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Introduction
The basic reproductive number,(R0), is the expected number of 
secondary infections produced by a single individual during his or 
her entire infectious period, in a completely susceptible population. 
This concept is fundamental to the study of epidemiology, within-
host pathogen dynamics and host-pest interaction (Rong et al., 
2020) [1]. It is the most important idea that mathematical thinking 
has brought to the theory of epidemic and a key concept in bio-
mathematics and epidemiology (Rong et al., 2020) [2-3]. The 
basic reproduction number is also a threshold condition used to 
determine whether an infectious disease will spread or not in a 
completely susceptible population when the disease is introduced 
into the population  [3]. The zero in “R zero” means that the basic 
reproduction number is estimated when there is zero immunity 
in the population, even though not everyone will necessarily 
be susceptible to infection, which is the usual assumption. 
Therefore, in an epidemic with a completely new virus, the earlier 
the measurements are made the nearer the calculated value is 
likely to be to the true value of R0, assuming high-quality data 
are available [4-5].

In demography, R0 denotes the proportion of the total population 
from the beginning to the end of a generation. Thus, in epidemic 
models, generation refers to the subsequent infection waves 
that result from each initial infection. In other words, the first 
generation of an epidemic is comprised of all secondary illnesses 
that occur from infectious contact with the index case  [6]. Thus, 
if Ri represents the reproduction number of the ith generation, R0 
is the number of infections created by the index instance (zero 
generation). Thus, R0 may alternatively be defined as the anticipated 
number of secondary cases generated by generation zero [6]. As a 
broad definition, R0 is the predicted number of secondary people 

created throughout the lifespan of a given person. In the fields of 
demography and ecology, R0 refers to the lifetime reproductive 
success of a typical member of the species [1]. In epidemiology, R0 
is used to indicate the number of susceptible persons infected by 
a single sick individual for the duration of the infectious period in 
a population that is completely susceptible. For in-host dynamics, 
R0 is the amount of fresh infected cells created by a single infected 
cell over the course of its lifespan, supposing that all other cells 
are susceptible [2].

The basic reproduction number is an important indication for 
transmission hazards and illness prevention (Rong et al., 2020) [7]. 
Given that the magnitude of R0 may be used to assess the amount 
of effort necessary to avoid an epidemic or eradicate an illness 
from a community, it is crucial to estimate R0 for a specific disease 
in a given population. Thus, if one person contracts the virus and 
transmits it to two others, the R0 equals two. If the population’s 
average R0 is larger than 1, the virus will spread exponentially; 
however, if R0 is less than 1, the virus will spread slowly and finally 
die out. Consequently, the greater the value of R0, the quicker an 
epidemic will spread [4,8]. Consequently, it is evident from the 
definition of R0 that when R0<1, each infected person generates, 
on average, fewer than one new infected individual, and it is 
possible to anticipate that the infection will be eradicated from 
the population over time. If R0>1, it is possible for the disease to 
infect the vulnerable population.

The basic reproduction number is influenced by the size of 
the population and the proportion of susceptible individuals at 
the onset, the infectiousness of the organism, and the rate of 
disappearance of cases through recovery or death, the former 
of which is dependent on the length of time an individual is 
infectious. The bigger the population, the greater the number of 
susceptible individuals, the more infectious the virus, and the 
greater the R0 for a specific virus. The R0 value for a specific virus 
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ABSTRACT
The basic reproductive number (R0) is a threshold parameter for a population-level model of infectious disease control. The basic reproduction number 
is derived by epidemiologists using different techniques. It is used to estimate the basic reproductive rates of infected and susceptible hosts and to 
guide intervention strategies. In this paper, we give an overview of the methods used in the derivation of R0 and assess the use of R0 in the literature. 
Finally, we discuss some of the limitations and alternatives to the basic reproduction number that have been identified in the literature. The main 
contribution of this paper is to provide a guideline and shed light on the basic reproduction number to mathematical modellers and policy makers 
in order to prevent the possible blown out of the epidemic in the susceptible population.
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will decrease when the rate of elimination of infected people from 
the population increases [4].

To stop endemic equilibrium from being attained, it is crucial to 
establish which control measures and at what magnitude would be 
most successful in decreasing R0 below 1, based on the preceding 
definition, this can be achieved by performing optimal control on 
the model in order to identify the most efficient and cost effective 
way of controlling the disease. This will serve as a crucial guideline 
for public health activities aimed at preventing the epidemic’s 
likely spread among the vulnerable population. The size of R0 is 
also used to assess the likelihood of an epidemic or pandemic in 
emerging infectious diseases (Hoffmenn et al., 2005).

The basic reproduction number should not be confused with the 
effective reproduction number (Re), sometimes referred to as 
(Rt), which is the number of persons in a population that may be 
infected at any given moment by a single individual. It varies 
as the community gets more immunised, either via individual 
immunity after illness or through vaccination, and as individuals 
die. effective reproduction number is modified by the number of 
infected persons, the number of susceptibles with whom infected 
people come into touch, and people’s behaviour, such as social 
distance [4-5].

The trend of R0 over time is a measure of the success of control and 
preventive efforts in a community, and the objective of controlling 
an epidemic is to lower and maintain reproduction numbers below 
1 (Khosravi et al., 2020). The biological potential of an agent 
influences R0, but also depends on the rate of population contact 
and the duration of infectiousness. It may be used to predict and 
model infectious disease propagation in populations (Khosravi et 
al., 2020). This work aims to provide an overview of the techniques 
used to calculate the basic reproduction number and evaluate the 
applications of R0 in epidemiology. Finally, we discuss some of 
the limitations and alternatives to R0 that have been identified in 
the literature.

Methods of Deriving Basic Reproduction Number (R0)
There are several different methods in which R0 can be derived. 
These procedures vary depending on the kind of model and their 
intended use. Many approaches provide different R0 values for 
the same model, and many of the ways produce different R0 
values depending on what the modeler deems suitable. Each 
approach takes its criteria from the threshold nature of R0; yet, 
several of these ways provide a value that is inconsistent with the 
biological definition. It is crucial to recognise that utilising one 
of the procedures at random does not guarantee a certain number 
of secondary infections resulting from a single affected person.

Calculating R0 form a Deterministic Model
The derivation of R0 from a deterministic model is fairly 
straightforward from first principles. The survival function method 
is applicable even when non-constant transmission probabilities 
between classes are assumed. For compartmental models of 
infected individuals, the next-generation operator can be used. 
However, we note that the definition of R0 may have more than 
one possible interpretation in the multi-class system.

The Survival Function Method
Heesterbeck and Dietz, (1996) derived the R0 using the survival 
function approach from the first principle [9]. The derivation was 
further summarized by Hoffmenn  et al.. (2005). They proceeded as 
follows: Let F(a) be the probability that a newly infected individual 

remain infectious for at least time (a) and b(a) be the average 
number of newly infected individuals that an infectious individual 
will produce per unit time when infected for total time a, then R0 
is given by: 

                                                                                    (1)

This method makes it easy to handle circumstances in which the 
infectivity is time-dependent or other transmission probabilities 
across states vary over time. Not only systems characterised by 
ordinary differential equations may benefit from this R0 derivation. 
Additionally, the approach can be used to explain models in 
which a number of stages are involved in the reproduction of 
infected people. Nevertheless, it may be challenging to compute 
the individual probabilities, especially when several states are 
involved.

Although the survival function approach reliably produces the 
correct R0, it is difficult to implement in practice. This is particularly 
true for sufficiently complicated models, which are often the most 
used. In addition, expanding the survival function approach to 
infection cycles spanning three or more generations makes its 
derivation more challenging (Hethcote Tudor, 1980; Lloyd, 2001b; 
Huang, 2003). Numerous writers, like Luz et al. have used this 
technique to calculate the basic reproduction number [10]. They 
used R0 to quantify the likelihood of dengue fever outbreaks in 
Rio de Janeiro and to evaluate potential control methods.

The Next-Generation Method
 In circumstances when the population is separated into discrete 
classes or discontinuous classes, Van den Driessche and Watmough 
(2002) presented a more rigorous next-generation method to 
derive R0. Thus, among other things, the next-generation operator 
can be applied to models with underlying age structures or 
spatial structures. The next generation matrix’s spectral radius 
is described in this way as the R0. In order to create the matrix, 
two compartments from the model infected and non-infected 
must be identified. Van den Driessche and Watmough (2002)’s 
next-generation matrix method follows the following steps: Let 
n be the compartments in which m compartment are infected, 
such that the vector x = xi, i=1,…n where xi denotes the number 
of individuals in the ith compartment. Also, let Fi (x) be rate of 
appearance of new infections in compartment i and
                                       
                                       where      is the rate of transfer of  

individuals into compartment i by all other means and           

is the rate of transfer of individuals put of the ith compartment. 
Then, the next generation matrix G is given by 

                                          and                        Where x0 is the disease-

free equilibrium state. Then, the R0 is the disease-free equilibrium 
state. Then, the R0 is dominant eigenvalue of matrix G = FV-1. 
such that:

                                                                                       (2)

where ρ denotes the spectral radius.

Since just the infection states are required and all other states that 
are not disease compartments are disregarded, the next-generation 
matrix is far easier to employ than Jacobian-based methods. 
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Consequently, the size of the matrices remains manageable. 
However, the approach of the following generation lacks creativity. 
To identify which terms are new infections and which terms are 
transfer terms in order to calculate the matrices F and V, clear 
biological understanding is necessary.

Van den Bosch et al. described a systematic method to calculate 
the basic reproduction number from knowledge of a pathogen’s life 
cycle and its interactions with the host plant [11]. They developed a 
system of linear difference equations and rearranged the dominant 
eigenvalue to find R0.A fraction η of infected spores are deposited 
in location 1, while a fraction 1-η are deposited in location 2. 
This yield: 

                                                                                         (3)

wherein the first term indicates the number of spores that germinate 
successfully in location 1, and the second term represents the 
number of spores that germinate successfully in location 2. η, is 
the probability that a deposited spore on location i will germinate, 
α1 is the number of spores produced per time unit on location I 
τ is the infectious period of a spore-producing lesion on location 
I ρ is the probability that a spore is deposited on a susceptible 
site, and H is the density of susceptible sites in a host population. 
They calculated two independent values for R0 and underlined 
its nonuniqueness in a separate box describing the hazards of 
estimating the fundamental reproductive ratio from nonlinear 
models. However, they were unable to determine the proper value 
of R0. Although nonlinear differential equations are essential tools 
for understanding epidemics, they should not serve as the sole 
foundation for determining R0, conclude the authors.

Gaff et al., modelled Rift Valley fever, a mosquito-borne sickness 
that affects both humans and animals and is now found exclusively 
in underdeveloped countries but has the potential to spread to 
the western world [12]. The model assumed that illness may 
spread both horizontally and vertically. Using the next-generation 
matrix approach, the basic reproductive number was determined 
as follows: R0=R0, v  + R0,H, where R0,v is the basic reproductive 
ratio for vertical transmission and R0,H is the basic reproductive 
ratio for horizontal transmission. Their investigation revealed that 
R0=1.19, with a range from 0.037 to 3.743.

Jones (2007) described the next-generation matrix technique for 
determining the R0 using an obvious approach: assuming a system 
has numerous distinct categories of infected people. Then, the next 
generation matrix may be described as the square matrix textbfG, 
where the i, jth element of Gis the estimated number of secondary 
infections of type i generated by a single infected person of type 
j, assuming the whole susceptible population of type i. Therefore, 
each entry in the matrix G represents a production number. The 
spectral radius of G, which is the dominating eigenvalue of G, 
may then be used to get the fundamental reproduction number 
R0. The generation matrix was obtained as:

                                                                                       (4)

and the eigenvalues of G is given as:

                                                                                       (5)

where T=a+d represents the trace of the matrix G and D = ad-bc 
represents the matrix’s determinant. Consider the introduction of a 
sexually transmitted illness into a purely heterosexual community. 
In a totally susceptible population, f is the anticipated number of 
infected women, and m is the expected number of infected males, 
given interaction with a single diseased member of the opposite 
sex. The subsequent generation matrix appears as follows: 

                                                                                       (6)

and R0 would thus be          .

For models with many strains, the basic reproduction number 
is often the greater of the reproduction numbers for each strain 
individually. The capacity of one strain to invade and outcompete 
another has a threshold comparable to the basic reproduction 
number; however, many of these models also include many endemic 
equilibria. The n-strain SIR model developed by Andreasen [13]. 
was characterised by the following set of equations in combination 
with beginning conditions that were not negative: 

                                                                                        (7)

Strain one infects naive individuals (S) at a rate of β1 (I1+I21)S 
while strain two infects at a rate of β2 (I2+I12)S. Individuals in 
compartment S1 have recovered from an infection with strain one 
at a rate of γ1, with complete immunity to reinfection with strain 
one and partial immunity to infection with strain two, as modelled 
by the factor α1. They enter compartment I12 upon infection with 
strain two, which happens at a rate of α1 β2 (I2+I12)S1. Consequently, 
I12 represents the number of persons who are now infected with 
strain two and have previously been infected with strain one. 
There are four equilibria in the model. Linearizing the disease-free 
equilibrium model equations, S = So=Π/mu, I1=S1= I2=S2= I21= 
I12=0, yields the following formulations for F and V: 
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The next generation matrix, G=FV-1, and the Jacobian matrix, (FV-1), 
are reducible. The equations for the infected subpopulations decouple 
near the disease-free equilibrium, and G has two positive eigenvalues 
corresponding to the reproduction numbers of each strain. 

                                                                                        (8)

where i = 1, 2 There is also a reproduction number associated with 
the strain one equilibrium, S = S, I1 = I1, S1 = S1, I2 = S2 = I21 = I12 = 
0. The basic reproduction number for the two strains was found to
be

                                                                                        (9)

Ochwach developed host-pest interaction model and determined 
the basic offspring number of false codling moth (FCM) [1]. In 
their study, considered FCM compartments that are in charge 
of offspring reproduction and classify them as infectious and 
non-infectious classes, they developed a system of differential 
equations:

                                                                                               (10)

Let Fi(y) be the recruitment rate of new individuals in compartment
i, Vi

− (y) the transfer of individuals out of the compartment i and 
Vi 

+ (y) the transfer of individuals into the compartment 

i.                       Vi(y).Where i = 1, ....6 and Vi(y) = V −i (y) − V +i (y). 

To obtain the next generation operator, They computed the Jacobian 
Matrices of Fi and Vi and solve it at the pest-free equilibrium 
(PFE). Consequently, the basic offspring number of their system 
model was obtained by determining the spectral radius of the 
matrix FV-1 as:

                                                                                            (11)

Feng and Velasco-Hern´andez developed a simple vector-host 
model couples a simple SIS model for the hosts with an SI model 
for the vectors [14]. Susceptible hosts (Sh) become infectious 
hosts (Ih) at a rate βh Sh Iv through contact with infected vectors 
(Iv). Similarly, susceptible vectors (Sv) become infectious vectors 
(Ih) at a rate βv Sv Ih by contacts with infected hosts. The model 
is given by the following equations together with nonnegative 
initial conditions 

                                                                                            (12)

where μh and μv represent removal rates and Πh and Πv recruitment 
rates. The parameter γ is the recovery rate for infected hosts. 
Vectors are assumed to remain infected for life. This simple model 
forms the core of many vector-host models. The two disease 
compartments are Ih and Iv. The disease-free equilibrium has a host 
and vector populations of Sho = Πh/μh and Svo = Πv/μv respectively. 
The value of F and V was found to be

                                                                   The next generation 

matrix was found to                                   The basic reproduction 

number was found to be
    

                                                                                        (13)

Calculating R0 using Threshold Criteria
The Jacobian Method
The predictive threshold parameter was discovered using the 
Jacobian technique by Diekmann and Heesterbeek in 2005. The 
Routh- Hurwitz stability conditions, along with the characteristic 
polynomials, are used to derive the predictive parameter from the 
requirement that all of the Jacobian’s eigenvalues have negative 
real parts. The Jacobian method is widely used in the majority of 
systems of ordinary differential equations. A parameter that reflects 
the stability of the disease-free equilibrium can be derived using 
the Jacobian approach. The predictive parameter derived using this 
technique could not, however, represent a medically significant 
value for R_0. They proposed that the threshold parameter should 
not be referred to as the basic reproductive number or abbreviated 
as R_0 if it does not have the same biological interpretation as the 
dominating eigenvalue of the next-generation matrix.

A nonlinear system of differential equations was linearized by Jing 
Li using a Jacobian matrix [7]. If the linear system is hyperbolic, 
that is, if no eigenvalues have zero real component, it will have 
the same stability qualities as the nonlinear system around the 
disease-free equilibrium. In specifically, the equilibrium is stable 
if all of the eigenvalues have a negative real part, whereas the 
equilibrium is unstable if there is an eigenvalue with a positive 
real part. As a result, a threshold (λmax=0) is determined by the 
Jacobian matrix’s biggest eigenvalue, (or the largest real part if 
the eigenvalues are complex). However, this calls for solving 
an nth-order polynomial, which may be impossible for a system 
of n differential equations. The threshold R0,J=1 is created by 
rearranging the requirement lambdamax=0, although this is not a 
special method, and it does not always result in the typical amount 
of secondary infections.

Existence of the Endemic Equilibrium
 The basic reproduction number as a threshold criterion can also 
be derived from a condition based on parameter values such that, 
when the condition holds, the endemic equilibrium exists, but only 
when the condition is false, the disease-free equilibrium exists, 
according to Hofferman et al (2005). This phenomenon, known 
technically as the transcritical bifurcation, causes the condition to 
change from being false to true at parameter values that result in 
R0=1. Virus outbreaks are transient but persistent throughout the 
patient’s lifespan, with the virus dormant at other times. 
This makes determining R0=1 using other techniques challenging.
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Estimating R0 from the Initial rate of growth of the Epidemic
Dietz [9] derived relationships between the initial growth of 
disease and R0 of the AIDS epidemic from a very simple model 
which yields a value of R0 of 19.7 for the San Francisco gay 
community based on the formula: 

                                                                                       (14)
 

 Here D is the duration of the infectious period and τd is the initial 
doubling time. In order to create a link between the initial rate of 
growth and R0, which must now be computed as the eigenvalue 
of a specific matrix, taking into account the heterogeneity in the 
contact rates and variable infectivity.

Constant Term of the Characteristic Polynomial Method
The characteristic polynomials constant term, λmax= 0, will be zero. 
Contrary to popular belief, the polynomial can have both zero 
and positive roots. More generally, the Routh-Hurwitz condition 
permits the coefficients to take on various signs, subject to specific 
limits, although having all positive nonconstant coefficients is a 
sufficient requirement. Another need is that aj >0 with the restriction 
a0=0. Although confirming that a_0=0 necessarily corresponds to 
the biggest eigenvalue might be challenging for some models, 
using this technique is substantially simpler than determining the 
largest eigenvalue. Similar to the previous example, the procedure 
of rearranging a0=0 to generate R0,C=1 is not unique and does not 
always result in the usual amount of secondary infections.

A mathematical model of the COVID-19 epidemic with multiple 
populations and control strategies was put forth by Sun [15]. It 
included groups for those who were susceptible (S), asymptomatic 
and undiagnosed (A), symptomatic and diagnosed (AD), 
symptomatic and infected (I), recovered (R), and dead (D):

Based on equation, the equilibrium (S*, 0, 0, 0, R*,D*) was 
calculated firstly, and the Jacobian matrix around the equilibrium.

                                                                                               (16)  

 The characteristics polynomial was found to be p(λ)=D(λ)-S* N(λ). 
Where D(λ)=(λ+f1+f2)(λ+a+b+c)(λ+d+g) and N(λ)=r1 (λ+f1+f2)
(λ+d+g)+ar2 (λ+f1+f2)+br3 (λ+d+g). The basic reproduction number 
was calculated based on Hurwitz criterion Therefore, the basic 
reproduction number is: 

The Jacobian matrix was created by them. The fundamental 
reproduction rate gives an idea of how much a virus may spread. 
The basic reproduction number determines how well a virus 
may spread; the bigger the basic reproduction number, the more 
effective the transmission capacity. Consequently, it is imperative 
to do research on basic reproduction numbers.

Estimating R0 from Epidemiological data
Average age at infection
Cross-sectional population surveys are a common data source used 
in the epidemiology of infectious illnesses to evaluate the age-
specific prevalence of antibodies with reference to a certain illness 
suggesting past infection. Therefore, one can only determine 
if antibodies are present or not for a certain age of a person to 
determine whether the age of infection is lower or greater than the 
current age. This translates to the fact that one only has censored 
data in a statistical sense. These age-specific prevalence statistics 
show a typical increase known as a catalytic climb [9]. Dietz [9] 
research found that the following relationships exist between the 
basic reproduction number and this hazard rate: 

                                                                                       (17)

where λ denotes the intensity of the illness and μ the death rate 
of the population. The death rate is assumed to be constant in this 
model, and the force of infection is assumed to be age-independent. 
The following equation is produced when the average A age at 
infection is calculated: 
 
                                                                                        (18)

The force of infection formula yields the following simple 
expression for R0 when the life expectancy of a human host is 
represented as eo = μ−1:
 
                                                                                         (19)

This means that the ratio of life expectancy to average age at 
infection may be used to estimate the fundamental reproduction 
number R0.

Another similar method is to estimate R0 as L/A, where L is the 
mean lifetime and A is the mean age of illness onset a method 
provided by Hethcote [16]. This method is based on the endemic 
equilibrium Dietz [9]. In this method, it is assumed that there is 
homogeneous mixing throughout age groups, that all individuals 
are born susceptible, that once they contract the illness they are 
no longer susceptible, and that the population is at the endemic 
equilibrium. The application of this technique is obvious because 
both L and A are easily measurable, despite the fact that both 
assumptions might never be fully met in an actual context.

Age-Independent Prevalence Data
The initial estimate of R0, or rather R0 as mentioned above, was 
derived from statistics on equilibrium prevalence by Macdonald 
in 1955 [17]. The single controlling component in Macdonald’s 
model was the mosquito’s ability to avoid super infections, 
meaning that only vulnerable mosquitoes could get the disease. 
He permitted superinfections in humans, and the mosquito’s risk 
of infection was related to the mean number of infections per 
human host rather than the prevalence of human infections. The 
Macdonald’s formula for R0 in the current study is written as 
follows: 

(15)
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                                                                                        (20)

where μ2 and I2 have the same meanings as earlier and y2 is the 
equilibrium prevalence of mosquitoes carrying sporozoites in their 
salivary glands or the percentage of infectious mosquitoes. He 
discovered a value of R0

2 of 1.15 using Tanganyika data, which 
is based on a survival probability for the extrinsic cycle of 0.39 
and a fraction of sporozoite-positive mosquitoes of 5 

Final Size of an Epidemic
The basic reproduction number for closed populations, where 
infection results in either immunity or death, was computed by 
Diekmann, Houben, and Hethcote (2000) [16,18-19]. In this 
situation, the sensitive population can only get smaller, and the 
R_0 may be calculated as: 

                                                                                       (21)
 

If the disease itself does not impede the contact process or if 
contact intensity is inversely correlated with population density, 
this estimate is valid.

Smith  suggested calculating R0 by the inverse of the fraction of 
susceptibles remaining after an epidemic had ended [20]. He uses 
urban yellow fever outbreaks as an illustration, which ended after 
48–65% of the population had immunity. As a result, R0 would 
be estimated to be between 2 and 3. The fraction of susceptibles 
after an epidemic has ended and R0 may be calculated using the 
following straightforward formula, according to the theory of the 
deterministic global epidemic: 

                                                                                        (22)
 

Accordingly, the estimates of R0 for the values given by Smith 
would range from 1.4 to 1.6, meaning that immunising around 38 
percent of the population would have been sufficient to stop the 
epidemic [20]. However, it should be noted that the calculation 
stated above makes the assumption that the whole population was 
vulnerable at the start of the pandemic.

Using Intrinsic Growth Rate
In their work, Nowak et al. (1997) and Lloyd (2001a) calculated 
R0 using the intrinsic growth rate of the infected population, 
commonly denoted as r0. The typical connection between R0 and 
r0 derived from the classic models of viral dynamics is as follows: 

                                                                                   (23)

Where ν is the clearance rate of the virions and a is the mortality 
rate of the infected cells. In the event when r0+a<<ν, the relation 
approaches: 

                                                                                   (24)
 

Since r0 can be easily determined from viral load data for in-host 
models and from incidence data in epidemiology, this technique 
is advantageous. Finally, the intrinsic growth rate of the infected 
population may be used to calculate R0. This growth rate, which 
is sometimes designated as R0, is the rate at which an infected 
population, I, expands such that dI/dtZr0 I. Since there is an implied 
definition of r0, utilising R0 is seldom elegant from a modelling 

standpoint. However, using incidence statistics, r0 may frequently 
be roughly predicted from the infection class’s growth rate, and R0 
can then be calculated from r0. There might be a number of issues 
with this strategy: The measure of r0 can be obscured by random 
fluctuations in the early stages of an epidemic, and reporting errors 
are extremely likely to skew incidence statistics. Finally, the link 
between R0 and r0 is very model dependent, even when r0 can be 
observed with some degree of certainty. 

Calculation of R0 for discrete time systems
According to Pauline van den Driessche, care must be given while 
creating these discrete temporal models to prevent the population 
of each compartment from declining [21]. Discrete-time epidemic 
models may also be employed using the next-generation matrix 
method. In order to briefly explain this, let’s assume that the 
epidemic model’s equations are provided by: 

                                                                                     (25)

where x(t) represents the population states at time t, with the 
states x1,…,xm being infected and the rest being unaffected. If a 
single DFE exists, then linearizing the equations describing the 
infected state around this DFE results in y(t+1)=(F+T)y(t), where 
F and T are nonnegative matrices evaluated at the DFE. Here, F 
is the transition matrix with ρ(T)<1 and F is the matrix of new 
infections that endure the time interval.

The matrix Q=F(Iδ-T) is the next-generation matrix for this 
discrete system and the basic reproduction number. Allen and 
van den Driessche give details of the assumptions and show that 
the DFE is locally asymptotically stable if R0<1 but unstable if 
R0>1 [22]. The assumed order of events within each time step is 
important since different assumptions can yield different R0 values 
(van den Driessche, and Wonham, 2006).

Jiru performed a mathematical analysis to explain the effects of 
isolating infected populations on the dynamics of an epidemic 
of diarrhoea [23]. To model the effects of isolating infected 
population in the dynamics of diarrhoea epidemic, a system of 
non-linear differential equations was used to determine a specific 
threshold value as the fundamental reproductive number R0 that 
represents the epidemic indicator obtained from the Eigenvalue 
of the next-generation matrix. 

                                                                                           (26)

where Human recruitment rate Λ Effective contact rate β Treatment 
rates for contagious people are in ω Natural mortality rate for the 
human population is mu α The prevalence of diarrheal illness in 
humans Isolation rate from the diseased population of humans, θ, 
δ Virus prevalence. The study demonstrated that the fundamental 
reproduction ratio, R0, controls the stability of the disease-free and 
endemic equilibrium points.

R0 in a periodic environment
Many methods of calculating R0 assumes that the environmental 
factors are constant, but in reality, environmental factors such as 
humidity and temperature are constantly changing. The models 
then become non-autonomous dynamical systems. In line with 
this, many authors have extended the definition of R0 to include the 
periodic environmental changes. Wang and Zhao (2017) proposed 
a time-delay lyme disease model that takes climate into account. In 
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their study, R0 was calculated from a disease-free periodic solution. 
Inaba also introduced a new definition of in a heterogeneous 
environment" based on the generation evolution operator as a 
generalization of previous definitions [24].

Calculating R0 for Stochastic Models
When stochastic influences, such as those unavoidably present in 
nature, are accounted for, the R0=1 threshold may be disrupted. 
This consists of assumptions on the distribution of transition times 
and variances in specific parameters. A stochastic epidemic model 
may be seen as a discrete spatial, continuous time Markov chain 
with exponential distribution parameters for all rates.

In a stochastic context, it is evident that R0 is a dimensionless 
number and not a dimensionless quantity. When N→∞ is 
sufficiently big, the memory-less characteristic of exponential 
distributions allows one to approximate the epidemic process 
with a Galton-Watson process in which one infectious person 
may create zero or two people at each generation. The number 
of infected individuals induced by the first infected individual is 
a geometric random variable with a mean of R0.

                                                                                         (27)

 where k = 0,1,2…, and R0=(1-p)p. In terms of R0, the probability 
mass function of the number of infected can be written a 

                                                                                         (28)
 

where k = 0, 1, 2 . . .. The probability of eventual extinction, PE, 
can be found using first step analysis

                                                                                          (29)

 The importance of calculating R0 in a stochastic epidemic model is 
then that it can be used to approximate the probability of extinction 
of an epidemic when N→∞, by approximating the epidemic 
process with a branching process.

Allen (2010) provided an outstanding introduction to stochastic 
epidemic models expressed as discrete-time Markov chains, 
continuous-time Markov chains, and stochastic differential 
equations. Several numerical examples of stochastic sample 
pathways and their related deterministic solutions are shown 
in the paper. Allen (2010) demonstrated that stochastic sample 
routes may converge to a disease-free state, while the comparable 
deterministic solution converges to an endemic equilibrium. In a 
vaccination campaign, stochasticity may result in the eradication of 
a disease prior to the attainment of herd immunity to vaccination. 
When stochastic effects, such as those present in nature, are 
incorporated, the R0=1 threshold may be perturbed. 

Heffernan and Wahl (2006) generated better estimates of R0 for 
clinical or epidemiological practitioners who have access to 
information on the dispersion of transition periods. In their work, 
they developed the ϕ correction factor, which is the ratio of R0 when 
the lives are not exponentially distributed to R0 computed assuming 
exponential lifetimes. They found that when two or more processes 
"compete" to terminate the infectious period and their mean times are 
of the same order of magnitude, the effective infectious period, and 
hence R0, is sensitive not only to the distribution means but also to 
the distribution shapes. Methods for determining R0 from incidence 
or clinical data often assume that all underlying processes follow 

an exponential distribution, as mentioned above (Heffernan and 
Wahl, 2006). They further, found a more precise estimates for R_0 
under the assumption that one or both of the contending processes 
are not exponentially distributed. They were able to compute the 
limiting values of ϕ and use them to evaluate R_0’s sensitivity to the 
dispersion of the underlying distributions. Incorporating the mobility 
of hosts, transmission within groups, recovery after infection, and 
recruitment of new susceptibles.

Keeling and Rohani (2008) give three methods for approximating 
stochasticity in disease transmission and recovery. The likelihood 
of an outbreak is determined by the value of R0 as well as the initial 
number of infected individuals, i0. If the population size is large, 

this probability is close to zero if R0 ≤ 1 and

This estimate only applies to the stochastic SIS and SIR models 
for a finite time range, because the probability of an outbreak is 
zero as t → infty. Consequently, one distinction between stochastic 
and deterministic models is that stochastic sample routes may 
converge to a disease-free state whereas the equivalent deterministic 
solution converges to an endemic equilibrium. So, in a vaccination 
campaign, randomness might cause a disease to disappear before 
the vaccination rate required for herd immunity is obtanined.

Hasan et al. (2022) provided a new technique to estimate the time-
varying effective reproduction number of the novel coronavirus 
illness (COVID-19) based on a discrete-time stochastic augmented 
compartmental model that represents the transmission of the virus. 
They considered a compartmental SIRD model composed of the 
following nonlinear first-order differential equations:

                                                                                         (30)

where S, I, R, and D denote the number of susceptible cases, the 
number of active cases, the number of recovered cases, and the 
number of deceased cases, respectively. N is the total number of 
population, β is the average number of contacts per person per time, 
while γ and κ are the recovery and death rate. Remark that the value 
of β is time-varying due to intervention, β = β(t). To use the model, 
we require information on the average infectious time  Ti and the 

Case Fatality Rate (CFR), so that                                     For

COVID-19, they took Ti = 9 as the infectious period on average lasts 
for 9 days (7–11 days with 95% CI)15, while the CFR is assumed 
around 1%. The time-varying effective reproduction number is 

then given by:                                                        The approximation 

is under the assumption that government intervention is taken at an 
early stage so that the susceptible is relatively the same over time 
as the total population. This is the case, especially for emerging 
diseases. We modify the SIRD model by augmenting the following 

two equations into the system:

The equation takes into account the daily number of new reported 
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cases E, while the latter one says that the effective reproduction 
number Rt is assumed to be a piece-wise constant function with 
jump every 1 day time interval. Discretizing the model using the 
forward Euler method, they obtain the following discrete-time 
augmented SIRD model:

                                                                                            (31)

The technique generates an updated estimate of Rt based on newly 
reported examples. Due to their low frequency, the reported data 
may be interpolated using a technique such as a modified Akima 
cubic Hermite interpolation in order to accommodate the time 
step Δt. In our simulation, the time step Δt is selected to be 0.01 
seconds, which corresponds to 100 discretizations of time every 
day. The confidence range of our predicted Rt is calculated by 
calculating the reproduction number for various values of the 
infectious period Ti within a certain interval. Using the Extended 
Kalman Filter (EKF) to estimate the reported state variables (active 
and removed cases) and a low pass filter based on a rational 
transfer function to remove short-term fluctuations of the reported 
cases, a two-stage estimation technique is employed with the 
assumption that case uncertainties are Gaussian. As advised by 
WHO, they used the model to COVID-19 cases in Scandinavian 
nations with positive rates less than 5

R0 in Spatial Contexts
When R0 is viewed in a spatial context, a number of its 
characteristics break down. Depending on the nature of spatial 
transmission, illnesses with R0>1 may not be able to survive 
if R0>1. As a result of the geographical dependence of several 
illnesses, the usefulness of R0 is significantly diminished. As R0 
climbs beyond 1, the likelihood of illness infiltrating the first 
infected host group rises; however, additional criteria are required 
to determine the probability of the disease spreading to other 
groups.

Networks Models
The derivation of R0 has been extended to the scenario when 
contact network information is provided. In this situation, the 
derivation is often limited to the case of normal networks, in 
which all nodes have the same degree. Occasionally, individuals 
utilise definitions of R0 that are not identical to the original. In 
actuality, the assumption that two persons interact at the same 
pace across time does not hold true. For instance, interaction is 
more likely to occur when the majority of individuals are awake. 
This is one reason for the growing interest in temporal networks 
as a depiction of the interactions underpinning the transmission 
of epidemics, which emphasise the time dependency of networks. 
A second factor is the rising availability of data sets of temporal 
networks, which are often lists of the anonymized id numbers 
of two persons and the times when they have interacted. The 
research on temporal networks has concentrated on spreading 
mechanisms and how the structure affects them. In this context, 
structure refers to the manner in which the network varies from 
a random temporal network. According to studies of epidemic 
models on temporal networks, a large distribution of interevent 
periods, for instance, inhibits the spread.

Green et al., connected deterministic meanfield models to network 
models, taking into account how contact rate and infectiousness 
fluctuate over time [26]. The predicted number of secondary 
infections at infection age u for a node with precisely 

m connections is provided by                                          where β

is the transmissibility and k is the average number of connections 
per node. When the rate of infectious contact is independent of 
k, this model applies. If there is a constant rate of generation of 
new cases, the expected number of secondary infections during 
an infectious period of length u is given implicitly by
                                                   where CIS(t) represents the contact 

per susceptible neighbour and ψ(t) represents the infectiousness 
at time t after infection.

Kao demonstrated that new infections may develop toward a 
lower R0, even if pathogen extinction occurs [27]. Because the 
existence of exploitable heterogeneities, such as a large variation 
in the number of potentially infected contacts, raises R0, pathogens 
that can exploit heterogeneities in the contact structure have a 
competitive advantage over those that cannot. The exploitation 
of heterogeneities leads in a more faster depletion of an infected 
host’s potentially vulnerable neighbourhood. Despite the fact that 
the low- R0 strategy is never evolutionary stable, invading strains 
with greater R0 will converge to it if they are not sufficiently 
distinct from the resident strain. In contrary to the commonly 
held idea that the development of new diseases is driven by the 
maximisation of R0, this is not the case. In a randomly mixed 
epidemiological network, R0 may be approximated by

                          where lin and lout indicate, respectively, the 
number of inward and outward ”really infectious” linkages per 
node, and the angle brackets reflect the predicted value of the 
relevant quantity.

Meyers demonstrated that in a contact network architecture,

                                 where T is the mean probability of 

transmission between individuals and k and k2 are the mean degree 
and mean square degree of the network, respectively [28]. Here, 
R0 is directly dependent on the network’s topology. Therefore, 
the transmissiodynamics of a single disease may vary greatly 
depending on the community through which it travels. If two 
networks have the same mean degree, k, then the network with 
the greater variation in degree, (k2)−(k), will be more susceptible 
to disease transmission. In compartment models, it is believed that 
infected hosts have potentially disease-causing encounters with 
random population members according to a Poisson process that 
generates an average contact rate of β per unit time. Compartmental 
models’ mass-action assumption is equivalent to assuming the 
underlying contact patterns form a random graph with a Poisson 
degree distribution. Estimates of R0 based on a mass-action model 
may thus be incorrect for populations with non-Poisson interaction 
patterns, and may notably underestimate the actual development
rate of the illness in highly diverse networks.

Schimit and Monteiro demonstrated that in an individual-level 
model, R0 cannot be uniquely inferred from transitory group 
behaviour characteristics [29]. The value of R0 can be established 
clearly from the asymptotically stable stationary concentrations, 
but this requires the system to enter its permanent regime, which 



Citation: Jimrise O Ochwach, Mark O Okongo, Alice Lunani M Murwayi (2023) On Basic Reproduction Number R0: Derivation and Application. Journal of Engineering 
and Applied Sciences Technology. SRC/JEAST-234. DOI: doi.org/10.47363/JEAST/2023(5)173

                Volume 5(3): 9-14J Eng App Sci Technol, 2023

is impractical in reality. Networks with unique values of clustering 
coefficients and average shortest route length may have the same 
value of R0. This conclusion may influence the assessment of the 
efficacy of various measures adopted to control a disease. Due 
to the fact that different topological property values might give 
the same value of R0 in a model that takes into account the spatial 
structure of the contact network, it is challenging to assess the 
contribution of each control measure. This is because there is no 
one-to-one correlation between R0 and the topological features 
of the contact network.

Metapopulation Models
Metapopulation is a collection of populations of the same species 
that interact. Cross et al. (2005) demonstrated that when R0 is 
derived from data gathered from simulated epidemics that mirror 
epidemiological contact-tracing data, R0 may be much bigger 
than one without causing a pandemic. In populations with social 
or geographical structure, a chronic illness with the same R0 is 
more likely to invade than an acute disease with the same R0 
because it lingers longer within each group and permits more host 
migration across groups. Under conditions where the rate of host 
population turnover was negligible in comparison to the rate of 
disease processes of infection and recovery, they demonstrated that 
R0>11 was insufficient for disease invasion when the product of 
the average group size and the expected number of between-group 
movements made by each infectious individual was less than 1.

Classification tree analysis of model findings demonstrates the 
hierarchical structure of disease invasion in host metapopulations. 
First, the pathogen must travel efficiently inside a group (R0 > 
1), and then it must remain long enough within a group to permit 
migration across groups. In order to anticipate the spread of 
infections throughout a metapopulation, the infectious duration, 
group size, and recruitment of new susceptibles are as critical as 
the local transmission rates. Smith? et al. (2009) investigated a 
metapopulation model involving travel between two areas, with 

reproduction ratios of                        for each region in the 

absence of travel, and                        when only susceptibles travel, 

but not infectives [30].They demonstrated that if

then there are circumstances on the path of the vulnerable such that
                               
                               Thus, a disease that would normally be 
eliminated in both zones may persist in one region if sufficient 
vulnerable individuals travelled between the regions. Moreover,

if                                then there exist travel circumstances under 

which                                Consequently, if one area supports 
the illness on its own and the other does not, sufficient travel 
by susceptible individuals might perpetuate the sickness in both 
locations.

R0 from Partial Differential Equation Models
Althaus et al., examined an age-dependent partial differential 
equation model of human immunodeficiency virus type 1 life 
cycle [31]. In their study, they showed that the basic reproduction 

number can given by the equation                                where the 

denominator is the Laplace transform of the generation time 

distribution g(a) and r is the growth rate. They found that estimates 
for R0 were generally smaller than those derived from the standard 
model when the generation time was taken into account.

Application of R0 in the Epidemiology
Elimination or Eradication
According to Dietz, the terms elimination and eradication are 
often used interchangeably in the epidemiology literature [9]. Both 
terms allude to a condition in which the infection is not present. 
A frequency of zero, however, may indicate a stable or unstable 
equilibrium. Stability refers to the consequence of an infectious 
case being introduced into a community. If the zero equilibrium is 
stable, the introduction of a single instance will produce no more 
than a few generations of secondary cases, resulting in a return to
zero’s initial predominance. This can occur either naturally, 
without special interventions, as a result of low local contact rates 
and infection probabilities per contact, or as a result of permanent 
interventions, such as vaccination programmes, which reduce the 
proportion of susceptibles to the point where R0X/N is less than 
one. Elimination refers to the constant predominance of zero. If, 
however, the zero equilibrium is unstable, the introduction of one 
infected case will result in a significant epidemic and perhaps an 
endemic state, depending on the population size and the pace 
of introduction of susceptibles. A time-limited intervention that 
allows R0 to return to its initial level would result in a predominance 
of zero.

Reduction of the Contact Rate
If we consider a control programme which reduces either the 
duration of the infectious period by chemotherapy or the contact 
rate by changes in behaviour then the reproduction number R* is 

given by the following formula                     where rk and rD denote 

the reductions for the corresponding parameters indicated in 
the index. For elimination or eradication R* has to be less than 
one [32-33]. Therefore the rKrD has to be greater than Ro. This 
inequality clearly shows that Ro can be interpreted as the minimum 
absolute elimination or eradication effort, if we are dealing with 
a homogeneous population, and a control method which effects 
everybody in a non selective way. This means that the minimum 
proportional reduction of the susceptible fraction is given by 1−R0

−1 
which is a highly non-linear function of Ro. For Ro > 10, control 
programmes have to be nearly perfect requiring a reduction of the 
parameters by more than 90%; whereas for values of Ro between 1 
and 2 a reduction of the parameters by less than 50% will already 
be successful. This non-linear relationship between the minimum 
proportional reduction in the transmission factors K and D, and 
the basic reproduction number Ro, is the key to understanding 
the puzzle that apparently the same control programme may be 
successful in one situation and not at all in other situations.

Bifurcations Analysis
Hadeler reported that multiple stable equilibria coexist when 
R0<1, indicating a backward bifurcation [34]. When a disease is 
already endemic, this offers a severe difficulty, since reducing the 
basic reproduction number below 1 may no longer be a feasible 
control method; hence, other preventative and control approaches 
may need to be explored. Specifically, a backward bifurcation 
complicates the system since the behaviour is now dependent on 
the beginning circumstances. A backward bifurcation at R0 = 1 
might lead to illness persistence when R0 < 1. In this situation, the 
sickness will continue to exist as long as R0 > 1. Nevertheless, there 
exists a point Ra < 1 where the endemic equilibrium occurs for Ra 
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< 1 R0 < 1 and a third, unstable equilibrium exists between the two 
stable equilibria. Consequently, an endemic illness is eliminated 
only if 0 < R0 < Ra. The result relies on beginning circumstances 
when Ra < R0 < 1. If the illness is still in its early stages, i.e., if 
beginning circumstances are modest enough, then the system 
will approach the disease-free equilibrium and the disease will be 
eliminated. Nevertheless, if beginning circumstances are extreme, 
the system will reach endemic equilibrium and the sickness will 
persist. Consequently, a backward bifurcation prevents the system 
from moving to the disease-free equilibrium once R0 < 1 is attained.

Safan et al., investigated an epidemiological model based on the 
hypothesis that the susceptibility after a main infection is r times 
the susceptibility before a primary infection [9]. They provide a 
technique for calculating the control effort necessary to eradicate 
an infection from a host population when subcritical persistence 
is possible. This effort may be read as a reproduction number, 
however it is not necessarily the fundamental reproduction number. 
This model displays backward bifurcations when r > 1 + μ/α, 
where μ is the death rate and alpha is the recovery rate. For such 
models, the authors proposed a technique for finding the minimal 
effort necessary to eliminate the virus from the endemic steady 
state if one focuses on control strategies that impact the constant 
transmission rate. Garba et al., proposed a deterministic model 
for the transmission dynamics of a single dengue strain by using a 
realistic incidence formulation and permitting dengue transmission 
by exposed people and vectors [35]. The model was expanded 
to accommodate a flawed dengue vaccine. In both models, a 
backward bifurcation was seen. This renders R0<1 insufficient for 
successful dengue control in a community. However, this issue 
may be eliminated by substituting a mass-action formulation for 
the usual incidence function in the model.

Gomez-Acevedo and Li examined a mathematical model for 
human T-cell lymphotropic virus type I (HTLV-I) infection of CD4+ 
T cells that encompasses both horizontal transmission through 
cell-to-cell contact and vertical transmission via mitotic division 
of infected T cells [36]. After error-prone viral replication, they 
hypothesised that a portion of infected cells would escape the 
immune system’s onslaught. Under the physiologically plausible 
assumptions that α should be extremely small and the rate of 
mitotic division should be high, their model contains a bifurcation 
that predicts ongoing infection throughout a broad range of the 
basic reproduction R0>R0 (α0), where R0 (α0)<1. As α rises, 
this model experiences a backward bifurcation: several stable 
equilibria exist for an open range of parameter values when the 
fundamental reproduction number is less than one.

To Determine the Sensitivity of a Parameter
To select the most effective control strategies, it is helpful to 
understand the relative significance of the many components 
involved for transmission [37]. Initial disease transmission is 
associated with R0, and sensitivity predicts which characteristics 

have a significant influence on R0. The equation:         is the 
sensitivity 

index of R0 with regard to a parameter. The elasticity index 
quantifies the relative change of R0 with regard to u It is represented 

by               and defined as                                 For the assessment 

of control techniques, it is crucial not only to estimate by how 
much R0 exceeds 1, but also to evaluate R0’s sensitivity to changes
in the individual factors that enter its formula. The following basic 

method makes this clear. However, if individual factors enter in 
a nonlinear fashion, then significant inferences may be derived 
on the relative effectiveness of various control systems. Other 
studies such as Chowel et al., [38-39].

To Determine of Elasticity a Parameter
 The sign of the elasticity index indicates whether R0 rises (positive 
sign) or lowers (negative sign) with the parameter, whilst the 
value of the parameter indicates its relative significance. Although 
feasibility and cost play a part in practical control strategy, these 
indices may assist control by highlighting the most crucial 
characteristics to target. If R0 is explicitly known, then the elasticity 
index for each parameter may be directly calculated and assessed 
for a particular set of parameters. The magnitude of the elasticity 
indices is dependent on these potentially approximative parameter 
values. Latin Hypercube Sampling maximin criteria may be used 
to detect the robustness of R0 to the parameters. Compute R0 across 
the feasible area of a particular parameter while retaining the other 
parameters at their initial values as computed in Manore et al., [40].

Limitation of R0
The majority of biologists assert that there is only one value of 
R0 for each given model. While this may be the case, several 
indices demonstrate the same threshold behaviour [41]. The Next 
Generation approach merely ensures that R0 retains its threshold 
character, not that it properly reflects the number of secondary 
infections. Suppose R0=2 for the Next Generation. Because R0>1, 
it is assured that the infection will remain in the population, but it 
is not guaranteed that a single infected person would spawn two 
secondary infections; it may be three or one thousand. Similarly, 
if R0=0.5, it is certain that the infection will die out, but it is not 
always true that a single infected person would create an average 
of 0.5 secondary infections. Checking if the in question R0 shows 
the threshold behaviour is not a thorough evaluation for assessing 
R0 validity. It is simple to create a model with two indices that 
demonstrate the same threshold, even when one of them has 
nothing to do with the average number of secondary instances 
resulting from a single main case. Despite the fact that both indices 
are threshold-based, they cannot concurrently indicate the number 
of secondary infections caused by a single sick person. In several 
experiments, two models with identical solution trajectories but 
distinct R0 values have been observed.

The use of R0 is not fully problem-free. First, it is difficult to 
quantify using models and outbreak data. Second, the conclusion 
that R0=1 determines an epidemic threshold is predicated on quite 
rudimentary assumptions. For instance, it is necessary to assume 
that each pair of persons has the same probability of interacting 
at any given moment. In reality, interaction rates vary amongst 
individuals, with those residing in the same city being more likely 
to interact than those residing in other cities [42]. Adding to the 
complications of R0, a whole class of models is incompatible 
with Next Generation building. In Section 9.2, instances of 
this model type in which the Next Generation R0 is invalid are 
provided. The examples are based on current and relevant research, 
and the assumptions that invalidate the Next Generation R0 are 
reasonable. In Section 9.3, an example is shown in which the Next 
Generation R0 seems to fail the threshold criteria while satisfying 
the mathematical theorems’ prerequisites. If a disturbance of 
limited amplitude rather than a single infected person is introduced 
into the population, R0 may be less than one if the illness persists 
in the population. The theory on R0 only assures the persistence of 
infection under tiny disturbances and provides no information on 
disturbances of finite amplitude, despite the fact that an increase of 
a single infected person is itself a disturbance of finite amplitude.
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Breban et al., claimed that in order to correlate a R0 with an 
ODE model, a corresponding individual-level model must be 
constructed; only then can the R0 of the individual-level model 
be determined clearly [43]. In these individual-level models, 
individuals are added to a network of who infected whom based on 
global or local network rules. Then, R0 is determined as the upper 
bound of the average number of outgoing connections of persons 
in a node that no longer accepts new links as time approaches 
infinity. They demonstrated that a wide variety of R0 values were 
consistent with a particular ODE model. Roberts identified three 
essential features often ascribed to R0: An endemic infection 
can only survive if R0>1, R_0 is a direct measure of the control 
effort necessary to eradicate the illness, and pathogens evolve to 
maximise their R0 value. He proved that each of the three assertions 
might be untrue [44]. As previously mentioned, the first might 
fail owing to the existence of backward bifurcations. The second 
may fail when control efforts are performed inconsistently across 
various host types, since R0 is obtained by averaging all host types 
and does not directly predict the control effort necessary to remove 
infection. The third condition may fail if two pathogens coexist 
in a steady state that exists and is stable, yet both single-pathogen 
steady states exist and are unstable. In this instance, the sequence 
in which infections establish themselves in the host population is 
significant. The established parasite plays a role in determining the 
modified carrying capacity, and the pathogen with the highest basic 
reproductive ratio does not necessitate the exclusion of the other.

Breban et al., demonstrated that two individual-level models with 
identical expectations for the relevant population-level variables 
may produce distinct R0 values [45]. They demonstrated that 
obtaining R0 from empirical contact-tracing data collected by 
epidemiologists and using this R0 as a threshold parameter for a 
population-level model could lead to erroneous estimates of the 
infectiousness of the pathogen, the severity of an outbreak, and 
the medical and/or behavioural interventions required for control. 
Therefore, evaluating R0 via contact tracing (as is often done 
during an epidemic investigation) may not be an effective method 
for establishing the efficacy of critical control strategies. Similar 
incidence and prevalence patterns may be generated by several 
distinct individual-level mechanisms. Consequently, it may be 
hard to provide a meaningful R0 value to an ODE model without 
knowledge about the underlying disease transmission network. 
Only a threshold parameter for an epidemic may be utilised to 
create control tactics. Since R0 lacks this criterion characteristic, 
its usefulness may be grossly exaggerated.

Meyers contrasted the theoretical computation of R0 with real 
SARS data from China to demonstrate that R0 estimations seemed 
incongruous [28]. The basic reproduction rate is determined by 
two factors: (1) the intrinsic features of the pathogen, which 
influence the transmission efficiency per contact and the length of 
the infectious phase; and (2) the contact patterns between infected 
and susceptible hosts in the population. While the first element 
may be somewhat consistent throughout outbreaks, the second 
may be very context-dependent and vary greatly within and across 
communities. The issue with the SARS estimations derives from 
the mass-action assumption of compartmental models, which 
states that all susceptible persons have an identical chance of 
being infected. When this assumption is violated, the models 
may provide estimates that are erroneous or may not apply to 
all populations. The majority of the R0 estimates for SARS in 
the field were derived from outbreak data from a hospital and 
a densely populated apartment complex with atypically high 

rates of close contact between persons. The author noted that 
extrapolating estimates for R0 from specialised circumstances such 
as these to the general population may be problematic. Since the 
general population is unlikely to meet mass-action criteria, it is 
also possible to argue that R0 is not a reliable estimate of disease 
transmission.

Alternatives to R0
Jing Li highlighted numerous alternatives to R0, such as: The real 
reproduction number, Ra, is defined as the product of the average 
infectiousness duration and the incidence to prevalence ratio [7]. R0 
corresponds with Ra when the transmission probability is constant; 
however, it compensates for the more typical condition in which 
the transmission probability fluctuates as a function of infection 
age. Once an epidemic has begun, the effective reproduction 
number R(t) estimates the number of secondary cases created 
by each infectious case. R(t)=R0 S(t)/N in the absence of control 
measures, where S(t)/N represents the fraction of the population 
that is vulnerable. The determination of reproductive numbers is 
often an indirect procedure due to the difficulty or impossibility 
of precisely quantifying some of the characteristics on which 
these numbers rely. The effective reproductive number meets the 
condition R(t)≤R0 only when the whole population is susceptible. 
The effective reproduction number is of practical importance 
since it is time-dependent and may explain the degree of cross-
immunity from previous outbreaks. However, since it is derived 
from R0, the effective reproduction number inherits a number of 
its shortcomings.

According to Breban et al., the average number of secondary 
infections among infected individuals [43]. Q0 (t) is the average 
number of outgoing connections of a node inside the infected 
compartment at time t. When the limits exist, R0=limt →∞ R0 (t) 
Q0=limt →∞ Q0 (t) are calculated. Sadly, R0 (t) is never specified 
in the study, restricting the applicability of this definition of R0. 
By similarity with Q0 (t), however, R0 (t) represents the average 
number of outgoing connections of a deleted compartment at a 
given moment. Under the premise that every infection is uniquely 
designated as a secondary infection for either a removed or an 
infected individual, Ni(t)=I(t)Q0 (t)+Nr(t)R0 (t), where 

                                    is the cumulative number of infected 

people in the time range (0,t and                                     As the 

distribution of secondary cases becomes stable, their definition 
of R0 compares the average number of secondary cases to the 
number of eliminated persons. This definition does not imply 
a specific model at the level of the person; it is only dependent 
on the topology of the disease-transmission network. However, 
R0 is not measured at the onset of an epidemic, limiting its use 
during the first outbreak. When infectious illnesses are impacted 
by seasonal fluctuations, typical epidemiological theory and 
notions such as R0 do not apply, as established by Grassly and 
Fraser (2006). They define R0 as D_0^0,      where β(t) is the 
transmission parameter at time t and D is the mean duration of 
infection. Consequently, R0 may be read as the average number 
of secondary cases resulting from the introduction of a single 
infectious agent into an entirely susceptible population at a random 
time of year. They discovered that R0<1 is insufficient to prevent 
an epidemic, since transmission chains may be built during highly 
infectious seasons if Dβ(t)>1. However, R0<1 is essential and 
sufficient for the long-term elimination of illness. 
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Kao constructed an epidemiological network contact matrix M 
with entries mij that are either 1 or 0 based on the possibility of an 
infectious contact between nodes I and j [27]. The spectral radius 
of M is an alternative estimate for R0, which may be computed 
with a weighted version of ( Heffernan and L. M. Wahl, 2006). 
This explicitly accounts for the complete contact structure of the 
network, but the evaluation of extremely large, reasonably dense 
matrices is challenging and time-consuming, especially when this 
evaluation process must be repeated multiple times. 

Comparing the two estimates for portions of a sheep network 
with several thousand nodes, however, reveals a negligible 
discrepancy between R0 and the spectral radius of M. T0, an 
analytical threshold condition, was defined by Kamgang and 
Sallet using the unique structure of Metzler matrices [46]. If T0<1, 
the disease-free equilibrium is locally asymptotically stable, but 
if T0>1, the disease-free equilibrium is unstable. They reported 
that, T0 has a correlation with R0, albeit a greater one; yet, it has 
no clear biological significance. Despite its highly mathematical 
character, the technique for deriving T0 permits the derivation of 
a threshold for high-dimensional epidemic models.

Huang identified four reproductive numbers linked with four 
kinds of transmission patterns, each dependent on z, the mean 
infectious period to mean latent period ratio [47]. These are the 
reproduction numbers for these four items: i) the reproductive 
number associated with the slowest latency process and the 
quickest recovery process, ii) the reproductive number associated 
with the average latency and recovery processes, iii) the greatest 
reproductive number associated with the quickest latency 
process and the slowest recovery process, and iv) the greatest 
reproductive number associated with the quickest latency process 
and the slowest recovery process. These numbers allow for the 
classification of diseases as mild or severe.

Hosack et al., emphasised that R_0 does not always account 
for the dynamics of epidemics in endemic equilibrium models 
[48]. Using the idea of reactivity, they deduced a threshold index 
for epidemicity, E_0, which represents the maximum number 
of new infections created by an infective person in a disease-
free equilibrium. If the threshold for epidemicity is exceeded, 
then the illness prevalence might grow even if it is not endemic. 
They showed that epidemics may develop even in regions where 
transmission cannot be sustained over the long run.

Reluga et al., defined R_d, the discounted reproductive number [49]. 
The discounted reproductive number is a measure of reproductive 
success that is calculated by discounting an individual’s predicted 
lifetime offspring production by the background population 
growth rate. The R_d incorporates characteristics of both the 
basic reproductive number and the final proliferation rate, while 
inheriting the non-uniqueness issues of the next-generation 
approach. 

Nishiura devised a likelihood-based technique for calculating 
R_0 without assuming exponential case growth and provides a 
corrected estimate for the real reproduction number [50]. The 
author observed that R_0 is particularly sensitive to the spread 
of a disease’s development or modifications in the underlying 
epidemiological assumptions [51-57].

Conclusion
The nature of R0 is used to monitor and control severe real-time 
epidemics; control tactics are frequently abandoned if R0<1. This 

means that it is impossible to compare various disorders. Some 
techniques use an equilibrium value that might not be reached 
for a very long period to determine an eradication threshold. This 
implies that in order to characterise transmissibility and direct 
intervention methods, various metrics are required at different 
phases of an epidemic. The next-generation method is probably 
the most popular, yet it suffers from uniqueness problems and does 
not cope well with more than one disease state. Only the survival 
function reliably calculates the average number of secondary 
infections; this method is too cumbersome to use in most practical 
settings. R0 is a quantity that relates to the initial phase of an 
epidemic. It is used to guide eradication efforts when a disease is 
endemic. When a new pathogen emerges, a quantity describing 
the initial spread is useful. 

The contact structure of the population, the variation of risk 
factors and the order of establishing a disease should accompany 
the identification of a meaningful R0 quantity. What is urgently 
needed is a simple, but accurate, measure of disease spread that 
has a consistent threshold property and which can be understood 
by non mathematicians.In addition to never being consistently 
computed, R0 fails to satisfy the threshold property and does not 
quantify the number of secondary infections. No other concept 
has ever outperformed biology, mathematics, epidemiology, and 
immunology in this way. No other idea is so broad that it can 
be explained using partial differential equations, compartment 
models, network models, metapopulation models and stochastic 
models. Rarely has an erroneous idea gained such widespread 
support. Therefore, if R0 is to be used, it must be accompanied by 
a declaration of which method was used, which assumptions are 
underlying the model and evidence that it is actually a threshold, 
with no backward bifurcation.
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