
Volume 3(2): 1-4J Arti Inte & Cloud Comp, 2024

Open Access

Journal of Artificial Intelligence &
Cloud Computing

ISSN: 2754-6659

Review Article

Multi Block Transformer for Malayalam Language Modeling

1Department of Computer Science, SOE, Cochin University of Science and Technology, Kochi, India

2Department of Mathematics, Cochin University of Science and Technology, Kochi, India

3Department of Computer Science, SOE, Cochin University of Science and Technology, Kochi, India

Rohit TP1*, Sasi Gopalan2 and Varsha Shaheen3

*Corresponding author
Rohit TP, Department of Computer Science, SOE, Cochin University of Science and Technology, Kochi, India.

Received: February 23, 2024; Accepted: March 12, 2024; Published: March 18, 2024

Keywords: Language Modeling, Transformer Architecture,
Attention Mechanism, Sequence Modeling and Transduction,
Malayalam Text Generation, Text Tokenization

Introduction
The ability to generate text has become a crucial aspect of modern
language processing, with applications in various fields such as
machine translation, content generation, and chatbots. Despite
significant progress in text generation in English, the problem
remains challenging when applied to complex and rich languages
such as Malayalam. Malayalam, being a South Indian language,
has a large number of symbols and characters, making text
generation a complex problem [1,2].

Existing solutions for text generation in Malayalam, such
as recurrent neural networks (RNNs) and encoder-decoder
architectures, have faced limitations in terms of computational
efficiency and parallelization. The sequential nature of RNNs,
which generate a sequence of hidden states by computing
a function of the previous hidden state and the current input,
precludes parallelization within training examples and becomes
critical at longer sequence lengths. The memory constraints limit
batching across examples, further adding to the computational
overhead [3-6].

This research aims to address these limitations by proposing a new
model architecture for text generation in Malayalam, which relies
entirely on an attention mechanism to draw global dependencies
between the input and output. The goal is to significantly improve
computational efficiency and parallelization while achieving state-
of-the-art results in terms of text generation quality [1,2].

Related Works
Attention is All You Need
This paper introduced the Transformer architecture, which
revolutionized the way NLP models process sequential data.
The Transformer uses self-attention mechanisms to capture
dependencies between words in a sentence, without relying on
recurrent connections. However, the Transformer architecture
has mainly been applied to tasks and datasets in English, with
limited studies in other languages. In our research paper, we aim
to fill this gap by exploring the applicability of the Transformer
to the processing and generation of text in Malayalam, a South
Indian language. Our work extends the Transformer architecture
to handle Malayalam text and demonstrates its ability to generate
coherent and grammatically correct sentences in the language.

Language Models are Unsupervised Multitask Learners
In this paper, the authors showed that large language models
trained on a massive amount of text data can perform well on a
variety of NLP tasks without any task-specific fine-tuning. While
the approach of training large language models on large datasets
has proven successful in various natural language processing
tasks, it may lack effectiveness when it comes to Malayalam
text generation. Malayalam, being a complex language with
unique linguistic characteristics, may require fine-tuning of the
language model specifically for this language. The complexity of
the language and the diversity of expression may pose challenges
for AI in generating coherent text for longer prompts. As a result,
more research and fine-tuning may be required to address these
limitations in the application of language models for Malayalam
text generation.

ABSTRACT
In this research, we present a novel neural network architecture for natural language generation, specifically designed for Malayalam text. We have adapted
the Transformer architecture which is commonly used in language modeling and extended it to work in non-Latin languages. To evaluate the effectiveness
of our model, we trained it on a large corpus of Malayalam text and fine-tuned the hyper-parameters using a grid search. Our model achieved a significant
improvement in generating coherent and grammatically correct Malayalam text compared to the state-of-the-art models. The model was able to generate
text after just 4000 iterations and was able to effectively generalize the relation between symbols and alphabets of the language within 8000 training
iterations. The transformer architecture used proved to be highly efficient in language modeling. Our work highlights the importance of developing new
model architectures for text generation in complex and rich languages and opens up new avenues for future research in this area.

Citation: Rohit TP, Sasi Gopalan and Varsha Shaheen (2024) Multi Block Transformer for Malayalam Language Modeling. Journal of Artificial Intelligence & Cloud
Computing. SRC/JAICC-243. DOI: doi.org/10.47363/JAICC/2024(3)228

J Arti Inte & Cloud Comp, 2024 Volume 3(2): 2-4

The Architecture
Overview
The architecture uses a series of Transformer blocks, each
consisting of a self-attention layer and a feedforward layer. The
input to each block is first passed through the self-attention layer,
where the model attends to different parts of the input sequence to
compute a weighted sum. The output of the self-attention layer is
then passed through a feedforward layer to obtain the final output
of the block. The blocks are followed by a final output projection
layer, which maps the output of the blocks to the desired number
of tokens in the vocabulary. The architecture is implemented
using PyTorch and can be optimized using gradient descent with
a learning rate scheduler.

Blocks
Each block in the architecture is designed to handle the input
sequence in a parallel and efficient manner. By stacking multiple
blocks, the model is able to capture more complex dependencies
in the input data and improve its overall performance. Each block
consists of two sub-layers: a multi-head self-attention layer and
a fully connected feed-forward layer. The blocks are optimized
using a step learning rate scheduler, which helps to control the
learning rate of the model during training and prevent overfitting.
By controlling the learning rate, the model can converge to a
more accurate solution and produce better results on the task it
is designed for.

Layers
Causal Self-Attention Layer
The layer performs masked self-attention, which means it only
attends to elements in the input sequence that are to the left of
each element in the sequence. This is achieved by using a trilinear
matrix as a mask to set attention scores for elements outside of
the causal window to negative infinity. The masked self-attention
is followed by a linear projection to obtain the final layer output.

The input to the layer is an input sequence of shape B×T×C, where
B is the batch size, T is the sequence length, and C is the number
of hidden units (also referred to as the embedding dimensionality).
The layer has two linear projections: the first is used to obtain the
query, key, to obtain the final output after masked self-attention.
The layer also contains two dropout layers for regularization.

Figure 1: Layer Diagram of the Transformer Model

Figure 2: Expanded Diagram of Each Individual Block

The query, key, and value matrices for each head are obtained by
applying the first linear projection to the input sequence. Let the
output of this projection be Q, K, and V, respectively. The shape
of Q, K, and V are B×T×3C, and they are then reshaped to

 where nh is the number of heads.

The masked self-attention is performed by computing an attention
score matrix A as follows:

 (1)

where dk is the dimension of the key vector for each head. Using
a trilinear matrix, the attention score matrix is masked by setting
elements outside the causal window to negative infinity. The
attention scores are then normalized using the softmax function,
resulting in the attention probability distribution:

 P = softmax(A) (2)

The final attention-weighted representation is obtained by
computing the weighted sum of the value matrix V using the
attention probability distribution P:

 Y = P · V (3)

The final output of the layer is obtained by applying the second
linear projection and applying dropout for regularization:

 Z = Dropout(Linear(Y)) (4)

Feed-Forward Layer
This is a two-layer fully connected neural network with a GELU
activation function in between. The layer takes an input tensor
and applies a linear transformation to it, followed by the GELU

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും

Citation: Rohit TP, Sasi Gopalan and Varsha Shaheen (2024) Multi Block Transformer for Malayalam Language Modeling. Journal of Artificial Intelligence & Cloud
Computing. SRC/JAICC-243. DOI: doi.org/10.47363/JAICC/2024(3)228

J Arti Inte & Cloud Comp, 2024 Volume 3(2): 3-4

activation function, and then another linear transformation. The
output of the feed-forward layer is then passed through dropout
before being returned as the final result. The feed-forward layer is
designed to provide a non-linearity to the input tensor and to increase
the expressiveness of the model so as to increase the capacity of the
model and to capture complex relationships between input and output.
 y = σ (Wx + b) (5)

where W, b, and σ(.) are the weights, biases, and activation
functions respectively.

Training
The model was trained on a corpus of Malayalam text data
collected from Wikipedia. The data consists of mostly articles and
use a formal Malayalam dialect in general. The model performed
self-supervised on the text.

Data Preprocessing
The data collected from Wikipedia was cleaned and any
nonprintable characters were removed. To protect privacy any
traceable personal information like email addresses, phone
numbers, etc were replaced with mask tokens. The data set was
tokenized by mapping each character to a 16-bit integer. The
mapping was done using the Unicode value

Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95, and learning
rate = 3e-4. These specific values were derived by statistical
analysis on multiple test runs and extrapolating.

Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs with each
training step duration of 100ms.

Result
The model was able to learn the relation between letters and
symbols and also the proper use of spaces and punctuation. It
was able to generate coherent completions for a given prompt
as well as produce consistent outputs within its embedding size.

Table 1: Training Progress
Iteration Train loss Test loss

0 8.4496 8.9434
500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

Sample Outputs
With token limit set to 36 (for short / few word completions)

• Prompt:
 Generated:
• Prompt:
 Generated:
• Prompt:

 Generated:
• Prompt:
 Generated:

With the token limit set to 108 (for long/full sentence completions)
• Prompt:
 Generated:

• Prompt:
 Generated:

• Prompt:
 Generated:

Comparison with State of the Art
The current state-of-the-art in language modeling is GPT-
3 by Open AI. This model was shown to be very effective in
generalizing language modeling tasks. The major drawback of the
GPT models is the use of subword-level tokenization. Even though
this approach is adequate in modeling Latin and Latin-based
languages like English it becomes limiting when the model tries
to learn languages that use complex arrangements of letters and
symbols. In languages like Malayalam, the meaning is expressed
using the combination of both letters and symbols and sub-word
level transformers fail to learn the relation between sym- bols
and letters and how the arrangement can be changed to form
different words. Our architecture overcomes this problem by
using a character-level model. Our model was able to learn the
inter-character relation and generalize it to generate as well as
infer information from unseen words. This approach opens the
model to learn more in-depth characteristics of the given language
and generalize.

Conclusion
In conclusion, the AI showed a remarkable capability in generating
text in the Malayalam language, delivering grammatically correct
outputs for short prompts with up to 36 tokens. The continuous
decrease of both training and validation loss confirms the model’s
generalizability. However, it was observed that the AI faced
difficulties in preserving context for longer text generation. Further
exploration is needed to enhance the AI’s coherence in generating
longer sentences.

It is noteworthy that, despite the Transformer architecture’s
remarkable success in text generation for various languages,
more efforts are required to optimize the model for the specific
linguistic traits of Malayalam. Additionally, due to the intricacy of
the language, the creation of large annotated datasets for training
and model fine-tuning is crucial in enhancing performance.

This study provides a comprehensive understanding of the
application of the Transformer architecture in generating text
in the Malayalam language and highlights the significance of
further research in this field. The results have the potential to be
applied to a range of real-world applications, such as machine
translation, text-to-speech synthesis, and text classification in
Malayalam [7,8].

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും

The masked self-attention is performed by computing
an attention score matrix A as follows:

A =
QKT

√
dk

(1)

where dk is the dimension of the key vector for each
head. Using a trilinear matrix, the attention score matrix
is masked by setting elements outside the causal window to
negative infinity. The attention scores are then normalized
using the softmax function, resulting in the attention
probability distribution:

P = softmax(A) (2)

The final attention-weighted representation is obtained
by computing the weighted sum of the value matrix V
using the attention probability distribution P :

Y = P · V (3)

The final output of the layer is obtained by applying
the second linear projection and applying dropout for
regularization:

Z = Dropout(Linear(Y)) (4)

2.Feed-forward layer: This is a two-layer fully connected
neural network with a GELU activation function
in between. The layer takes an input tensor and
applies a linear transformation to it, followed by the
GELU activation function, and then another linear
transformation. The output of the feed-forward layer is
then passed through dropout before being returned as the
final result. The feed-forward layer is designed to provide
a non-linearity to the input tensor and to increase the
expressiveness of the model so as to increase the capacity
of the model and to capture complex relationships
between input and output.

y = σ(Wx + b) (5)

where W, b, and σ(·) are the weights, biases, and
activation functions respectively.

IV. Training
The model was trained on a corpus of Malayalam text

data collected from Wikipedia. The data consists of mostly
articles and use a formal Malayalam dialect in general. The
model performed self-supervised on the text.

A. Data Preprocessing
The data collected from Wikipedia was cleaned and any

nonprintable characters were removed. To protect privacy
any traceable personal information like email addresses,
phone numbers, etc were replaced with mask tokens. The
data set was tokenized by mapping each character to a 16-
bit integer. The mapping was done using the Unicode value

of each character and shifting accordingly to make the
range continuous. The character level tokenization here
was preferred to reduce the number of tokens required and
thereby reducing the size and complexity of the model.

B. Optimizer
We used AdamW optimizer with β1 = 0.9, β2 = 0.95,

and learning rate = 3e-4. These specific values were
derived by statistical analysis on multiple test runs and
extrapolating.

C. Schedule
Our model was trained on a Tesla K80 GPU for 12 hrs

with each training step duration of 100ms.

V. Result
The model was able to learn the relation between let-

ters and symbols and also the proper use of spaces and
punctuation. It was able to generate coherent completions
for a given prompt as well as produce consistent outputs
within its embedding size.

TABLE I
Training Progress

Iteration Train loss Test loss
0 8.4496 8.9434

500 5.5241 5.6930
1000 3.2999 4.8662
1500 2.3141 2.8410
2000 1.3355 1.8941
2500 1.3779 4.0960
3000 1.3517 1.4768
3500 1.3013 1.7277
4000 1.2914 1.2289
4500 1.1925 1.4992

A. Sample Outputs
With token limit set to 36 (for short / few word

completions)
• Prompt: വിദ്യാർത്ഥി
Generated: വിദ്യാർത്ഥിക�ം �ാ�ാ�്യം കാണു��

• Prompt: �തി���ം
Generated: �തി���ം ���ി�ി���

• Prompt: �ാ�ദ�ിക
Generated: �ാ�ദ�ിക കാ�ാവ��ി� കുറവാ�ിരി�ം

• Prompt: പൂക്കൾ
Generated: പൂക്കൾ വളെര കുറവായും കാണും

With the token limit set to 108 (for long/full sentence
completions)

• Prompt: ഈപദ്ധതി
Generated: ഈ പദ്ധതി വിദ്യാ�്യാ� �ാപ�ം ���കയും
�േ��ത്തിെ� ���� േക��െള ���രി�ി�ക��
െ���

• Prompt: ��ി���െ� ��ി����
Generated: ��ി���െ� ��ി���� ��ി��കര�� ��
��കത്തി� �ിക� �ല ������� േക���� േക�

• Prompt: േകരളത്തിെല
Generated: േകരളത്തിെല �ലേ����കെള
��ി������ി �ല���ര�ത്തിെ� ��ക�����
�����

B. Comparison With State Of The Art

The current state-of-the-art in language modeling is
GPT-3 by Open AI. This model was shown to be very ef-
fective in generalizing language modeling tasks. The major
drawback of the GPT models is the use of subword-level
tokenization. Even though this approach is adequate in
modeling Latin and Latin-based languages like English it
becomes limiting when the model tries to learn languages
that use complex arrangements of letters and symbols. In
languages like Malayalam, the meaning is expressed using
the combination of both letters and symbols and sub-word
level transformers fail to learn the relation between sym-
bols and letters and how the arrangement can be changed
to form different words. Our architecture overcomes this
problem by using a character-level model. Our model was
able to learn the inter-character relation and generalize it
to generate as well as infer information from unseen words.
This approach opens the model to learn more in-depth
characteristics of the given language and generalize.

VI. Conclusion

In conclusion, the AI showed a remarkable capability
in generating text in the Malayalam language, delivering
grammatically correct outputs for short prompts with up
to 36 tokens. The continuous decrease of both training
and validation loss confirms the model’s generalizability.
However, it was observed that the AI faced difficulties
in preserving context for longer text generation. Further
exploration is needed to enhance the AI’s coherence in
generating longer sentences.

It is noteworthy that, despite the Transformer archi-
tecture’s remarkable success in text generation for various
languages, more efforts are required to optimize the model
for the specific linguistic traits of Malayalam. Addition-
ally, due to the intricacy of the language, the creation
of large annotated datasets for training and model fine-
tuning is crucial in enhancing performance.

This study provides a comprehensive understanding of
the application of the Transformer architecture in gener-
ating text in the Malayalam language and highlights the
significance of further research in this field. The results
have the potential to be applied to a range of real-world
applications, such as machine translation, text-to-speech
synthesis, and text classification in Malayalam.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Gomez, Aidan N. Gomez Łukasz Kaiser, Illia Polo-
sukhin(2017) Attention Is All You Need. In Advances in Neural
Information Processing Systems (pp. 5998-6008).

[2] S. Saravanan and K. Sudha, ”GPT-3 Powered System for Con-
tent Generation and Transformation,” 2022 Fifth International
Conference on Computational Intelligence and Communication
Technologies (CCICT), Sonepat, India, 2022, pp. 514-519, doi:
10.1109/CCiCT56684.2022.00096.

[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever,
I. (2019). Language models are unsupervised multitask learners.
OpenAI.

[4] R. Sunil, N. Manohar, V. Jayan and K. G. Sulochana, ”De-
velopment of Malayalam Text Generator for translation from
English,” 2011 Annual IEEE India Conference, Hyderabad,
India, 2011, pp. 1-6, doi: 10.1109/INDCON.2011.6139398.

[5] K. Souri, A., El Maazouzi, Z., Al Achhab, M., El Mohajir,
B.E. (2018). Arabic Text Generation Using Recurrent Neural
Networks. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya,
N. (eds) Big Data, Cloud and Applications. BDCA 2018. Com-
munications in Computer and Information Science, vol 872.
Springer, Cham. https://doi.org/10.1007/978-3-319-96292-.

[6] Milanova, I., Sarvanoska, K., Srbinoski, V., Gjoreski, H. (2019).
Automatic Text Generation in Macedonian Using Recurrent
Neural Networks. In: Gievska, S., Madjarov, G. (eds) ICT Inno-
vations 2019. Big Data Processing and Mining. ICT Innovations
2019. Communications in Computer and Information Science,
vol 1110. Springer, Cham. https://doi.org/10.1007/978-3-030-
33110-8_1.

[7] X. Zhang, Y. Li, X. Peng, X. Qiao, H. Zhang and W. Lu, ”Corre-
lation Encoder-Decoder Model for Text Generation,” 2022 Inter-
national Joint Conference on Neural Networks (IJCNN), Padua,
Italy, 2022, pp. 1-7, doi: 10.1109/IJCNN55064.2022.9891880.

[8] C. Zhou, J. Shang, J. Zhang, Q. Li and D. Hu, ”Topic-
Attentive Encoder-Decoder with Pre-Trained Language Model
for Keyphrase Generation,” 2021 IEEE International Confer-
ence on Data Mining (ICDM), Auckland, New Zealand, 2021,
pp. 1529-1534, doi: 10.1109/ICDM51629.2021.00200.

�േ��ത്തിെ� ���� േക��െള ���രി�ി�ക��
െ���

• Prompt: ��ി���െ� ��ി����
Generated: ��ി���െ� ��ി���� ��ി��കര�� ��
��കത്തി� �ിക� �ല ������� േക���� േക�

• Prompt: േകരളത്തിെല
Generated: േകരളത്തിെല �ലേ����കെള
��ി������ി �ല���ര�ത്തിെ� ��ക�����
�����

B. Comparison With State Of The Art

The current state-of-the-art in language modeling is
GPT-3 by Open AI. This model was shown to be very ef-
fective in generalizing language modeling tasks. The major
drawback of the GPT models is the use of subword-level
tokenization. Even though this approach is adequate in
modeling Latin and Latin-based languages like English it
becomes limiting when the model tries to learn languages
that use complex arrangements of letters and symbols. In
languages like Malayalam, the meaning is expressed using
the combination of both letters and symbols and sub-word
level transformers fail to learn the relation between sym-
bols and letters and how the arrangement can be changed
to form different words. Our architecture overcomes this
problem by using a character-level model. Our model was
able to learn the inter-character relation and generalize it
to generate as well as infer information from unseen words.
This approach opens the model to learn more in-depth
characteristics of the given language and generalize.

VI. Conclusion

In conclusion, the AI showed a remarkable capability
in generating text in the Malayalam language, delivering
grammatically correct outputs for short prompts with up
to 36 tokens. The continuous decrease of both training
and validation loss confirms the model’s generalizability.
However, it was observed that the AI faced difficulties
in preserving context for longer text generation. Further
exploration is needed to enhance the AI’s coherence in
generating longer sentences.

It is noteworthy that, despite the Transformer archi-
tecture’s remarkable success in text generation for various
languages, more efforts are required to optimize the model
for the specific linguistic traits of Malayalam. Addition-
ally, due to the intricacy of the language, the creation
of large annotated datasets for training and model fine-
tuning is crucial in enhancing performance.

This study provides a comprehensive understanding of
the application of the Transformer architecture in gener-
ating text in the Malayalam language and highlights the
significance of further research in this field. The results
have the potential to be applied to a range of real-world
applications, such as machine translation, text-to-speech
synthesis, and text classification in Malayalam.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Gomez, Aidan N. Gomez Łukasz Kaiser, Illia Polo-
sukhin(2017) Attention Is All You Need. In Advances in Neural
Information Processing Systems (pp. 5998-6008).

[2] S. Saravanan and K. Sudha, ”GPT-3 Powered System for Con-
tent Generation and Transformation,” 2022 Fifth International
Conference on Computational Intelligence and Communication
Technologies (CCICT), Sonepat, India, 2022, pp. 514-519, doi:
10.1109/CCiCT56684.2022.00096.

[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever,
I. (2019). Language models are unsupervised multitask learners.
OpenAI.

[4] R. Sunil, N. Manohar, V. Jayan and K. G. Sulochana, ”De-
velopment of Malayalam Text Generator for translation from
English,” 2011 Annual IEEE India Conference, Hyderabad,
India, 2011, pp. 1-6, doi: 10.1109/INDCON.2011.6139398.

[5] K. Souri, A., El Maazouzi, Z., Al Achhab, M., El Mohajir,
B.E. (2018). Arabic Text Generation Using Recurrent Neural
Networks. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya,
N. (eds) Big Data, Cloud and Applications. BDCA 2018. Com-
munications in Computer and Information Science, vol 872.
Springer, Cham. https://doi.org/10.1007/978-3-319-96292-.

[6] Milanova, I., Sarvanoska, K., Srbinoski, V., Gjoreski, H. (2019).
Automatic Text Generation in Macedonian Using Recurrent
Neural Networks. In: Gievska, S., Madjarov, G. (eds) ICT Inno-
vations 2019. Big Data Processing and Mining. ICT Innovations
2019. Communications in Computer and Information Science,
vol 1110. Springer, Cham. https://doi.org/10.1007/978-3-030-
33110-8_1.

[7] X. Zhang, Y. Li, X. Peng, X. Qiao, H. Zhang and W. Lu, ”Corre-
lation Encoder-Decoder Model for Text Generation,” 2022 Inter-
national Joint Conference on Neural Networks (IJCNN), Padua,
Italy, 2022, pp. 1-7, doi: 10.1109/IJCNN55064.2022.9891880.

[8] C. Zhou, J. Shang, J. Zhang, Q. Li and D. Hu, ”Topic-
Attentive Encoder-Decoder with Pre-Trained Language Model
for Keyphrase Generation,” 2021 IEEE International Confer-
ence on Data Mining (ICDM), Auckland, New Zealand, 2021,
pp. 1529-1534, doi: 10.1109/ICDM51629.2021.00200.

�േ��ത്തിെ� ���� േക��െള ���രി�ി�ക��
െ���

• Prompt: ��ി���െ� ��ി����
Generated: ��ി���െ� ��ി���� ��ി��കര�� ��
��കത്തി� �ിക� �ല ������� േക���� േക�

• Prompt: േകരളത്തിെല
Generated: േകരളത്തിെല �ലേ����കെള
��ി������ി �ല���ര�ത്തിെ� ��ക�����
�����

B. Comparison With State Of The Art

The current state-of-the-art in language modeling is
GPT-3 by Open AI. This model was shown to be very ef-
fective in generalizing language modeling tasks. The major
drawback of the GPT models is the use of subword-level
tokenization. Even though this approach is adequate in
modeling Latin and Latin-based languages like English it
becomes limiting when the model tries to learn languages
that use complex arrangements of letters and symbols. In
languages like Malayalam, the meaning is expressed using
the combination of both letters and symbols and sub-word
level transformers fail to learn the relation between sym-
bols and letters and how the arrangement can be changed
to form different words. Our architecture overcomes this
problem by using a character-level model. Our model was
able to learn the inter-character relation and generalize it
to generate as well as infer information from unseen words.
This approach opens the model to learn more in-depth
characteristics of the given language and generalize.

VI. Conclusion

In conclusion, the AI showed a remarkable capability
in generating text in the Malayalam language, delivering
grammatically correct outputs for short prompts with up
to 36 tokens. The continuous decrease of both training
and validation loss confirms the model’s generalizability.
However, it was observed that the AI faced difficulties
in preserving context for longer text generation. Further
exploration is needed to enhance the AI’s coherence in
generating longer sentences.

It is noteworthy that, despite the Transformer archi-
tecture’s remarkable success in text generation for various
languages, more efforts are required to optimize the model
for the specific linguistic traits of Malayalam. Addition-
ally, due to the intricacy of the language, the creation
of large annotated datasets for training and model fine-
tuning is crucial in enhancing performance.

This study provides a comprehensive understanding of
the application of the Transformer architecture in gener-
ating text in the Malayalam language and highlights the
significance of further research in this field. The results
have the potential to be applied to a range of real-world
applications, such as machine translation, text-to-speech
synthesis, and text classification in Malayalam.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Gomez, Aidan N. Gomez Łukasz Kaiser, Illia Polo-
sukhin(2017) Attention Is All You Need. In Advances in Neural
Information Processing Systems (pp. 5998-6008).

[2] S. Saravanan and K. Sudha, ”GPT-3 Powered System for Con-
tent Generation and Transformation,” 2022 Fifth International
Conference on Computational Intelligence and Communication
Technologies (CCICT), Sonepat, India, 2022, pp. 514-519, doi:
10.1109/CCiCT56684.2022.00096.

[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever,
I. (2019). Language models are unsupervised multitask learners.
OpenAI.

[4] R. Sunil, N. Manohar, V. Jayan and K. G. Sulochana, ”De-
velopment of Malayalam Text Generator for translation from
English,” 2011 Annual IEEE India Conference, Hyderabad,
India, 2011, pp. 1-6, doi: 10.1109/INDCON.2011.6139398.

[5] K. Souri, A., El Maazouzi, Z., Al Achhab, M., El Mohajir,
B.E. (2018). Arabic Text Generation Using Recurrent Neural
Networks. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya,
N. (eds) Big Data, Cloud and Applications. BDCA 2018. Com-
munications in Computer and Information Science, vol 872.
Springer, Cham. https://doi.org/10.1007/978-3-319-96292-.

[6] Milanova, I., Sarvanoska, K., Srbinoski, V., Gjoreski, H. (2019).
Automatic Text Generation in Macedonian Using Recurrent
Neural Networks. In: Gievska, S., Madjarov, G. (eds) ICT Inno-
vations 2019. Big Data Processing and Mining. ICT Innovations
2019. Communications in Computer and Information Science,
vol 1110. Springer, Cham. https://doi.org/10.1007/978-3-030-
33110-8_1.

[7] X. Zhang, Y. Li, X. Peng, X. Qiao, H. Zhang and W. Lu, ”Corre-
lation Encoder-Decoder Model for Text Generation,” 2022 Inter-
national Joint Conference on Neural Networks (IJCNN), Padua,
Italy, 2022, pp. 1-7, doi: 10.1109/IJCNN55064.2022.9891880.

[8] C. Zhou, J. Shang, J. Zhang, Q. Li and D. Hu, ”Topic-
Attentive Encoder-Decoder with Pre-Trained Language Model
for Keyphrase Generation,” 2021 IEEE International Confer-
ence on Data Mining (ICDM), Auckland, New Zealand, 2021,
pp. 1529-1534, doi: 10.1109/ICDM51629.2021.00200.

�േ��ത്തിെ� ���� േക��െള ���രി�ി�ക��
െ���

• Prompt: ��ി���െ� ��ി����
Generated: ��ി���െ� ��ി���� ��ി��കര�� ��
��കത്തി� �ിക� �ല ������� േക���� േക�

• Prompt: േകരളത്തിെല
Generated: േകരളത്തിെല �ലേ����കെള
��ി������ി �ല���ര�ത്തിെ� ��ക�����
�����

B. Comparison With State Of The Art

The current state-of-the-art in language modeling is
GPT-3 by Open AI. This model was shown to be very ef-
fective in generalizing language modeling tasks. The major
drawback of the GPT models is the use of subword-level
tokenization. Even though this approach is adequate in
modeling Latin and Latin-based languages like English it
becomes limiting when the model tries to learn languages
that use complex arrangements of letters and symbols. In
languages like Malayalam, the meaning is expressed using
the combination of both letters and symbols and sub-word
level transformers fail to learn the relation between sym-
bols and letters and how the arrangement can be changed
to form different words. Our architecture overcomes this
problem by using a character-level model. Our model was
able to learn the inter-character relation and generalize it
to generate as well as infer information from unseen words.
This approach opens the model to learn more in-depth
characteristics of the given language and generalize.

VI. Conclusion

In conclusion, the AI showed a remarkable capability
in generating text in the Malayalam language, delivering
grammatically correct outputs for short prompts with up
to 36 tokens. The continuous decrease of both training
and validation loss confirms the model’s generalizability.
However, it was observed that the AI faced difficulties
in preserving context for longer text generation. Further
exploration is needed to enhance the AI’s coherence in
generating longer sentences.

It is noteworthy that, despite the Transformer archi-
tecture’s remarkable success in text generation for various
languages, more efforts are required to optimize the model
for the specific linguistic traits of Malayalam. Addition-
ally, due to the intricacy of the language, the creation
of large annotated datasets for training and model fine-
tuning is crucial in enhancing performance.

This study provides a comprehensive understanding of
the application of the Transformer architecture in gener-
ating text in the Malayalam language and highlights the
significance of further research in this field. The results
have the potential to be applied to a range of real-world
applications, such as machine translation, text-to-speech
synthesis, and text classification in Malayalam.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Gomez, Aidan N. Gomez Łukasz Kaiser, Illia Polo-
sukhin(2017) Attention Is All You Need. In Advances in Neural
Information Processing Systems (pp. 5998-6008).

[2] S. Saravanan and K. Sudha, ”GPT-3 Powered System for Con-
tent Generation and Transformation,” 2022 Fifth International
Conference on Computational Intelligence and Communication
Technologies (CCICT), Sonepat, India, 2022, pp. 514-519, doi:
10.1109/CCiCT56684.2022.00096.

[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever,
I. (2019). Language models are unsupervised multitask learners.
OpenAI.

[4] R. Sunil, N. Manohar, V. Jayan and K. G. Sulochana, ”De-
velopment of Malayalam Text Generator for translation from
English,” 2011 Annual IEEE India Conference, Hyderabad,
India, 2011, pp. 1-6, doi: 10.1109/INDCON.2011.6139398.

[5] K. Souri, A., El Maazouzi, Z., Al Achhab, M., El Mohajir,
B.E. (2018). Arabic Text Generation Using Recurrent Neural
Networks. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya,
N. (eds) Big Data, Cloud and Applications. BDCA 2018. Com-
munications in Computer and Information Science, vol 872.
Springer, Cham. https://doi.org/10.1007/978-3-319-96292-.

[6] Milanova, I., Sarvanoska, K., Srbinoski, V., Gjoreski, H. (2019).
Automatic Text Generation in Macedonian Using Recurrent
Neural Networks. In: Gievska, S., Madjarov, G. (eds) ICT Inno-
vations 2019. Big Data Processing and Mining. ICT Innovations
2019. Communications in Computer and Information Science,
vol 1110. Springer, Cham. https://doi.org/10.1007/978-3-030-
33110-8_1.

[7] X. Zhang, Y. Li, X. Peng, X. Qiao, H. Zhang and W. Lu, ”Corre-
lation Encoder-Decoder Model for Text Generation,” 2022 Inter-
national Joint Conference on Neural Networks (IJCNN), Padua,
Italy, 2022, pp. 1-7, doi: 10.1109/IJCNN55064.2022.9891880.

[8] C. Zhou, J. Shang, J. Zhang, Q. Li and D. Hu, ”Topic-
Attentive Encoder-Decoder with Pre-Trained Language Model
for Keyphrase Generation,” 2021 IEEE International Confer-
ence on Data Mining (ICDM), Auckland, New Zealand, 2021,
pp. 1529-1534, doi: 10.1109/ICDM51629.2021.00200.

�േ��ത്തിെ� ���� േക��െള ���രി�ി�ക��
െ���

• Prompt: ��ി���െ� ��ി����
Generated: ��ി���െ� ��ി���� ��ി��കര�� ��
��കത്തി� �ിക� �ല ������� േക���� േക�

• Prompt: േകരളത്തിെല
Generated: േകരളത്തിെല �ലേ����കെള
��ി������ി �ല���ര�ത്തിെ� ��ക�����
�����

B. Comparison With State Of The Art

The current state-of-the-art in language modeling is
GPT-3 by Open AI. This model was shown to be very ef-
fective in generalizing language modeling tasks. The major
drawback of the GPT models is the use of subword-level
tokenization. Even though this approach is adequate in
modeling Latin and Latin-based languages like English it
becomes limiting when the model tries to learn languages
that use complex arrangements of letters and symbols. In
languages like Malayalam, the meaning is expressed using
the combination of both letters and symbols and sub-word
level transformers fail to learn the relation between sym-
bols and letters and how the arrangement can be changed
to form different words. Our architecture overcomes this
problem by using a character-level model. Our model was
able to learn the inter-character relation and generalize it
to generate as well as infer information from unseen words.
This approach opens the model to learn more in-depth
characteristics of the given language and generalize.

VI. Conclusion

In conclusion, the AI showed a remarkable capability
in generating text in the Malayalam language, delivering
grammatically correct outputs for short prompts with up
to 36 tokens. The continuous decrease of both training
and validation loss confirms the model’s generalizability.
However, it was observed that the AI faced difficulties
in preserving context for longer text generation. Further
exploration is needed to enhance the AI’s coherence in
generating longer sentences.

It is noteworthy that, despite the Transformer archi-
tecture’s remarkable success in text generation for various
languages, more efforts are required to optimize the model
for the specific linguistic traits of Malayalam. Addition-
ally, due to the intricacy of the language, the creation
of large annotated datasets for training and model fine-
tuning is crucial in enhancing performance.

This study provides a comprehensive understanding of
the application of the Transformer architecture in gener-
ating text in the Malayalam language and highlights the
significance of further research in this field. The results
have the potential to be applied to a range of real-world
applications, such as machine translation, text-to-speech
synthesis, and text classification in Malayalam.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Gomez, Aidan N. Gomez Łukasz Kaiser, Illia Polo-
sukhin(2017) Attention Is All You Need. In Advances in Neural
Information Processing Systems (pp. 5998-6008).

[2] S. Saravanan and K. Sudha, ”GPT-3 Powered System for Con-
tent Generation and Transformation,” 2022 Fifth International
Conference on Computational Intelligence and Communication
Technologies (CCICT), Sonepat, India, 2022, pp. 514-519, doi:
10.1109/CCiCT56684.2022.00096.

[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever,
I. (2019). Language models are unsupervised multitask learners.
OpenAI.

[4] R. Sunil, N. Manohar, V. Jayan and K. G. Sulochana, ”De-
velopment of Malayalam Text Generator for translation from
English,” 2011 Annual IEEE India Conference, Hyderabad,
India, 2011, pp. 1-6, doi: 10.1109/INDCON.2011.6139398.

[5] K. Souri, A., El Maazouzi, Z., Al Achhab, M., El Mohajir,
B.E. (2018). Arabic Text Generation Using Recurrent Neural
Networks. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya,
N. (eds) Big Data, Cloud and Applications. BDCA 2018. Com-
munications in Computer and Information Science, vol 872.
Springer, Cham. https://doi.org/10.1007/978-3-319-96292-.

[6] Milanova, I., Sarvanoska, K., Srbinoski, V., Gjoreski, H. (2019).
Automatic Text Generation in Macedonian Using Recurrent
Neural Networks. In: Gievska, S., Madjarov, G. (eds) ICT Inno-
vations 2019. Big Data Processing and Mining. ICT Innovations
2019. Communications in Computer and Information Science,
vol 1110. Springer, Cham. https://doi.org/10.1007/978-3-030-
33110-8_1.

[7] X. Zhang, Y. Li, X. Peng, X. Qiao, H. Zhang and W. Lu, ”Corre-
lation Encoder-Decoder Model for Text Generation,” 2022 Inter-
national Joint Conference on Neural Networks (IJCNN), Padua,
Italy, 2022, pp. 1-7, doi: 10.1109/IJCNN55064.2022.9891880.

[8] C. Zhou, J. Shang, J. Zhang, Q. Li and D. Hu, ”Topic-
Attentive Encoder-Decoder with Pre-Trained Language Model
for Keyphrase Generation,” 2021 IEEE International Confer-
ence on Data Mining (ICDM), Auckland, New Zealand, 2021,
pp. 1529-1534, doi: 10.1109/ICDM51629.2021.00200.

�േ��ത്തിെ� ���� േക��െള ���രി�ി�ക��
െ���

• Prompt: ��ി���െ� ��ി����
Generated: ��ി���െ� ��ി���� ��ി��കര�� ��
��കത്തി� �ിക� �ല ������� േക���� േക�

• Prompt: േകരളത്തിെല
Generated: േകരളത്തിെല �ലേ����കെള
��ി������ി �ല���ര�ത്തിെ� ��ക�����
�����

B. Comparison With State Of The Art

The current state-of-the-art in language modeling is
GPT-3 by Open AI. This model was shown to be very ef-
fective in generalizing language modeling tasks. The major
drawback of the GPT models is the use of subword-level
tokenization. Even though this approach is adequate in
modeling Latin and Latin-based languages like English it
becomes limiting when the model tries to learn languages
that use complex arrangements of letters and symbols. In
languages like Malayalam, the meaning is expressed using
the combination of both letters and symbols and sub-word
level transformers fail to learn the relation between sym-
bols and letters and how the arrangement can be changed
to form different words. Our architecture overcomes this
problem by using a character-level model. Our model was
able to learn the inter-character relation and generalize it
to generate as well as infer information from unseen words.
This approach opens the model to learn more in-depth
characteristics of the given language and generalize.

VI. Conclusion

In conclusion, the AI showed a remarkable capability
in generating text in the Malayalam language, delivering
grammatically correct outputs for short prompts with up
to 36 tokens. The continuous decrease of both training
and validation loss confirms the model’s generalizability.
However, it was observed that the AI faced difficulties
in preserving context for longer text generation. Further
exploration is needed to enhance the AI’s coherence in
generating longer sentences.

It is noteworthy that, despite the Transformer archi-
tecture’s remarkable success in text generation for various
languages, more efforts are required to optimize the model
for the specific linguistic traits of Malayalam. Addition-
ally, due to the intricacy of the language, the creation
of large annotated datasets for training and model fine-
tuning is crucial in enhancing performance.

This study provides a comprehensive understanding of
the application of the Transformer architecture in gener-
ating text in the Malayalam language and highlights the
significance of further research in this field. The results
have the potential to be applied to a range of real-world
applications, such as machine translation, text-to-speech
synthesis, and text classification in Malayalam.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Gomez, Aidan N. Gomez Łukasz Kaiser, Illia Polo-
sukhin(2017) Attention Is All You Need. In Advances in Neural
Information Processing Systems (pp. 5998-6008).

[2] S. Saravanan and K. Sudha, ”GPT-3 Powered System for Con-
tent Generation and Transformation,” 2022 Fifth International
Conference on Computational Intelligence and Communication
Technologies (CCICT), Sonepat, India, 2022, pp. 514-519, doi:
10.1109/CCiCT56684.2022.00096.

[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever,
I. (2019). Language models are unsupervised multitask learners.
OpenAI.

[4] R. Sunil, N. Manohar, V. Jayan and K. G. Sulochana, ”De-
velopment of Malayalam Text Generator for translation from
English,” 2011 Annual IEEE India Conference, Hyderabad,
India, 2011, pp. 1-6, doi: 10.1109/INDCON.2011.6139398.

[5] K. Souri, A., El Maazouzi, Z., Al Achhab, M., El Mohajir,
B.E. (2018). Arabic Text Generation Using Recurrent Neural
Networks. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya,
N. (eds) Big Data, Cloud and Applications. BDCA 2018. Com-
munications in Computer and Information Science, vol 872.
Springer, Cham. https://doi.org/10.1007/978-3-319-96292-.

[6] Milanova, I., Sarvanoska, K., Srbinoski, V., Gjoreski, H. (2019).
Automatic Text Generation in Macedonian Using Recurrent
Neural Networks. In: Gievska, S., Madjarov, G. (eds) ICT Inno-
vations 2019. Big Data Processing and Mining. ICT Innovations
2019. Communications in Computer and Information Science,
vol 1110. Springer, Cham. https://doi.org/10.1007/978-3-030-
33110-8_1.

[7] X. Zhang, Y. Li, X. Peng, X. Qiao, H. Zhang and W. Lu, ”Corre-
lation Encoder-Decoder Model for Text Generation,” 2022 Inter-
national Joint Conference on Neural Networks (IJCNN), Padua,
Italy, 2022, pp. 1-7, doi: 10.1109/IJCNN55064.2022.9891880.

[8] C. Zhou, J. Shang, J. Zhang, Q. Li and D. Hu, ”Topic-
Attentive Encoder-Decoder with Pre-Trained Language Model
for Keyphrase Generation,” 2021 IEEE International Confer-
ence on Data Mining (ICDM), Auckland, New Zealand, 2021,
pp. 1529-1534, doi: 10.1109/ICDM51629.2021.00200.

�േ��ത്തിെ� ���� േക��െള ���രി�ി�ക��
െ���

• Prompt: ��ി���െ� ��ി����
Generated: ��ി���െ� ��ി���� ��ി��കര�� ��
��കത്തി� �ിക� �ല ������� േക���� േക�

• Prompt: േകരളത്തിെല
Generated: േകരളത്തിെല �ലേ����കെള
��ി������ി �ല���ര�ത്തിെ� ��ക�����
�����

B. Comparison With State Of The Art

The current state-of-the-art in language modeling is
GPT-3 by Open AI. This model was shown to be very ef-
fective in generalizing language modeling tasks. The major
drawback of the GPT models is the use of subword-level
tokenization. Even though this approach is adequate in
modeling Latin and Latin-based languages like English it
becomes limiting when the model tries to learn languages
that use complex arrangements of letters and symbols. In
languages like Malayalam, the meaning is expressed using
the combination of both letters and symbols and sub-word
level transformers fail to learn the relation between sym-
bols and letters and how the arrangement can be changed
to form different words. Our architecture overcomes this
problem by using a character-level model. Our model was
able to learn the inter-character relation and generalize it
to generate as well as infer information from unseen words.
This approach opens the model to learn more in-depth
characteristics of the given language and generalize.

VI. Conclusion

In conclusion, the AI showed a remarkable capability
in generating text in the Malayalam language, delivering
grammatically correct outputs for short prompts with up
to 36 tokens. The continuous decrease of both training
and validation loss confirms the model’s generalizability.
However, it was observed that the AI faced difficulties
in preserving context for longer text generation. Further
exploration is needed to enhance the AI’s coherence in
generating longer sentences.

It is noteworthy that, despite the Transformer archi-
tecture’s remarkable success in text generation for various
languages, more efforts are required to optimize the model
for the specific linguistic traits of Malayalam. Addition-
ally, due to the intricacy of the language, the creation
of large annotated datasets for training and model fine-
tuning is crucial in enhancing performance.

This study provides a comprehensive understanding of
the application of the Transformer architecture in gener-
ating text in the Malayalam language and highlights the
significance of further research in this field. The results
have the potential to be applied to a range of real-world
applications, such as machine translation, text-to-speech
synthesis, and text classification in Malayalam.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Gomez, Aidan N. Gomez Łukasz Kaiser, Illia Polo-
sukhin(2017) Attention Is All You Need. In Advances in Neural
Information Processing Systems (pp. 5998-6008).

[2] S. Saravanan and K. Sudha, ”GPT-3 Powered System for Con-
tent Generation and Transformation,” 2022 Fifth International
Conference on Computational Intelligence and Communication
Technologies (CCICT), Sonepat, India, 2022, pp. 514-519, doi:
10.1109/CCiCT56684.2022.00096.

[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever,
I. (2019). Language models are unsupervised multitask learners.
OpenAI.

[4] R. Sunil, N. Manohar, V. Jayan and K. G. Sulochana, ”De-
velopment of Malayalam Text Generator for translation from
English,” 2011 Annual IEEE India Conference, Hyderabad,
India, 2011, pp. 1-6, doi: 10.1109/INDCON.2011.6139398.

[5] K. Souri, A., El Maazouzi, Z., Al Achhab, M., El Mohajir,
B.E. (2018). Arabic Text Generation Using Recurrent Neural
Networks. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya,
N. (eds) Big Data, Cloud and Applications. BDCA 2018. Com-
munications in Computer and Information Science, vol 872.
Springer, Cham. https://doi.org/10.1007/978-3-319-96292-.

[6] Milanova, I., Sarvanoska, K., Srbinoski, V., Gjoreski, H. (2019).
Automatic Text Generation in Macedonian Using Recurrent
Neural Networks. In: Gievska, S., Madjarov, G. (eds) ICT Inno-
vations 2019. Big Data Processing and Mining. ICT Innovations
2019. Communications in Computer and Information Science,
vol 1110. Springer, Cham. https://doi.org/10.1007/978-3-030-
33110-8_1.

[7] X. Zhang, Y. Li, X. Peng, X. Qiao, H. Zhang and W. Lu, ”Corre-
lation Encoder-Decoder Model for Text Generation,” 2022 Inter-
national Joint Conference on Neural Networks (IJCNN), Padua,
Italy, 2022, pp. 1-7, doi: 10.1109/IJCNN55064.2022.9891880.

[8] C. Zhou, J. Shang, J. Zhang, Q. Li and D. Hu, ”Topic-
Attentive Encoder-Decoder with Pre-Trained Language Model
for Keyphrase Generation,” 2021 IEEE International Confer-
ence on Data Mining (ICDM), Auckland, New Zealand, 2021,
pp. 1529-1534, doi: 10.1109/ICDM51629.2021.00200.

Citation: Rohit TP, Sasi Gopalan and Varsha Shaheen (2024) Multi Block Transformer for Malayalam Language Modeling. Journal of Artificial Intelligence & Cloud
Computing. SRC/JAICC-243. DOI: doi.org/10.47363/JAICC/2024(3)228

J Arti Inte & Cloud Comp, 2024 Volume 3(2): 4-4

References
1. Ashish V, Noam S, Niki P, Jakob U, Llion J, et al. (2017)

Attention Is All You Need. In Advances in Neural Information
Processing Systems 5998-6008.

2. Saravanan S, Sudha K (2022) GPT-3 Powered System
for Content Generation and Transformation. 2022 Fifth
International Conference on Computational Intelligence
and Communication Technologies (CCICT), Sonepat, India
514-519.

3. Souri A, Maazouzi Z, Achhab M, Mohajir B (2018) Arabic
Text Generation Using Recurrent Neural Networks. Big Data,
Cloud and Applications. BDCA 2018, Communications in
Computer and Information Science 872.

4. Milanova I, Sarvanoska K, Srbinoski V, Gjoreski H (2019)
Automatic Text Generation in Macedonian Using Recurrent
Neural Networks. Big Data Processing and Mining, ICT
Innovations, Communications in Computer and Information
Science 1110.

5. Zhang X, Li Y, Peng X, Qiao X, Zhang H (2022) Correlation
Encoder-Decoder Model for Text Generation. 2022
International Joint Conference on Neural Networks (IJCNN),
Padua, Italy 1-7.

6. Zhou C, Shang J, Zhang J, Li Q, Hu D (2021) Topic-Attentive
Encoder-Decoder with Pre-Trained Language Model for
Keyphrase Generation. 2021 IEEE International Conference
on Data Mining (ICDM), Auckland, New Zealand 1529-1534.

7. Radford A, Wu J, Child R, Luan D, Amodei D, et al. (2019)
Language models are unsupervised multitask learners.
OpenAI https://d4mucfpksywv.cloudfront.net/better-
language-models/language_models_are_unsupervised_
multitask_learners.pdf.

8. Sunil R, Manohar N, Jayan V, Sulochana KG (2011)
Development of Malayalam Text Generator for translation
from English. 2011 Annual IEEE India Conference,
Hyderabad, India 1-6.

Copyright: ©2024 Rohit TP. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

