 months, annual, 4-7, 11, 
22, 65 and 140-year activity; with Modes 3,4,5 all  modulated 
by11 year burst packets. ENSO IMFs 1 -7 of the four separate 
time series are  uniform and reflect periods of 3 and 6 months, 
1-2, 5-7, 11, 22, 33, 65, and 140 years, respectively. The GLSTA 
(and GOSTA and GSTA, not shown) display the same cycles as 
ENSO. The “trends of each time series are shown as red lines.

Figure 7: EEMD IMFs of: a. the 350 year time series of monthly 
temperatures in  Central England (CE); b. Monthly Solar Sun-
Spot activity; c. the GLSTA monthly  time series; d. the ENSO 
monthly time series.

In Figure 8 a – c, we present the EEMD IMFs of the monthly time 
series of the “unsmoothed” version of the AMO, the NAO and the 
PDO. Each climate factor displays the same number and monthly 
to annual to yearly variability in their intrinsic modes as do those 
of the GLSTA (also the GOSTA and GSTA, not shown). We do not 
show the Quasi-Bienniel Oscillation nor the Atlantic Meridional 
Mode as they do not add information to the decompositions shown. 
The PDO is a shorter time series so does not contain the 140-
year cycle shown in the ENSO decomposition. The NAO and by 
association, the AO (not shown) mimic the Solar decomposition, 
as well. The Earth’s atmospheric and oceanic climate variability 
are related to the redistribution of Solar Radiation (read “heat”) 
in temperature and pressure on the planet. The sub-seasonal to 
climate variability of well-known climate factors shows up in land 
and sea temperatures, atmospheric winds and sea level variability.
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Figure 8: a. the AMO; b. the NAO; c. the PDO.

In Figures 9 a and b we present the EEMD IMFs of monthly water 
level of San Francisco  CA and Delfzig, the Netherlands, both 
dating back to the mid-19th Century (1854 for the  former, 1865 for 
the latter). Both locales are on the eastern sides of oceanic water 
basins, San Francisco in the northern Pacific and Delfzig in the 
northern Atlantic. Remarkably, there are  9 IMFs in both monthly 
time series: C1 and C2 are 3 and 6 monthly, respectively, C3 is 
1 4 year, C4, C5, C6, C7 and C8 are 2-4, 5-7, 11, 22 and 65-70 
years, respectively. Modes C8 and C7 are curiously 180o out of 
phase with each other. In the San Francisco and Delfzig IMFs, 
we find the 33-year mode.

Figure 9: EEMD IMFs of Sea level time series from: a. San 
Francisco CA; b. Delfzig, the Netherlands.

In Table 1, we present the EEMD IMF decomposition of the 
weather and climate state variables and several of the well-known 
planetary drivers. IMFs are the Intrinsic Mode Functions. Period 
is the temporal central IMF signal. Time series of Atmospheric 
Temperatures (ATs), Coastal Sea Levels (CSLs) and Coastal 
Alongshore Winds (CAWs) are collected hourly. Central England 
atmospheric temperatures (CE), Solar activity (SUN), the El Nino 
Southern Oscillation (ENSO), the Pacific Decadal Oscillation 
(PDO), the North Atlantic Oscillation (NAO), the Artic Oscillation 
(AO), the Atlantic Meridional Oscillation (AMO), the Global 
Land Surface Temperature (GLSTA), the Global Ocean Surface 
Temperature (GOSTA), the Global Surface Temperature (GSTA) 
and the Western Boundary Current (WBC) time series, are all 
monthly averaged data time series. The Ocean Heat Content 
(OHC) time series is 3-monthly. Table 1 shows that there is ordered 
and consistent structure in the temporal variability of weather and 
climate time series of state atmospheric and oceanic variables. 
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The hourly time series data sets all display 18 IMF modes of variability. The 19th modes are “trends”. As a function of length of the 
time series, the  atmospheric and oceanic monthly time series display up to 11 IMFs, with a 12th, the trend, and the one 3-monthly 
time series (OHC) containing only 6 IMFs and a 7th, the trend.

Table 1
a.IMFs#→ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
b.IMs #→ 1 2 3 4 5 6 7 8 9 10 11
Period→ hr hr hr hr dy dy mo mo mo mo y y y y y y y y
Series ↓
ATs 2-

3
6 12 24 2-

4
5-
8

1-
2

3 6 12 2-
3

3-
5

5-
7

11 22 33 65-
70

120-
140

CE 3 6 12 2-
3

3-
5

5-
7

11 22 33 65 140

CSLs 3-
6

12.42 18 24 2-
4

5-
8

0.5 3 6 12 2-
3

3-
5

5-
7

11 22 33 65-
70

120-
140

CAWs 2-
3

6 12 24 2-
4

5-
8

1-
2

3 6 12 2-
3

3-
5

5-
7

11 22 33 65-
70

120-
140

SUN 3 6 12 4-
7

11 22 33 65-
70

140

ENSO 3 6 12 4-
7

11 22 33 65-
70

140

AMO 3 6 12 4-
7

11 22 33 65-
70

140

NAO 3 6 12 4-
7

11 22 33 65-
70

140

AO 3 6 12 4-
7

11 22 33 65-
70

140

PDO 3 6 12 4-
7

11 22 33 65-
70

140

GLSTA 3 6 12 4-
7

11 22 33 65-
70

140

GOSTA 3 6 12 4-
7

11 22 33 65-
70

140

GSTA 3 6 12 4-
7

11 22 33 65-
70

140

WBC 3 6 12 4-
7

11 22 33 65-
70

OHC 6 12 4-
7

11 22 33

We next consider the relationships between the climate factors that we have considered in Table 1. In Table 2 we present cross-
correlations between the IMFs of the GSTA and climate factors. In Table 3 we present the cross-correlations of the IMFs of the CE 
and climate factors.

Table 2: Cross-correlations between the GSTA (Monthly Ocean + Land surface temperature anomaly IMFs and climate factor IMFs.
AMM AMO AO JMA NAO PDO QBO SUN

Original 0.121 0.4345 0.1648 0.3479 0.0524 0.0915 0.0424 -0.0486
Mode 1 0.0386 −0.0675 0.2129 0.079 0.0196 -0.05430 0.0397 0.0333
Mode 2 −0.0703 0.108 0.2221 0.1415 0.1169 0.0658 0.0872 -0.0642
Mode 3 −0.1304 0.202 0.1739 0.3107 0.0341 0.0093 0.0861 0.0927
Mode 4 0.1321 0.7088 -0.1828 0.574 -0.0137 -0.005 -0.0111 -0.0604
Mode 5 0.3058 0.5533 -0.1606 0.6056 -0.2423 -0.1692 0.1389 0.1595
Mode 6 0.3144 0.2792 -0.1284 0.2921 -0.0809 -0.3103 0.005 0.1463
Mode 7 -0.23870 0.2227 -0.5282 0.2976 -0.171 0.3724 0.0353 0.1086
Mode 8 0.2423 0.1401 0.5863 0.5528 0.3958 0.215 -0.163 -0.8641
Trend 0.5202 0.9982 0.305 0.9999 -0.938 0.7615 0.6548 -0.7213

Citation: LJ Pietrafesa, et al (2020) On The Determinations of Weather, Seasonal, Sub-Seasonal and Climate Scale Variability and Overall Trends in the Atmosphere 
and Ocean. Journal of Earth and Environmental Science Research. SRC/JEESR-121. DOI: https://doi.org/10.47363/JEESR/2020(2)121.



J Ear Environ Sci Res, 2020 Volume 2(2): 10-17

If |r| ≥ 0.074 correlation is considered to be statistically significant (p < 0.05, color = red); If |r | ≥ 0.130 correlation is considered 
to be extremely statistically significant (p < 0.001, color = pink). Number of Samples: N = 718 (Date Range: 1/1950 - 10/2009.).
 

Table 3: Cross-correlations between the monthly central England surface temperature IMFs and climate factor IMFs
AMM AMO AO JMA NAO PDO QBO SUN

Original −0.0175 0.1188 0.2069 0.0708 0.07 0.0432 −0.0782 −0.0205
Mode 1 −0.0091 0.0098 0.2988 0.0455 0.195 0.0291 −0.0855 −0.0532

Mode 2 −0.1037 0.1928 0.0995 0.1616 0.0197 0.1499 −0.2335 −0.0115

Mode 3 0.0854 0.2473 −0.0135 0.0384 −0.0945 −0.1381 0.2731 0.0847

Mode 4 0.0347 0.2137 0.0352 0.0058 0.007 −0.1358 0.1365 −0.0565
Mode 5 0.0857 0.1792 0.3639 0.1972 0.101 −0.0053 −0.0786 0.2364
Mode 6 −0.5748 −0.4658 0.2871 −0.5123 0.1796 −0.3476 0.0824 0.213
Mode 7 −0.2625 0.2612 0.0688 −0.776 −0.2609 −0.6932 −0.5404 0.0342
Mode 8 −0.0484 −0.1692 0.7405 0.744 0.625 0.4741 −0.441 −0.7316
Trend 0.4784 0.9997 0.3506 0.9995 −0.9202 0.7293 0.6906 −0.7151

If |r| ≥ 0.074 correlation is considered to be statistically significant (p < 0.05, color = red); If |r| ≥ 0.130 correlation is considered to 
be extremely statistically significant (p < 0.001, color = pink); Number of Samples: N = 718 (Date Range: 1/1950 - 10/2009).

In Figures 10a and 10b we present the significance levels of the 
cross-correlations in Tables 2 and 3. In Table 2 and the Left Panel 
of Figure 9, the long-term trends of the GSTA and the above 
listed climate factors are highly statistically, correlated. Those 
correlations with the AMO, JMA and NAO are nearly identical, 
though the correlation with the NAO is negative. There are also 
high correlations between the GSTA trend and the AMM, AO, 
PDO, QBO and the SUN, though those with the NAO and SUN 
are negative. The original time series of the AO, JMA and AMO 
time series are significantly correlated with the GSTA. Modes 3 
through 8 of the GSTA and the AMM and AMO are significantly 
correlated. The GSTA is significantly corre- lated with: Modes 
2-8 of the ENSO/JMA; Modes 3–8 of the AMM; Modes 1 - 5 
and 7-8 of the AO; Modes 5, 7 and 8 of the NAO; Modes 5-8 of 
the PDO; Modes 5 and 8 of the QBO; and Modes 5, 6 and 8 of 
the SUN, with 8 negatively correlated.

Figure 10: Blocks of the “r” values of the Cross-Correlations 
between: a. GSTA time series IMFs; b. Central England Surface 
Temperature time series IMFs. Both (a) and (b) versus selected 
Climate Factor IMFs. The 1% and 5% significance levels are 
indicated. If |r| ≥ 0.074 correlation is considered to be statistically 
significant (p < 0.05, color = red); If |r| ≥ 0.130 correlation is 
considered to be extremely statistically significant (p < 0.001, 
color = pink); Number of Samples: N = 718 (Date Range: 1/1950 
- 10/2009).

In Table 3 and the Right Panel of Figure 10, and identical to 
that of the GSTA, the long-term trends of the CE and the above 
listed climate factors are highly statistically, correlated. Those 
correlations with the AMO, JMA and NAO are almost identical, 
though the correlation with the NAO is negative. There are also 
high correlations between the CE trend and the AMM, AO, PDO, 
QBO and the Solar Cycle, though those with the NAO and Sun 
are negative. The original time series of the CE time series is 
only significantly correlated with the AO. The CE IMF modes 
are significantly correlated with: Modes 5 and  6 of the AMM; 
Modes 2 - 8 of the AMO, with Modes 6 and 8 negatively; Modes 
2 and 5  - 8, of the ENSO modes, with 6 and 7 being negative; 
Modes 1, 5, 6 and 8 of the AO; Modes  1 and 6 - 8 of the NAO, 
with 7 negative; Modes 2 - 4 and 6- 8 of the PDO, with 3, 4, 6 and  
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7 negative; Modes 2, 3, 4 and 7, 8 of the QBO, with 2, 7 and 8 
negative; and Modes 5, 6 and 8 of the Sun, with Mode 8 negative.
In Figures 11a, b, we present the time series and EEMD 
decompositions of water levels at Sewell’s Point VA and Atlantic 
City NJ. Curiously, the VA coastal time series displays 8 IMFs 
while the NJ IMFs show 9. The NJ time series is 5 years longer 
than that of VA and displays a nearly record length mode; which 
cannot show up in the VA time series for lack of length of time. 
Here, several authors have claimed that Gulf Stream Current 
(GSC) lateral meanders could directly contribute to coastal sea 
levels along the eastern seaboard. Several studies contend that 
there was an influence of the Gulf Stream on coastal sea level at 
Charleston SC and at Sewell’s Point VA, respectively, but Atlantic 
City is not mentioned in those studies [26,27]. In the grand scheme 
of effecting variability  in coastal sea level, the GSC is 150 km 
offshore of Charleston, and since the e-folding width  influence 
of the GSC only extends about 20 kilometers coastward it cannot 
dynamically affect water levels at Charleston [28]. This would 
seem to demonstrate a lack of correlation between the GSC’s 
shelf position and coastal sea level; save for Cape Hatteras per 
se which is within 20 km of the GSC there. The Sweet et al study 
did not consider an especially wet spring in the coastal domain of 
SC in the period of  the study, June-July 2009, which is believed 
(National Weather Service Forecast Office, Charleston, p.c.) to 
have accounted for the rise in sea level in Charleston; which is at 
the  confluence of three rivers [26]. Likewise, while the Ezer et al 
study presents a case for GSC induced variability in water level 
variability in the Chesapeake Bay system, in the  publication, there 
is a focus on the water level record from Baltimore MD, which 
is some  300 km upstream from the mouth of the Bay [27]. That 
water level record is more likely affected by local precipitation 
and river watershed flow variabilities, and then from the GSC, 
which is ~ O (400 km) away from Baltimore.

To determine if the GSC, could have an influence on coastal sea 
level along the U.S. Atlantic Eastern Seaboard, we consider a 
3-monthly time series of GSC transport through the Florida Straits. 
We present the EEMD IMFs of the 30-year GSC time series in 
Figure 12a along with a contemporaneous North Atlantic Ocean 
Basin Heat Content plot down to 700m, Figure 12b. In Figure 12a 
we find that the 40 year time series of the GSC reveals a rich 25- 
40 Sverdrup (1 Sverdrup = 106m3/s) transport. IMF mode C1 is 3 
months, C2 is 6 months, C3 is 1 year and C4 is 2-4 years. C5 is 11 
years from 1982-1994 and then from 1995 to 2012 transitions to 
5-7 years. C6 is 15 years and C7 is 22 years. C8, the trend appears 
to be relatively flat but could actually be the first half of a 60-70 
year cycle. In Figure 12b we see  that the 55-year, 3-monthly 
averaged time series of North Atlantic Ocean Basin Heat Content 
time series displays IMFs of 6-monthly, annual, 2-4, 11, 22 and 33 
years. Here we have evidence that Heat Content may be the source 
of the enigmatic 22 and 33-year signals that manifest themselves 
variously in the Coastal Sea Level records alluded to in Figures 
2, 10 and 11. The trend is ~ of 1.5 (1023) Joules, a significant rise 
over the 55-year heat content record. It is of note here that the 
Pacific Ocean Basin Heat Content map (not shown) also reveals 
22 and 33-year signals. Moreover, the 30- year record that we have 
presented does not indicate any record-length- trend increase or 
decrease in transport; and thus no contribution to long-term sea 
level variability or trends unless the slight bubble in the trend  is 
actually the first half of a 60-70 year cycle. Figure 11: EEMD IMS of coastal water level time series at: a. 

Sewell’s Point VA; b. Atlantic City NJ
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Figure 12: EEMD IMFs of: a. GSC monthly time series collected 
in the Florida  Straits; b. the North Atlantic Ocean Basin Heat 
Content down to 700 m.

From a climate perspective, the increased heat content and 
the warming of the surface  waters of the North Atlantic and 
Pacific Oceans suggests that the Atlantic Meridional Ocean  
Circulation (AMOC) should have slowed down, thus calling 
for an acceleration in GSC, but  no such response is evident in 
the GSC time series. The closeness of the Gulf Stream to Cape 
Hatteras NC suggests that coastal sea level at the site could be 
affected by Gulf Stream lateral motions. However, Pietrafesa et al 
found no such relationship in a large field program conducted in 
the Cape Hatteras Confluence. Lateral swings in the Gulf Stream 
downstream  (to the north) of Cape Hatteras from a more westward 
shelf-break hugging mode to an  offshore mode were discussed in 
Bohm et al  but there again, no effect of the Stream  lateral locale 
on coastal water levels downstream of Cape Hatteras was evident.

Figures 13 a, b present a composite of representative temperature 
and coastal water level trends. The water level trends are normalized 
to zero for representative comparisons. Table 2 summarizes the 
trends. Throughout the U.S. there are great variations in air 

temperature and coastal water level trends from city to city in 
the U.S. For example, Grand Rapids SD and Fairbanks AK air 
temperatures have increased at more than double the U.S rate 
and four times the GSTA, while those of Asheville NC, at the 
peak of the mid-latitude Appalachian Mountains and Honolulu 
HA, in the middle of the Tropical Pacific Ocean, are at the global 
rate of warming. Again, these trend calculations are not possible, 
other than be employing HHT and EEMD. Sea level rates of rise 
are clearly very variable as a function of locale, around the U.S. 
coastlines of the Eastern Seaboard, the Gulf of Mexico, the Pacific 
Coast, including Alaska and Hawaii and Holland. Sewell’s Point 
VA, Atlantic City NJ and Galveston TX are relative “hot spots”. 
There is a strong grouping of stations including  Pensacola FL, 
Charleston SC, San Diego CA, San Francisco CA, Boston MA 
and Delfzig  Holland (the Netherlands), and then with lower rates 
of rise in Honolulu, HA and the South  China Sea. The differing 
rates of sea level rise have much to do with regional to local 
scenarios, such as groundwater removal, river sediment loading, 
year-to-year variations in seasonal steric adjustments, increases 
and decreases in precipitation and subsequent river discharges, 
and so on. What is clear is that, as shown by the GOSTA rate of 
warming, the Global Ocean is the regulator or thermostat of the 
planetary global surface temperatures; comparing the GLSTA to 
the GOSTA to the GSTA as presented in Table 3.

Figure 13: a. Temperature trends for the Global Ocean, the 
Global Land- Atmosphere, the Global Ocean + Land-Atmosphere, 
Boulder-Colorado, Asheville –North Carolina, Sioux City–South 
Dakota, Miami-Florida, the Continental States of the U.S.A. 
multiple in-situ station locations; b. Coastal water level trends 
for multiple in-situ station locations.

Citation: LJ Pietrafesa, et al (2020) On The Determinations of Weather, Seasonal, Sub-Seasonal and Climate Scale Variability and Overall Trends in the Atmosphere 
and Ocean. Journal of Earth and Environmental Science Research. SRC/JEESR-121. DOI: https://doi.org/10.47363/JEESR/2020(2)121.



J Ear Environ Sci Res, 2020 Volume 2(2): 13-17

In Table 4 we display record length trends, respectively for record 
length global air and ocean surface temperatures and for specific 
representative cities in the U.S. and for coastal sea levels. It is 
of note here that by employing HHT and EEMD we are able to 
compute record length trends, which are distinct from the end-
points of the various time series. The end-points contain all of the 
onset and final values of the nonlinear time series and are revealed 
in the decomposition. This is a great virtue of HHT and EEMD.

Table 4: Trends of Selected Temperatures and Selected Sea 
Levels
Temperatures (T) °C/Decade Sea Level (SL) mm/Decade
Global Ocean 
Temperature

0.058 Atlantic City NJ 0.459

Global Land 0.102 Boston MA 0.300
Global Ocean + Land 0.067 Charleston SC 0.280
Continental US 0.138 China Sea 0.432
Asheville NC 0.072 Delfzig Holland 0.261
Boulder CO 0.171 Galveston TX 0.612
Grand Rapids SD 0.269 Honolulu HA 0.140
Miami FL 0.110 Pensacola FL 0.210
Fairbanks AK 0.279 San Diego CA 0.204
Honolulu HA 0.081 San Francisco CA 0.174

We next look at several revealing plots in keeping with the cross-
correlation analyses and the EEMD IMF decompositions revealed 
previously in the text; therein comparing several climate factors to 
each other and to state variables. We shall pursue that approach and 
consider a series of global to regional time series of atmospheric 
and oceanic temperatures, coastal water level data, and wind data. 
We again note that precipitation data are available for relatively 
long time series but are dominated by zeros and are thus difficult 
to work with  mathematically unless monthly data are used, and 
that compromises the high frequency portion of the spectrum. We 
first compare the yearly averages of the AO to the NAO and PDO 
to ENSO, all shown to be of importance in global temperatures. 
The AO and NAO, Figure 14a, overlay in amplitude and are 
phased-locked. ENSO and the PDO, both Pacific Ocean Basin 
phenomena, Figure 14b are quite similar, but not identical in 
amplitude and phase.

Figure 14: Annual averages of: a. AO vs. the NAO; b PDO vs. 
ENSO.

The AO (or Northern Annular Mode/Northern Hemisphere Annular 
Mode, NAM) and  NAO are indices which vary over time with 
no particular periodicity of the dominant pattern  of non-seasonal 
sea-level pressure variations north of 20°N latitude provided in 
the literature [25]. The authors find that the AO is supposedly 
characterized by pressure anomalies of one sign in the Arctic with 
the opposite anomalies centered about 37°–45°N. However, we 
find that positive and negative phases of the AO and the NAO 
more likely determine the degree to which Arctic air penetrates into 
middle latitudes and are  defined by surface atmospheric pressure 
patterns and that there are very distinct intrinsic well-defined modes 
of variability buried within the data set. The AO and NAO are 
zonally and meridional symmetric and sea-saw’s between sea level 
pressures in polar and temperate latitudes. When the AO index is 
positive, surface pressure is low in the polar region. This enhances 
the middle latitude Jet Stream to blow strongly and consistently from 
west to east, thus keeping cold Arctic air locked in at higher latitudes. 
When the AO index is negative, there is high pressure in the polar 
region, weaker zonal winds, and greater movement of frigid polar 
air into the middle latitudes. In Figure 16b we see that there appear 
to have been several climate factor shifts in both records in the 
mid-1970s and then again at the turn of the century from the 20th to 
the 21st. These Pacific Ocean Basin wide shifts could have resulted 
in significant wind stress patterns across the Pacific in addition to 
steric rises and falls along and across the Pacific. We will test this 
observation. Consider Figure 15a, b in a plot of annually averaged 
sea level at San Francisco vs. ENSO and the PDO.

Citation: LJ Pietrafesa, et al (2020) On The Determinations of Weather, Seasonal, Sub-Seasonal and Climate Scale Variability and Overall Trends in the Atmosphere 
and Ocean. Journal of Earth and Environmental Science Research. SRC/JEESR-121. DOI: https://doi.org/10.47363/JEESR/2020(2)121.



J Ear Environ Sci Res, 2020 Volume 2(2): 14-17

Figure 15: Annual averaged San Francisco sea level vs.: a. the 
ENSO; b. the PDO

Figure 15 suggests that sea level along the west coast of the 
U.S. (east coast of the Pacific  Ocean Basin) can be enhanced 
or suppressed by the order of 10 to 20 centimeters from year  to 
year, in association with wind fields changing in keeping with 
ENSO and the PDO. Obviously, these pattern shifts also must 
have resulted in Pacific Ocean Basin wide adjustments to its 
thermohaline field and its thermocline. The apparent trends of 
both the PDO and ENSO to colder (warmer) phases foreshadow 
relative overall drops (rises) in eastern Pacific coast sea level 
and rises (drops) in western Pacific coast sea level. The Pacific” 
Latitudinal Sea Level Sea Saw” is functioning. Nevertheless, all 
other climate factors must be considered.

Figure 16: Yearly Sea Levels vs the Global Ocean Temperatures: 
a. Atlantic City vs. GOSTA; b. San Francisco vs. GOSTA

We recall that in Table 2, that if the “r” factor was such that |r 
| ≥ 0.130, then the correlation was considered to be “extremely 
statistically significant”. Further, the GSTA (GLSTA and GOSTA 
by association) IMFs vs. the AO IMFs were all high, ranging from 
0.13 to 0.59. Therefore, we now use the GOSTA as a surrogate 
and compare the annually averaged water levels at Atlantic City 
NJ to the GOSTA. If temperatures are relatively high in the North 
Atlantic Ocean Basin then water levels are also relatively high 
along the coastlines (Figure 16a). The same is true in the Pacific 
Ocean Basin (Figure 16b). However, we next drill down further 
to see if in addition to the steric rises and falls of the Atlantic 
and  Pacific Ocean Basins, if there are manifestations of daily to 
monthly to seasonal to yearly to decadal to multi-decadal water 
level variability as a function of coastal alongshore winds. This 
would be in keeping with the findings of Chao and Pietrafesa and 
Pietrafesa et al [28].

In Figures 17a and 17b, we see that the EEMD IMFs of sea 
level and alongshore winds at Charleston have virtually identical 
decompositions, excepting for the trends (red lines in the top 
panels), over the time scales of the 60 year record shown. In 
Figure 17c we see that the correlation of sea level vs. alongshore 
winds is highly inversely correlated over all time scales over a 
65 year period. They are in harmony with sea level rises and 
falls following the wind. The winds do not show record length 
increases or decrease while sea level does; provided in Table 3. 
On the daily time scale, as shown in Figure 18a, daily averaged 
alongshore winds drive daily averaged water levels; with the 
caveat of an 8-hour lag as first reported by Chao and Pietrafesa 
[28]. If the winds blow with the coast to the left (right) coastal 
sea level will fall (rise). This is in keeping with the wind-sea level 
correlation in Figure 17c.
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Figure 17: a. EEMD IMFs of monthly Alongshore Coastal Winds 
at Charleston; b. EEMD IMFs of Water Level at Charleston; c. 
Moving Correlation of Water Level time series vs. Alongshore 
Coastal Wind time series shown in the uppermost lines of (a) 
and (b).

In the daily to climate scale spectrum of sea level variability, in 
Figure 18b we find that coastal sea levels along the northeastern 
seaboard of the U.S. and that of Holland align with the rise in 
heat in the North Atlantic Ocean Basin over climate scales. The 
water levels along both sides of the meridional boundaries have 
moved upward in concert with the rise of the North Atlantic Ocean.

Figure 18: a. Daily Alongshore Winds and Water Levels at 
Charleston; b. Sea Level Trends at selected U.S. and Holland 
stations vs. North Atlantic Ocean Basin Heat Content (down to 
300 meters).

Conclusions
We have harvested and interrogated a multitude of atmospheric 
and oceanic state variables and Solar - Earth system lengthy time 
series. Using an intrinsic mode decomposition methodology, the 
HHT-EEMD, we revealed internal modes of temporal and spatial 
amplitude and frequency - modulated variability signals across 
the ranges of higher frequency “weather” to lower frequency 
“seasonal” to “sub-seasonal” to very low frequency “climate” 
scales. The modes document the existence of an Earth planetary 
weather to climate sequence common across the families of 
atmospheric and oceanic temperatures, atmospheric pressure, 
and coastal water levels, in-kind. “weather” ranges from minutes 
to hours to days  to weeks, as shown in Table 1. Also shown in 
Table 1, seasonal variability ranges from two, three and six months. 
Sub-seasonal extends from annual to inter-annual, 2-4, 4-7 and 
5-7 years. Lower frequency, climate variability signals are 11, 
22 and 33 years. Longer period climate signals are 65-70 and 
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120-140 years. The Global Ocean, with the enormous capacity 
of seawater to absorb and retain heat has acted as the planet’s 
throttle and modulator. However, the Oceanic Heat Content has 
been driven upward by the fact that 19 of the warmest years on 
record have occurred in the past 20 years. The atmosphere is the 
planetary delivery system.

Our findings regarding the Earth’s weather to climate system are 
instructive in the  construction of the atmospheric and an oceanic 
phenomenology temporal Table 1; which provides definition to 
the spectrum of weather to seasonal to sub-seasonal to multi-year 
at decadal to multi-decadal to centennial variability in the Earth’s 
atmosphere and ocean. The Thermohaline Circulation or Global/
Great Ocean Conveyor Belt is the lower low frequency oceanic 
redistribution system, related to Solar activity at that period.

Thus, we show that atmospheric and oceanic variability are the 
result of a suite of nonlinear and non-stationary phenomena that 
are individually identifiable and are occurring simultaneously and 
inter-actively. We propose that the weather to climate spectra in 
both the atmosphere and the ocean, actually constitute an over-
lapping continuum, with shorter period oscillations riding atop 
longer period oscillations and then atop overall record length 
trends; that is that they are multi-scale. Therefore, we propose 
that for the atmosphere and the ocean, the terms weather, seasonal 
and sub-seasonal variability, and climate variability, are all 
distinctly separate harmonics, with well-defined frequency and 
amplitude modulated banded peaks across a spectrum of multi-
scaled phenomena. Weather resides at the high frequency end 
of the spectrum and climate is at the low frequency end of the 
spectrum. Seasonal and sub-seasonal variability are everything 
in between. The phenomena are distinct but interactively coupled 
and collectively they run the gamut from what we commonly 
refer to as weather to climate riding atop record length trends. In 
final summary we point out that we have addressed and answered 
Bothe’s question of “when does weather become climate”. Our 
answer is that weather and climate are distinct in the overall 
continuum of weather to climate [29-38].
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