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Introduction 
Establishing a physical theory accounting for the existence of 
particles seems to be a very ambitious project. However, we must 
remain hopeful that one day this wishful thinking could come true, 
as Louis de Broglie pointed out in his work “New Perspectives 
in Microphysics” dating from 1955: 
 
“If, at the cost of an effort which would certainly be long and 
difficult, we managed to extend generalized relativity so as to bring 
the u waves of the various kinds of particles into the framework 
of space-time, we could establish the form non-linear equations 
satisfied by u waves, study what happens in singular regions and 
manage to understand the true nature of these spatiotemporal 
accidents which are the corpuscles and also the deep meaning of 
the quantum of action which is certainly linked in an essential 
way to the granular and wave structure of matter and radiation. 
We would thus obtain (this is not yet for tomorrow!) a magnificent 
synthesis of the conceptions of generalized Relativity and Quanta 
theory. » 
 
The present essay contributes a small stone to the edifice planned 
by the eminent researcher by showing a possible path to the 
unification of Quantum Mechanics and General Relativity by 
positing an appropriate relativistic field equation intrinsically 
linking the geometry of space -time to the kinematics of the 
movement of matter. 

Global Field Equation 
Space-time is Riemannian in nature by signature (+ - - -) 
corresponding to Cartesian coordinates (t = x0, x = x1, y = x2, z = x3). 

We pose as a fundamental postulate of the theory a relation linking 
the spatiotemporal curvatures to the four-acceleration at each 
point in the Universe:

                                                                               (I)                 

where Rij, R and γi designate respectively the Ricci tensor, its 
contraction and the four-acceleration at the universe point 
considered.

The relation (I) consists of 9 independent equations for 9 unknowns 
which are: 6 independent components of the metric tensor gij due 

to the free choice of the landmark and, taking into account the 
relation                           3 independent components of the four-

speed unit                   where

We refer to a local landmark. Let’s ask:

                                  (II)

(Components μi are real or pure imaginary depending on the sign 
under the radical), then:

                                 (III)

                                           constitutes the Einstein 

energy-momentum tensor. 

Where χ denotes Einstein's gravitational constant and 

Its divergence is zero:            expressing the local conservation 
of energy-momentum, in particular for i =0:

                                                                   with α = 1 to 3

And by integration over the entire volume of a free particle at the 
limits of which      cancels:

                                                                                    
(IV)        

Half of the strictly positive quadratic form in square brackets 
(negative if µi is pure imaginary →antimatter?), summed over 
all physical space, is the expression of the total energy of the 
free particle.
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Half of the strictly positive quadratic form in square brackets (negative if µi is pure imaginary 

antimatter?), summed over all physical space, is the expression of the total energy of the free 

particle. 

 

The relationship (IV) shows that it is preserved over time. 
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If the fundamental relation (I) is physically correct, the relations (V-a-b), joined to a 

normalization relation 0   (V-c),
v

dV hc   resulting from the divergence of the four-vector 

iμ (article ref. [13] of the bibliography), where h,c designate respectively Planck's constant and 

the celerity of light, appear in the theory as the constitutive equations of the particles.  
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path which leads in theory to the Klein-Gordon equation for the free particle. 

 



Citation: Christian Preziosa (2024) On a form of Einstein's Equation in Relation to Quantum Mechanics. Journal of Physics & Optics Sciences. SRC/JPSOS/300. 

J Phy Opt Sci, 2024               Volume 6(4): 2-3

The relationship (IV) shows that it is preserved over time.
Furthermore, we check:

                                              and  

If the fundamental relation (I) is physically correct, the relations 

(V-a-b), joined to a normalization relation

resulting from the divergence of the four-vector μi (article ref. [13] 
of the bibliography), where h,c designate respectively Planck's 
constant and the celerity of light, appear in the theory as the 
constitutive equations of the particles.

This remains to be proven by calculation. Solving equations 
(V-a-b) requires the translation of Cartesian spatial operators into 
spherical coordinates. This work will be undertaken following 
this article. 

Let us first show how such relationships are compatible with 
Quantum Mechanics by highlighting the path which leads in theory 
to the Klein-Gordon equation for the free particle.

Klein-Gordon Equation
Quantum mechanics considers particles as point objects in physical 
space. We know that this a priori is at the origin of numerous 
difficulties in the development of Quantum Field Mechanics with 
the problem of divergences.

Despite considerable improvements to the theory in recent years 
(renormalization), it still does not constitute a general theory of 
physics due, in particular, to the fact that it does not account for 
the values of the charge and the mass of the electron.

However, there is no doubt that the particle is an extremely small 
material object in physical space.

Thus, within the framework of our theory, if our goal is not 
to describe the internal dynamics of the particle, we have the 
possibility of assimilating it to a point in the field of μi where all 
its mass energy is concentrated there, animated by a speed ui.  
We know that the proper mass of a free particle is expressed by 
(article ref. [13] of the bibliography):

                                                                                  

So, we can ensure that the field of μi satisfy the relation (V-a), 
by positing:

                                                                                            (VI)

Note:                                               where q is the number of 

signs – of the signature of the space. Here q = 3.

By following derivation j, taking into account equation (V-b):

However, having regard to [II]:

As a result:

Taking into account [VI]:

where:

This results in the Klein-Gordon equation in the case of the free 
particle:

                                                                           (VII)

with the particularity that the wave function is a four-vector with 
real components satisfying the normalization relation (IV), which 
can be written here:

Or  ρ appears in the framework of QM as a density of probability 
of presence of the particle.

These few calculations show a possibility of unifying quantum 
theories and General Relativity based on a single hypothesis: the 
relation (I).

Note that, since              , everywhere around the particle considered 
as point where all its energy is concentrated there, the previous 
relation is written, taking into account the normalization relation 
(V-c) and the Planck-Einstein relation E = hv:

Or  μ0 has the value of the component μ0 at the location of the 
particle whose frequency of the associated wave is v.

Conclusion
The relations (V-b) and (VI) constitute an alternative method 
to that using Paul Dirac's bispinors to account for the Klein-
Gordon equation. It can be the basis of a complete description of 
particles in a unified, but approximate theory. Indeed, we show 
that the Klein-Gordon equation is only valid in the case of a 
needle representation of the particle. It is therefore the fact that 
the particle is quasi-point which ensures the relevance of the 
Klein-Gordon equation and which makes it possible to confuse 
the energy-momentum density of the particle with a density of 
something virtual: the probability of presence of the particle. 
Indeed, Quantum Mechanics considers the particle as an object 
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with the particularity that the wave function is a four-vector with real components satisfying 

the normalization relation (IV), which can be written here: 
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Or appears in the framework of QM as a density of probability of presence of the particle. 

 

These few calculations show a possibility of unifying quantum theories and General Relativity 

based on a single hypothesis: the relation (I). 

 

Note that, since 0i
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Or 0 has the value of the component 0 at the location of the particle whose frequency of 
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Conclusion 

The relations (V-b) and (VI) constitute an alternative method to that using Paul Dirac's 

bispinors to account for the Klein-Gordon equation. It can be the basis of a complete 

description of particles in a unified, but approximate theory. Indeed, we show that the Klein-

Gordon equation is only valid in the case of a needle representation of the particle. It is 

therefore the fact that the particle is quasi-point which ensures the relevance of the Klein-

Gordon equation and which makes it possible to confuse the energy-momentum density of the 

particle with a density of something virtual: the probability of presence of the particle. Indeed, 

Quantum Mechanics considers the particle as an object where all the energy is concentrated at 

one point. Ignoring the internal dynamics of the particle, Quantum Mechanics is therefore an 

incomplete theory. The 4 first order differential equations (V-a-b), 3 of which are non-linear, 

are here the basis which could be that of an exact approach to a unified theory. It is remarkable 
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(Components iµ  are real or pure imaginary depending on the sign under the radical), then: 
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Half of the strictly positive quadratic form in square brackets (negative if iµ  is pure imaginary →  

antimatter?), summed over all physical space, is the expression of the total energy of the free particle. 

The relationship (IV) shows that it is preserved over time. 

  

Furthermore, we check: 

,

j j j

i, j i j i, j j,iT = 0 ( - )= 0µ µ µ µ µ⇔ +    

⇔   
j

i, j j,i( - )= 0µ µ µ      (V-a)      and      ,

j

j = 0µ    if  0i

iµ µ ≠     (V-b) 

 

If the fundamental relation (I) is physically correct, the relations (V-a-b), joined to a normalization 

relation 0

V

dV = hcµ χ∫    (V-c), resulting from the divergence of the four-vector 
iµ (article ref. 

[13] of the bibliography), where ,h c  designate respectively Planck's constant and the celerity of 

light, appear in the theory as the constitutive equations of the particles.  

 

This remains to be proven by calculation. Solving equations (V-a-b) requires the translation of 

Cartesian spatial operators into spherical coordinates. This work will be undertaken following this 

article.  

 

Let us first show how such relationships are compatible with Quantum Mechanics by highlighting the 

path which leads in theory to the Klein-Gordon equation for the free particle. 
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where all the energy is concentrated at one point. Ignoring the 
internal dynamics of the particle, Quantum Mechanics is therefore 
an incomplete theory. The 4 first order differential equations 
(V-a-b), 3 of which are non-linear, are here the basis which could 
be that of an exact approach to a unified theory. It is remarkable 
to note that nonlinear equations of General Relativity are capable 
of accounting for a linear equation of Quantum Mechanics which 
is its foundation [1-13]. 

References
1.	 Einstein A (1922) Four Lectures on the Theory of Relativity. 

Princeton University, Vieweg, Braunschweig.
2.	 De Broglie L (1924) Research on quantum theory. Doctoral 

thesis, Paris.
3.	 Oskar Klein (1926) Quantum theory and five-dimensional 

theory of relativity. Z Phys 37: 895-906.
4.	 Darrieus G (1927) On a remarkable form of the Maxwell-

Lorentz equations in the 5-dimensional universe. J Phys 
Radium 8: 444-446.

5.	 Dirac PAM (1931) The principles of quantum mechanics. 
Les Presses Universitaires deFrance Paris.

6.	 Lichnerowitcz André (1955) Relativistic theories of 
gravitation and electromagnetism.Paris: Masson.

7.	 De Broglie L (1956) New perspectives in Microphysics. 
Albin Michel, Paris.

8.	 Heisenberg W (1972) The physical principles of quantum 
theory. (1time 1957 edition). Gauthier-Villars, Paris.

9.	 Yves Thiry (1958-1959) Penta-dimensional theory of 
gravitation and electromagnetism. Janet Seminar. Analytical 
mechanics and celestial mechanics 2: 1-15.

10.	 De Broglie L (1978) Milestones for a new microphysics. 
Gauthier-Villars, Paris.

11.	 Duruisseau JP (1979) Scalar and New Problems of General 
Relativity: Horizons, Limiting Masses. Thesis, Paris.

12.	 Rousseaux G (2001) Are Maxwell's equations incomplete? 
Annals of the Louis de Broglie Foundation 26: 673-682.

13.	 Preziosa C (2008) On a microscopic form of the energy tensor. 
Science Lib Editions Mersenne 1: 081201.


