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Introduction
Recent years, the huge scientific research effort has been put into 
nanotechnology, and with the development of nanotechnology, 
the technology related to human is dramatically changed, even 
included an extensively profound influence on our daily life. 
It is well known that nanoporous materials are a subset of 
nanotechnology, which is also a signifcant class with captivating 
applications such as sensors, drug delivery, catalysis, electrodes 
and molecular separation [1-16]. To date, the applications of 
nanoporous materials related to the biomedical have been 
extensively explored owing to its unique properties (such as 
tunable size of pores, large volume of pores, high specific surface 
area, feasible surface modification and chemical stability, etc.). 
Meanwhile, the structures of nanoporous materials also have 
fascinating conducting, magnetic and fluorescent properties 
resulted in attracting the abovementioned biomedical applications, 
for instance, optical sensors, electrochemical sensors, biomolecule 
determination, targeted therapy, drug encapsulation, controlled 
drug release, drug solubility improvement, theranostics, magnetic 
resonance imaging, fluorescent imaging, enzyme immobilization, 
gene transfer, nucleic acid protection, proteome analysis, adjuvants, 
implants, regeneration medicine, tissue engineering, etc.

It often defines the highly porous nanostructure with pore sizes 
ranging from a few nanometers to one hundred nanometers 
as nanoporous material. In line with the requirements of the 
International Union of Pure and Applied Chemistry (IUPAS), it 
can be categorized into three different types of pore on the basis 

of the diameter of pore: nanopores (< 2 nm), mesopores, 2 nm 
<pore size < 50 nm and macropores (> 50 nm). On such nanoscale, 
the nanoporous materials possess a series of the unique properties 
(such as quantum confinement effect, plasmonic, high surface to 
volume area and photonic etc. which are closely related to the 
materials [9,14,17-28]. Up to now, many efforts have been devoted 
to exploring different porous materials such as metal, ceramic, 
semi-conductor and organic [29-40].

Because of the contribution to the state-of-art synthesis strategies, 
bulk materials can be taken for preparing the porous materials 
with the cutting-edge techniques. Numerous types of pore 
morphologies along with the well-developed nanostructures have 
been proposed. Generally, pore morphologies consist of open 
pores which display a connection throughout the structure to the 
surface of the materials. Moreover, many different attractive pore 
shapes have been developed such as spherical, triangular, cylinder 
and sponge-like, etc. [41-48]. Furthermore, some nanostructured 
pores with the special characters, for instance, in the sinusoidal 
and wavy form can be explored with various controllable output 
waveforms fabricated by the electrochemical methods [49,50].

Methods for Synthesis of Nanoporous Materials
Etching-Dealloying
Etching such as dealloying process refers to a chemical process 
in which the alloy is partially dissolved by the selective etching 
[51]. In the alloys’ system, a less noble element is dissolved 
by the etchants and leaves behind a noble alloy constituent and 
an open nanoporous structure. The evolution of nanoporosity 
during the dealloying has been explored with the relevant results 
published in Nature [52]. Study shows that the gold atoms are 
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not dissolved and tend to cluster together to form Au islands, it 
opens up the pore and etches continuously throughout the bulk 
structure. Finally, the sponge-like porous Au is obtained after 
etching. Recently, fabricated a kind of nanoporous Au structures 
by dealloying Au/Ag. By HNO3 dealloying etching, the particles 
nanoporous keep the shape and the density of the surface density 
successfully along with the particles volume shrinking to some 
extent resulted in the lattice defects and the plastic deformation 
of Au crystal structure [22]. It also indicates that the dealloying 
process is more efficient on the particles obtained by the liquid 
state process to obtain a more homogeneity of the AuAg alloy 
forming the particles.

Etching-Electrochemical Etching
In general, electrochemical etching is a common top-down 
approach to fabricate nanoporous materials. In electrolyte in 
two or three electrode configurations using a potenetiostat in 
this procedure, the bulk material is usually electrochemically 
etched, where by an applied voltage or current the pore is formed. 
The surface of the bulk materials reacts with the electrolyte (the 
etchants) to generate the pore structure and such reaction usually 
begins in the defect sites of the surface. Literature related to 
nanoporous materials by the electrochemical etching has been 
published: porous silicon (pSi), porous Ni, porous titania and 
porous alumina [4,11,53-61].

Templating Method
Templating method is a technique adopted to prepare porous 

materials by a sacrifice mold and fill with the target precursors 
into its void space. Generally, the electrochemical reduction or 
calcination is usually taken in order to turn it into the solid phase. 
Many materials such as porous silicon (pSi), porous anodic alumina 
can be taken as the sacrificial template [62,63]. In addition, due 
to the cylindrical pores in the porous anodic alumina, they can 
be filled with other materials to easily fabricate the well-defined 
nanorod or nanotube arrays [64]. Also, the photonic porous silicon 
with the rugated structure can be replicated its structure by filling 
other materials into the porous silicon e.g. metal and polymer 
[65-68]. It should be noted that other templating method such 
as the nanosphere lithography is a technique of the application 
of the nanospheres (silica or polystyrene) with diameter about 
100 nm to 1 µm [69,70]. At the initial, the nanospheres are self-
assembled by different methods involved the spincoating and 
the dipcoating on the substrate to form the ordered hexagonal 
structures. The structures can be a monolayer or a structure with 
three dimensions. The fabricated nanosphere nanostructure can 
be adopted as a template that can be filled into the void with 
various kinds of the materials afterwards (for instance filled the 
metal by the electrodeposition processing). In the process of the 
electrodeposition, metal ions in an electrolyte are reduced to 
metal and filled into the interstices of the nanosphere template. 
Subsequently, the nanosphere can be removed by the dissolution 
or calcination to obtain porous materials with the desired 
characteristics.

3 Porous Silicon (pSi)

Figure 1: Different Geometrical Models with Macroporus Silicon Layers
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The texture beneficial to the cost-effective solar cells can be 
achieved easily by chemical and electrochemical etching (as 
shown in Figure 1) with the multidimensional and multilayers 
macroporous crater-like surface. Also, the correlated mathematical 
model of the macroporous silicon of the real layer was explored 
[71].

Figure 2a: Top view

Figure 2b: Cross Section

Figure 2: FESEM images (a) top view (b) cross section of the 
porous silicon etched by ozone oxidization Porous silicon (pSi) 
has attracted the intense scientific research focus significantly 
since the discovery of photoluminescence at room temperature 
due to its quantum confinement effects [72,73]. In addition to 
the photoluminescence of pSi, the applications (biosensing, in 
vivo imaging and gas sensing of other properties (high porosity, 
tailorable surface, biocompatibility and biodegradability) of pSi 
have been well exploited [74]. Moreover, in the reflectance spectra 
the particular optical characteristics of pSi is extremely crucial to 
develop pSi-based sensor. It is well known that the single layer pSi 
displays Fabry-Pérot fringes and the modulated pSi multilayers 
with the waveform can fabricate into optical nanostructures for 
example Bragg stacks and rugated filters [75,76].

The top view and cross section images of the porous silicon etched 
by ozone oxidization at ozone of 1.5 SCFH for 20 min is shown 
in Figure 2. It shows that the pSi possess the high porosity with 
long and straight pores of the average diameter at 37 nm.

Synthesis strategies for pSi

Figure 3: Schematic Drawing of Electrochemical Etching Process 
for Porous Silicon

Porous silicon is usually fabricated by the electrochemical etching 
process on the crystalline silicon wafer in aqueous hydrofluoric 
acid (HF) connected to potentiostat as shown in Figure 3. Usually 
pSi samples are fabricated with the silicon wafer in a solution of 
48% aqueous HF: ethanol (3:1). For increasing the wettability, 
ethanol is commonly added to the etchant to enhance the etchant 
infiltration and reduce the bubble formation. The mechanism of 
pore formation related to silicon etching is expressed as follows 
[77].

Si+6HF+2hole+→H2SiF6+2H++H2

Porous Silicon for Bioengineering-Biosensor
The attractive tunable pore sizes along with various optical 
nanostructures make the porous silicon a definitely promising 
candidate for bioengineering, especially in field of the biological 
sensing. One of the captivating biosensor is researched on the basis 
of the optical feature of pSi - an optical interferometric biosensor. 
The contribution of such pSi-based optical interferometric 
biosensor is based on Fabry–Pérot fringes which are the result 
of the peak maxima and minima of the reflection spectrum 
constructed by the constructive and destructive interference of 
the reflecting light from the top and the bottom of porous silicon 
layer. Results show that the change in the refractive index of the 
porous silicon matrix, as the peak shift of the effective optical 
thickness in the reflectance spectrum can be easily detected by 
the charge-coupled device (CCD) [78-83].

Porous Silicon for Solar Energy Applications
It is all well-known that in the field of photovoltaics pSi materials 
have attracted much attention, especially for solar cells. The 
relevant advantages are listed as follows: (1) Ease and low-cost 
fabricating pSi. (2) Tuning the band gap from 1.47 to 1.8 eV by 
controlling the density of pores along with optimizing the sunlight 
absorption. (3) Enhancing light trapping and reduce reflection 
loss with increasing the short circuit current. (4) Converting 
solar radiation of shorter wavelengths into longer wavelength 
photons which absorbed more efficiently by bulk Si [84,85]. 
More attractively all reported that the achieved efficiencies are 
over 20%, which one employed group IV reverse graded buffer 
layers grown on Ge/Si virtual substrates with a subsurface silicon 
porous layer to develop a GaAsP/SiGe tandem solar cell [86,87]. 
And the latter took the silver assisted wet chemical etching to 
implement a simple and fast etching process yet effective for 
nano-scale texturing of mc-Si surface.
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Conclusion
Due to the ease and quick fabrication by the electrochemical 
methods, the porous silicon (pSi) has the attractive optical 
properties with the controllable and tuneable porosity and pore 
size along with the enhanced morphological properties of the large 
internal surface area and the versatile surface chemistry. Owing 
to such unique properties of nanoporous materials (high porosity, 
modifiable surface, good biocompatibility and biodegradability), 
the nanoporous silicon materials prepared by the electrochemical 
methods will play more and more significant role in the field 
of catalysis, chemical, energy storage, gas sensing, biological 
sensing and in vivo imaging. Moreover, the above-mentioned 
captivating properties of pSi fabricated by the electrochemical 
methods definitely make the porous silicon a promising candidate 
for solar energy applications in the coming future. Meanwhile, for 
the future environmental risks and the sustainable development, 
the eco-friendly techniques shall be explored further because of 
the chemical usage [88-99].
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