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Introduction
The Gross–Pitaevskii equation (GPE) has successfully described 
equilibrium Bose–Einstein condensates (BECs), including density 
profiles, vortex formation and hydrodynamics, quantum computing 
and quantum turbulence, cosmological phenomena such as 
black holes in condensates [1, 2]. The basis of the mathematical 
formulation of the problem of propagation of the Bose-Einstein 
condensate is the Gross-Pitaevskii (GP) equation [3]. Many 
techniques can be used in simulation of Gross-Pitaevskii equation: 
the Crank-Nicholson scheme, the hopscotch method, the pseudo–
spectral split-step method, the Hamiltonian preserving method, 
and many others (see [4, 5]). One common numerical method for 
solving the GPE is to use the time-splitting spectral method [6]. 
In this article, we present a generalized finite-difference time-
domain (G-FDTD) scheme, which is explicit, stable, and permits 
an accurate solution with simple computation for solving the 
above multi-dimensional dGPE [7, 8]. The idea of the GFDTD 
method is to first split the function ψ (x, t) into real and imaginary 
components, resulting in two coupled equations.

Basic Equations
Consider the dGPE in two dimensions as follows:

                                                                                             (1)

where

and the initial condition was chosen to be

                                                                                             (2)

The numerical solution was defined in the interval −20 ≤ x, y ≤ 
20 and for the number of grid points in both x and y to be 200 
with Δt = 0.001.  In our computation, we chose three different 
meshes of 200 × 200, 300 × 300, and 400 × 400. Both numerical 
solutions along the x-axis (the numerical solutions along the 
y-axis are similar due to symmetry) at various times in 0 ≤ t ≤ 
20 were plotted in Figure 1 and Figure 2 shows the simulation of 
non-equilibrium Bose–Einstein condensation at various times in 
0 ≤ t ≤ 20. It can be seen from the figure that the non-equilibrium 
BEC has reached steady state by t = 20.

Figure 1: Simulation of Steady State Non-Equilibrium Bose–
Einstein Condensation, where the G-FDTD Scheme was Employed 
with   at (a) t = 1, (b) t =5.

Figure 2: Simulation of Steady State Non-Equilibrium Bose–
Einstein Condensation, where the G-FDTD Scheme was Employed 
with   at (a)  t = 10, (b) t= 20.
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Abstract
In this study the split-step Fourier method for the numerical simulation of the Gross-Pitaevskii equation. Approximate numerical solutions of the Gross-
Pitaevskii equation are obtained by using Matlab software. It is shown that the proposed method improves the computational effort significantly. This 
improvement becomes more significant especially for large time evolutions. 
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Figure 3: Simulation of Steady State Non-Equilibrium Bose–
Einstein Condensation, where the G-FDTD Scheme was Employed 
with   at (a) t = 25, (b) t=30.

According to the results presented in these figures, the present 
method offers high accuracy for the numerical solutions of the 
Gross-Pitaevskii equation. In the other hand, as can be seen 
from figures, a result obtained by the implicit exponential finite 
difference scheme has better than results obtained from the other 
numerical schemes. 

Conclusion
In this study the split-step Fourier method for the numerical 
simulation of the Gross-Pitaevskii equation. Approximate 
numerical solutions of the Gross-Pitaevskii equation are obtained 
by using Matlab software. The applied here scheme can be used as 
an efficient tool in computational mathematics, namely in a class 
of nonlinear differential equations, which describe the theoretical 
quantum physics and engineering problems. 
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