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Introduction
Understanding Immunity: The Body’s Defense System
The immune system comprises a series of cells and molecules that 
collectively contribute to protection against foreign elements by 
a coordinated reaction known as the immune response [1]. The 
primary physiological role of the immune system is to defend 
against infectious microorganisms. Nevertheless, the immune 
response can also be triggered by non-infectious foreign substances 
and byproducts of damaged cells [2]. Immune responses are finely 
modulated by a network of positive feedback loops that enhance 
the reaction and mechanisms of control that curtail inappropriate 
or pathological responses [3]. Indeed, failure in the regulation of 
immune response can lead to tissue damage and diseases, such as 
severe infections, tumors, allergies, and autoimmune diseases [4]. 

Innate vs. Adaptive Immunity: The Two Lines of Defense 
The immune response consists of a series of sequential and 
coordinated reactions. Based on the response’s speed and 
specificity, it is categorized into innate (natural) and adaptive 
(acquired) immunity [5].

Innate immunity includes physical and anatomical barriers (e.g. 
skin, mucosa) as well as effector cells (e.g. monocytes/macrophages, 
neutrophils, eosinophils, basophils, mast cells, natural killer cells, 
dendritic cells), antimicrobial peptides, soluble mediators (e.g. 

cytokines, acute phase proteins, complement system), and cell 
receptors (e.g. Toll-Like Receptors - TLR) [5,6]. Natural immunity 
is a highly conserved nonspecific response that plays a critical role 
in safeguarding against microbes during the initial hours or days 
following infection, serving as a precursor to the development 
of adaptive immune responses [7]. Molecules produced during 
innate immune reactions serve as second signals for lymphocyte 
activation, proliferation, and differentiation. Moreover, some 
innate effector cells (e.g. monocytes/macrophages, dendritic cells) 
collaborate with antigen presentation to stimulate antigen-specific 
T and B lymphocyte responses [8]. This two-signal mechanism 
ensures a well-coordinated and selective immune response [9].

The adaptive immunity is mediated by cells called lymphocytes and 
their products. There are two major populations of lymphocytes, 
called B and T lymphocytes, which mediate different types of 
adaptive immune responses [10]. Lymphocytes express highly 
diverse membrane receptors that are capable of identifying and 
responding to a wide array of substances, both microbial and 
non-microbial, referred to as antigens. The specific regions of 
complex antigens recognized by lymphocytes are referred to as 
determinants or epitopes [11]. The adaptive immune response 
is highly specific and it usually takes several weeks or days to 
start, progressing through a series of stages [10]. The inception of 
adaptive immune responses hinges on the capture and presentation 
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of antigens to specific naïve lymphocytes. Cells designated as 
antigen-presenting cells (APCs) fulfill this pivotal role [12]. 

Subsequently, a process called clonal expansion ensues. Within 
this process, numerous distinct clones of lymphocytes come into 
play, each equipped with a unique antigen receptor, resulting 
in singular antigen specificity for each clone. Following clonal 
expansion, activated lymphocytes undergo differentiation. These 
activated lymphocytes, known as effector cells, play a central role 
in executing the ultimate effect of the immune response [13,14]. 
Throughout the initiation and execution phases of both innate 
and adaptive immune responses, immune system cells engage in 
interactions with one another and with other cells within the host 
[15]. These interactions are often mediated by molecules known 
as cytokines. Virtually all immune system cells release certain 
cytokines and possess specific signaling receptors for several 
cytokines [16]. 

In addition to effector cells, memory cells are generated, persisting 
over extended periods and mounting more robust and swifter 
responses upon encountering the same antigen anew [17]. 
Once the adaptive immune response has effectively eradicated 
the infection, the stimuli driving lymphocyte activation wane. 
Consequently, a majority of effector cells die out, resulting in 
the decline of the immune response [18]. Memory cells remain, 
ready to respond vigorously if the same infection recurs in the 
so-called secondary immune response [19,20]. Adaptive immunity 
is further divided into two distinct categories: humoral immunity 
and cell-mediated immunity. These forms of immunity are initiated 
by distinct classes of lymphocytes and function to counteract 
various types of microbes and insults [21,22]. Humoral immunity 
hinges on molecules present in the blood and mucosal secretions, 
known as antibodies. These antibodies are generated by plasma 
cells originating from B lymphocytes. Their role involves 
recognizing microbial antigens, thereby neutralizing the infectious 
capabilities of the microbes. Additionally, antibodies facilitate the 
elimination of microbes by tagging them for destruction through 
phagocytosis by specialized cells and by triggering the activity 
of the complement system [23]. Cell-mediated immunity, also 
known as cellular immunity, is orchestrated by T lymphocytes 
(T-cells). T-cells identify and react to antigens bound to host 
proteins localized on the surfaces of various cells and known 
as major histocompatibility complex (MHC) molecules [24]. 
Within the realm of T lymphocytes, distinct functional subsets 
exist, with helper T-cells and cytotoxic T lymphocytes (CTLs) 
being the most well-defined. Helper T-cells primarily exert their 
functions through the secretion of cytokines, whereas CTLs 
produce molecules that facilitate the destruction of other cells. 
An additional subset, known as regulatory T-cells (Tregs), mainly 
functions to suppress immune responses [25]. Distinguishing 
between different types of lymphocytes is possible through the 
expression of unique cell surface proteins, often designated by 
specific Cluster of Differentiation (CD) numbers, such as CD4 or 
CD8. These markers serve as identifiers for the different classes 
of lymphocytes [26].

The primary subsets of effector T-cells include CD8+ cytotoxic 
T lymphocytes and CD4+ helper T-cells. Additionally, among 
helper T-cells, there are other different subsets of cells such as 
Th1, Th2, and Th17, each characterized by the expression of 
specific cytokines and offering protection against different types of 
microbes and tumors(27). Th1 and Th2 cells play a pivotal role in 
immunity [28]. For example, Th1 cells promote cellular immune 
responses, by participating in the inhibition of macrophage 
activation, and by stimulating B-cells to produce immunoglobulins 

(Ig) M and IgG1. On the other hand, Th2 cells stimulate humoral 
immune responses, facilitating B-cell proliferation, and inducing 
antibody production [29]. 

An essential balance exists in terms of this T-cell polarization. 
Research has indicated that directing the polarization towards 
Th1 is crucial for effectively combating cancerous cells, whereas 
a polarization towards Th2 may aid cancer in evading the immune 
system [30,31]. CD4+ helper T-cells also offer activating signals 
to B-cells in response to protein antigens. However, B-cells can 
react to numerous non-protein antigens independently of helper 
T-cells [32,33]. After activation, each plasma cell, a specialized 
type of B-cell, starts to release antibodies that possess identical 
antigen-binding sites as the antigen receptors initially engaged on 
the cell surface [34]. More in detail, polysaccharides and lipids 
predominantly trigger the secretion of antibodies belonging to the 
immunoglobulin class IgM, while protein antigens prompt the 
generation of antibodies from a single B-cell clone in different 
classes, such as IgG, IgA, and IgE to fulfill specific functions [e.g. 
immune function in mucous membranes (IgA), protection against 
parasites (IgE), etc [35]. Finally, helper T-cells also stimulate the 
production of antibodies with heightened affinity for the antigen, 
enhancing the quality of the humoral immune response, in the 
so-called affinity maturation process [36]. A clearer picture of the 
immune system is displayed in Figure 1. 

Understanding and manipulating these complex mechanisms is of 
primary importance to shape the immune response and optimize 
therapeutic strategies in immune-related disorders. 

Figure 1: Immune System Landscape

Autoimmunity: When the Immune System Turns Against Itself
The process of recognition between self and non-self mediated 
by the immune system is not absolute. In certain circumstances, 
the immune system can mistakenly direct itself against itself, 
generating aberrant responses implicated in inflammatory disorders, 
collectively defined as autoimmune diseases [37]. Although the 
mechanisms underlying autoimmunity and autoimmune diseases 
are not yet fully understood, growing evidence demonstrates 
the influence of genetic and environmental interactions. It is 
currently believed that for the rise of an autoimmune disease, there 
is a period in which there might be an interaction between the 
genetic and environmental factors, followed by the autoimmune 
activation that leads to diagnostic clinical symptoms [38]. In 
normal physiological conditions, the immune system takes care of 
eliminating pathogens after their identification. However, there are 
two main cases in which the immune system functions defectively: 
through autoimmune diseases and in immunodeficiency disorders. 
The main cause of autoimmune diseases therefore lies in the failure 
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of recognizing the self. This phenomenon is often described as a 
breakdown of immunological tolerance [39]. Immune tolerance 
is divided into central and peripheral, and a deficiency can cause 
autoimmunity. Central tolerance aims to eliminate reactive B or 
T cells, promoting self-tolerance. This process occurs mainly in 
the bone marrow for B-cells and in the thymus for T-cells. Cells 
that bind to autoantigens thus undergo apoptosis [40]. Peripheral 
tolerance, in contrast to central tolerance, aims to control the 
excessive reactivity of B and T cells [41].

In central tolerance, T-cells that are responsible for recognizing 
self-antigens with a very high affinity will be eliminated in the 
thymus through the process of negative selection, to prevent 
autoimmune processes. Tregs instead will aim to suppress the 
activity of self-reactive T-cells, thus preventing autoimmunity 
[42]. Despite the thymus-mediated control mechanism, numerous 
autoreactive T-cells may elude thymic selection, triggering the 
risk of an autoimmune response. A peripheral mechanism is 
therefore needed to maintain self-tolerance. Subsequently, the 
peripheral tolerance starts its action, mediated by multiple cell 
classes belonging to the innate and adaptive response [43,44]. 

Hyperactive innate immune cells are responsible for responding 
to microbial triggers or high-danger signals, generating and 
modifying autoantigens, neoantigens, and Damage Associated 
Molecular Patterns (DAMPs). This modification can, in turn, be 
triggered by different mechanisms such as increased oxidative 
stress, causing damage to nucleic acids, proteins, lipids, and 
carbohydrates. In predisposed subjects, neoantigens can generate 
a cascade of inflammatory mechanisms. When cellular debris and 
dead cells are not properly eliminated by innate immune cells, 
mitochondrial and nuclear DNA and RNA are exposed to possible 
modifications. This entire process has a proinflammatory effect, 
activating TLR [45,46].

Autoimmune diseases can target different organs varying their 
clinical manifestations. Some are limited to specific tissues, 
while others have systemic characteristics. Regardless of these 
variations, all autoimmune diseases are believed to develop 
through phases. These are represented by an initial phase in which 
a genetic predisposition is influenced by environmental triggers. 
This phase is usually characterized by subclinical symptoms, 
in which patients are generally unaware. This is followed by a 
propagation phase, characterized by autoinflammatory processes 
and tissue damage, related to the production of cytokines and 
disruption of the balance between effector and regulatory T-cells. 
This is followed by a final resolution phase, in which there is a 
partial and usually short-term ability, in which the body attempts 
to restore the balance between effector and regulatory T-cells. This 
last phase is usually characterized by the relapsing of the disease 
[47]. In most cases, the genetic component of autoimmunity 
derives from changes found in class II molecules of the major 
histocompatibility complex (MHC II), which are essentially 
responsible for modulating the efficiency of antigen presentation. 
The remaining part of the genetic component derives from additive 
effects in which the cooperation of multiple genetic loci is recorded 
[48].

Genetic studies have shown that the same genes can increase the 
risk of different autoimmune diseases. Many genes contribute to 
autoimmune predisposition. For diseases such as Systemic Lupus 
Erythematosus (SLE) and rheumatoid arthritis (RA), for example, 
more than 100 different loci have been identified, responsible for 
an increased risk. The number of genes identified also suggests 

that pathological susceptibility is multigenic. An example is the 
PTPN22 gene, whose contribution has been demonstrated in 
several diseases including RA, SLE, and autoimmune (Type 1) 
diabetes mellitus. It represents one of the main susceptibility genes 
in addition to those of the MHC region [49-51]. 

RA is an organ-specific autoimmune disease caused by the 
presence of autoantibodies such as Rheumatoid Factor (RF) and 
Anti-Citrullinated Protein Antibodies (ACPA). This disease has 
been identified as having a familial clustering with more than 100 
loci. Several environmental factors contribute to the risk, including 
cigarette smoking, lack of physical exercise, stress, and diet [52].
 
SLE is a multiorgan systemic autoimmune disease related to 
a dysregulated tolerance in B cells and increased synthesis of 
autoantibodies. Several susceptibility loci have been highlighted, 
such as the Human Leukocyte Antigen (HLA) and non-HLA genes. 
Smoking is associated with increased production of anti-double-
stranded DNA (anti-dsDNA) antibodies [52,53].

In Type 1 diabetes mellitus (T1D), autoimmunity affects pancreatic 
beta cells and the genetic component plays a significant role. It 
has been observed that familial risk is mainly related to HLA 
genes [54]. Low physical activity, stress, infections, diet, and 
psychological trauma are associated with a higher risk of incidence 
[55].

The standard treatment for autoimmune diseases has been based 
for a long time on immunosuppressants. Subsequently, there was 
the advent of biological immunomodulatory drugs, which targeted 
inflammatory mediators including cytokines. An example of this 
class is TNF-α inhibitors that inhibit the proinflammatory activity 
of this mediator, for RA. This therapy has thus represented the 
reference treatment for a long time, allowing disease control 
and reduced adverse effects compared to broad-spectrum 
immunosuppressants. However, anti-TNF-α therapies have also 
shown limitations, such as the loss of efficacy due to the triggering 
of resistance mechanisms as in multiple sclerosis [56].

Currently approved immunomodulatory therapies aim to treat 
symptoms, but they do not eradicate the underlying problem, 
namely the loss of immune tolerance. Refractory autoimmune 
diseases are not susceptible to these treatments, which, while 
aiming to reduce systemic inflammation, can subject the patient 
to opportunistic infections and harmful side effects [58-62]. 

B-cells and plasma cells contribute to the pathogenesis 
of autoimmune diseases by stimulating the production of 
autoantibodies. Therefore, therapeutic strategies have been 
designed to eliminate these cell classes. Monoclonal antibodies 
(mAb) interrupt B-cell and plasma cell-mediated signaling 
and trigger complement-dependent cytotoxicity and antibody-
dependent cytotoxicity. Another strategy has been the creation 
of engineered T-cells via Chimeric Antigen Receptors (CAR-T 
therapy). Nevertheless, even these therapies have important 
limitations, such as the need for repeated administrations in the 
first case, and difficulties in the administration and the exact control 
of the dosage in the second case [57]. Therefore, although B-cell 
depletion strategies have been shown to be useful in the treatment 
of autoimmune diseases such as RA, SLE, multiple sclerosis, 
and many other immune-mediated inflammatory diseases, not all 
patients respond to these treatments or achieve drug-free remission 
[58].
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Given the increasing number of autoimmune diseases in the last 
decades, there has been an urge to renovate therapies to reduce 
the side effects of classical treatments.

Nanomedicine in Action: Current Research on Nanoparticles 
for Autoimmune Diseases
In recent years, nanoparticles have emerged as powerful 
immunomodulators in treating autoimmune diseases due to their 
ability to interact with key immune components. Engineered 
nanomaterials can modulate immune recognition, either enhancing 
or suppressing immune responses and may alter how the immune 
system perceives and detects foreign substances [59]. These 
tiny particles, typically less than 100 nanometers in size, can 
be engineered to interact specifically with the components of 
the immune system, offering targeted therapeutic strategies, as 
displayed in Figure 2.

Figure 2: Schematic of Nanoparticles Employed in Autoimmune 
Diseases

Cationic nanoparticles can scavenge extracellular nucleic acids, 
such as cell-free DNA, thereby preventing Toll-like receptor 
activation and reducing inflammation in conditions like SLE 
and RA(60–67). Additionally, nanoparticle-based strategies can 
regulate macrophage polarization, shifting pro-inflammatory 
M1 macrophages to the anti-inflammatory M2 phenotype, while 
also depleting hyperactive macrophages involved in chronic 
inflammation [68-72]. Targeting lymphocytes, nanoparticles 
can induce immune tolerance by promoting regulatory T-cells, 
suppressing autoreactive T-cells(76), and inhibiting antibody-
producing B-cells, showing potential in diseases such as multiple 
sclerosis and Type 1 diabetes(64,67,73–80). Furthermore, 
nanoparticles can neutralize inflammatory cytokines like TNF-α 
and IL-1β or scavenge reactive oxygen species, offering a 
comprehensive strategy for autoimmune therapy [63,81-88].

One of the most studied cationic nanoparticles is poly(amidoamine) 
(PAMAM) dendrimers, which are extensively studied for their 
ability to bind nucleic acids, making them valuable for gene 
delivery and as nucleic acid scavengers [89]. Their effectiveness 
is influenced by surface charge density, with higher-generation 
dendrimers (G3-G10) displaying enhanced nucleic acid binding 
and transfection efficiency [90,91]. Notably, PAMAM-G3 has been 
explored for its ability to mitigate inflammation and thrombosis 
by neutralizing nucleic acids that activate TLRs, a key mechanism 
in immune system dysregulation [92-94].

Circulating cell-free DNA (cfDNA), first identified by Mandel 
and Metais (1948), has been linked to autoimmune disorders, 
with increased levels observed in conditions such as SLE and 
RA [95-97]. cfDNA originates from various sources, including 
apoptotic cells and neutrophil extracellular traps (NETs), and can 
trigger inflammatory pathways through endosomal TLRs such 
as TLR7, TLR8, and TLR9 [98,99]. Given the role of nucleic 
acids in autoimmune activation, cationic nanoparticles have been 
explored as potential therapeutic agents to prevent excessive 
immune stimulation.

Cationic nanomaterials, widely used for non-viral nucleic acid 
delivery, have recently been investigated for their ability to 
suppress immune activation by scavenging extracellular nucleic 
acids [100]. Some of these materials, including PAMAM-G3, have 
been shown to reduce TLR activation by binding inflammatory 
nucleic acids and altering their intracellular trafficking [101]. 
Additionally, they can interfere with lupus-associated immune 
complexes by displacing autoantibodies from DNA, thereby 
mitigating disease progression without inducing general 
immunosuppression [102,103]. Beyond autoimmune diseases, 
cationic nanoparticles have also effectively reduced inflammatory 
responses in sepsis models [104,105].

Conclusions and Future Perspectives
Nanoparticles have demonstrated significant potential as 
immunomodulators in treating autoimmune diseases by targeting 
key immune components, scavenging inflammatory nucleic acids, 
and modulating immune cell activity. Advances in nanotechnology 
have enabled the design of nanoparticles with enhanced specificity, 
reduced toxicity, and improved therapeutic efficacy, offering 
promising alternatives to conventional immunosuppressive 
therapies. Despite these advances, challenges remain in 
understanding their long-term effects, immune interactions, and 
clinical safety.

Future research should focus on optimizing nanoparticle 
formulations to improve targeting efficiency, reduce off-target 
effects, and ensure biocompatibility. Large-scale clinical studies 
are needed to validate preclinical findings and assess the long-term 
safety of these innovative therapies. Furthermore, interdisciplinary 
collaborations between immunologists, materials scientists, 
and clinicians will be essential to drive the development of 
next-generation nanoparticle-based treatments. Expanding our 
understanding of nanoparticle-immune interactions could unlock 
new therapeutic possibilities and pave the way for more effective 
and personalized therapies for autoimmune diseases. Further 
research in this rapidly evolving field will be crucial to translating 
these promising nanotechnologies into clinical applications.
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