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Introduction
We start from the Heisenberg uncertainty relation: 

for a quantum state (density operator) ρ and two observables 
(self-adjoint operators) A and B, where [A,B] = AB - BA [1]. The 
further stronger result was given by Schrödinger in:

where the covariance is defined by

                                                                                 [2,3].

The Wigner-Yanase skew information represents a measure for 
non-commutativity between a quantum state ρ and an observable 
H [4]. Luo introduced the quantity Uρ (H)  representing a quantum 
uncertainty excluding the classical mixture:

with the Wigner-Yanase skew information:

and then he successfully showed a new Heisenberg-type 
uncertainty relation on           in:

                                                                                       (1.1)

As stated in, the physical meaning of the quantity Uρ (H) can be 
interpreted as follows [4]. For a mixed state ρ, the variance Vρ (H)
has both classical mixture and quantum uncertainty. Also, the 
Wigner-Yanase skew information Iρ (H) represents a kind of 
quantum uncertainty [6,7]. Thus, the difference Vρ (H) – Iρ (H) has 
a classical mixture so that we can regard that the quantity Uρ (H)
has a quantum uncertainty excluding a classical mixture. Therefore 
it is meaningful and suitable to study an uncertainty relation for 
a mixed state by the use of the quantity Uρ (H). After then a one-
parameter extension of the inequality (1.1) was given in: 

where

with the Wigner-Yanase-Dyson skew information             
is defined by

It is notable that the convexity of                with respect to ρ was 
successfully proven by Lieb in [8,9]. The further generalization 
of the Heisenberg-type uncertainty relation on Uρ (H) has been 
given in using the generalized Wigner-Yanase-Dyson skew 
information introduced in [10, 11]. Then it is shown that these skew 
informations are connected to special choices of quantum Fisher 
information in [12]. The family of all quantum Fisher informations 
is parametrized by a certain class of operator monotone functions
       which were justified in [13]. The Wigner-Yanase skew 

information and Wigner-Yanase-Dyson skew information are 
given by the following operator monotone functions
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respectively. In particular the operator monotonicity of the 
function   fWYD was proved in [14]. See also [15]. Recently, Dou 
and Du proposed the release the restriction on operators which 
are observables. And they defined the corresponding Wigner-
Yanase-Dyson skew information and studied some properties 
of them in [16,17]. Also they obtained non-hermitian extensions 
of Heisenberg or Schrödinger uncertainty relations which is a 
generalization of Luo’s theorem. In this paper we give several 
kinds of non-hermitian extensions of uncertainty relations which 
correspond to the results given in the case of hermitian observables 
[18-20].

Operator Monotone Functions
Let             (resp. Mn,sa (   ) be the set of all n x n complex matrices 
(resp. all n x n  self- adjoint matrices), endowed with the Hilbert-
Schmidt scalar product                          . Let           be the set of all 
strictly positive elements of             and                be the set of all
stricly positive density matrices, that is                                         .
If it is not otherwise specified, from now on we shall treat the case 
of faithful states, that is ρ > 0.

A function                         is said to be operator monotone if, for 
any          and                 such that 0<A< B, the inequalities 0 < 
f (A) <  f (B) hold. An operator monotone function is said to be 
symmetric if                          and normalized if  f (1) =1.

Definition 2.1         is the class of functions
such that
1.             , 
2.                     ,
3. f  is operator monotone.

Example 2.2 Examples of elements of        are given by 
the following list

Remark 2.3 Any                satisfies

For              define                              . We introduce the sets of 

all regular and all non-regular functions

and notice trivially that

Definition 2.4 Let                  satisfy

(2.1)

for some k >0. We define

Generalized Quasi-Metric Adusted Skew Information and 
Correlation Measure
In Kubo-Ando theory of matrix means one associates a mean to 
each operator monotone function            by the formula   

where                         . Using the notion of matrix means one may 
define the class of monotone metrics (also called to be quantum 
Fisher informtions) by the following formula   

where                                                            . For           and   
                   ,                          q-commutator  and q-anti-commutator are defined by
  
                                and                                  , respectively. 

q-commutator is a generalization of commutator [A,B] .

Now we define generalized quasi-metric adjusted q skew 
information and q correlation measure for non-hermitian matrices
            .

Definition 3.1 For                     ,                        and q > 0, we 

define the following quantities, where we put
                                                       and                            I .  
 

The quantity                  and                           are said generalized 
quasi-metric adjusted q skew information and generalized quasi-
metric adjusted q correlation measure, respectively.

Then we have the following proposition.

Proposition 3.2 For                        ,   

and q >0  , we have the following relations:

1. 

2.

3.
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where                       ,                        and           .      

Proof of Theorem 3.3. Since

it is easy to show that                       is an inner product in            .
Then we can get the result by using Schwarz inequality.

Theorem 3.4 For             , if 

                                                                                      (3.1)

for some        , then it holds

                                                                                      (3.2)

where                          ,                           and            .

In order to prove Theorem 3.4, we need the following lemmas

Lemma 3.5 If (2.1) and (3.1) are satisfied, then we have the 
following inequality:

Proof of Lemma 3.5: By (2.1) and (3.1), we have

                                                                                         (3.3)        

                                                                                        (3.4)

Therefore by (3.3), (3.4)

Lemma 3.6 Let                        be a basis of eigenvectors of ρ, 
corresponding to the eigenvalues                     . We put
                                            

 , where                           and 
                            for                       and                         . Then we have 

and

We are now in a position to prove Theorem 3.4.

Proof of Theorem 3.4: At first we prove (3.3). Since

Then by Lemma 3.5, we have

 By the similar way, we also have 

Hence we have the desired inequality (3.2).

Examples
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and                     , we give the following:
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 Then 

In particular for  α = 1/2,

Example 4.2 
When 

and                     , we assume k = f (0)/8  and             , then we 
have the following. 

Example 4.3 
When 

and                     , we give the following: Let

Since            is concave on [1/ 2,1] [20].

Then

That is 

Then since

we have

Example 4.4 
When 

we give the following. Since          is concave on [1/2,3/4]  [20].

Then 

Thus we have

Application
Under the assumption in Example 4.1, we can give an application 
of Theorem 3.3. In [3] some non-hermitian uncertainty relations 
were obtained. One of their q-versions is given as a corollary of 
Theorem 3.4 [21-28].
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Corollary 5.1 For                         ,                          and q > 0, 

where

Proof of Corollary 5.1. When

                                                              , we have by Theorem 3.4

The last equality holds for the following reason. Since

we have

On the other hand when                                                              ,

we obtain the desired inequality (5.1) by the similar way.
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