
J Econ Managem Res, 2021 Volume 2(1): 1-6

Microservices vs. Monoliths in Financial Applications: A Comparative
Analysis for Scalable Architectures
Ashmitha Nagraj

*Corresponding author
Ashmitha Nagraj, USA. Email: nagrajashmitha@gmail.com

Received: January 07, 2021; Accepted: January 15, 2021; Published: January 26, 2021

Keywords: Microservices, Microservices vs Monoliths, Scalable
Architecture, Financial Application

Introduction
•	 Background and Context
The financial technology (fintech) landscape has evolved
significantly, driven by the need for faster, more secure, and
scalable solutions. Financial applications, such as banking systems,
trading platforms, and payment gateways, require robust software
architectures to handle high transaction volumes, ensure data
integrity, and comply with stringent regulatory requirements.
The choice between monolithic and microservices architectures
has become a critical decision for financial institutions, directly
impacting scalability, maintainability, and operational efficiency.

Figure 1: This Figure Depicts the Use of Microservice Architecture
in The Market in The Last Couple of Years and Their Expected
Increase of Usage in Future Years.

Monolithic architectures, characterized by a single, unified
codebase, have historically dominated the financial sector due
to their simplicity and ease of deployment. However, the rise of
cloud computing and DevOps practices has led to the growing
adoption of microservices, which decompose applications into
more minor, independently deployable services.

•	 Problem Statement and Purpose
Choosing exemplary architecture is critical for financial
applications due to their unique requirements, such as high
availability, real-time processing, and compliance with regulations
like GDPR and PCI-DSS . Financial institutions face challenges
such as legacy system integration, scalability bottlenecks, and
the need for rapid innovation, all of which influence architectural
decisions. This paper aims to provide a comparative analysis of
monolithic and microservices architectures, focusing on their
suitability for scalable financial systems. By examining their
strengths and weaknesses, this study seeks to guide financial
institutions in making informed architectural choices.

•	 Scope and Structure of the Paper
The Paper is Structured as Follows: Section 2 examines monolithic
architecture in financial applications, including its advantages
and limitations. Section 3 explores microservices architecture,
highlighting its relevance and challenges. Section 4 outlines key
requirements for financial applications, such as performance,
security, and reliability. Section 5 provides a comparative analysis
of the two architectures across scalability, complexity, and cost.
Section 6 presents real-world case studies, while Section 7 discusses
implementation challenges and best practices. Section 8 explores
future trends, and Section 9 concludes with recommendations and
areas for further research.

Research Article Open Access

ISSN: 2755-0214

Journal of Economics & Management
Research

ABSTRACT
The rapid evolution of financial technology has necessitated scalable and efficient software architectures for financial applications. This paper presents a
comparative analysis of monolithic and microservices architectures, focusing on their suitability for monetary systems regarding scalability, maintainability,
security, and compliance. While monolithic architectures have traditionally dominated financial applications due to their simplicity and centralized
governance, microservices have gained traction with the rise of cloud computing and DevOps methodologies. This study highlights the trade-offs between
the two architectural paradigms through an in-depth evaluation of performance metrics, real-world case studies, and implementation challenges. The findings
suggest microservices offer superior scalability and fault isolation but introduce increased operational complexity and security challenges. Conversely,
monoliths provide a stable and controlled environment but struggle with flexibility and high-volume processing. The paper concludes by offering strategic
recommendations for financial institutions seeking to transition or optimize their system architectures, considering regulatory requirements, system
reliability, and long-term sustainability.

USA

Citation: Ashmitha Nagraj (2021) Microservices vs. Monoliths in Financial Applications: A Comparative Analysis for Scalable Architectures. Journal of Economics
& Management Research. SRC/JESMR-384. DOI: doi.org/10.47363/JESMR/2021(2)288

J Econ Managem Res, 2021 Volume 2(1): 2-6

Monolithic Architecture in Financial Applications
•	 Definition	and	Characteristics
Monolithic architecture integrates all components of an application
such as the user interface, business logic, and data access layer
into a single codebase. This approach simplifies development
and deployment, as the entire application is built and deployed
as a single unit.

Figure 2: Monolithic Architecture

Monolithic architecture is often preferred for their straightforward
design, which reduces the complexity of managing multiple
components. However, this simplicity can become a limitation
as the application grows in size and complexity.

Historical Context
Monolithic architecture has been the foundation of many financial
systems, including core banking platforms and trading systems.
Their popularity stems from their simplicity and the ease of
managing a single codebase, especially in an era when distributed
systems were complex to implement [8]. Many financial institutions
still rely on legacy monolithic systems due to the high cost and
risk of migration. These systems, while stable, often struggle to
meet the demands of modern financial applications, such as real-
time processing and scalability.

Advantages
•	 Simplicity: A single codebase simplifies development, testing,

and debugging. Developers can work on the entire application
without worrying about inter-service communication or
compatibility issues.

•	 Centralized Governance: Easier to enforce security and
compliance policies across the application. This centralized
approach ensures consistency in implementing regulatory
requirements.

•	 Initial Deployment: Faster initial deployment due to fewer
moving parts. Monolithic applications are often quicker to
set up and deploy in the early stages of development.

Disadvantages and Limitations
•	 Scalability Challenges: Scaling a monolithic application

requires scaling the entire system, even if only one component
faces increased demand. This can lead to inefficiencies and
increased costs.

•	 Maintenance Complexity: As the codebase grows, making
changes becomes riskier and more time-consuming.
Developers must navigate a large, interconnected codebase,
which can slow down innovation.

•	 Risk of Downtime: A failure in one component can bring
down the entire system, impacting business continuity. This
lack of fault isolation is a significant drawback for mission-
critical financial applications.

Microservices Architecture in Financial Applications
•	 Definition	and	Core	Principles
Microservices architecture divides an application into multiple
independent services, each dedicated to a distinct business function.
These services interact through APIs, messaging frameworks, or
communication protocols such as GRPC . This structured approach
enhances flexibility and scalability, enabling individual services to
be developed, deployed, and expanded separately. However, it also
introduces complexity in managing inter-service communication
and data consistency.

Figure 3: Microservices Architecture

Relevance to Financial Institutions
Microservices align well with the Agile and DevOps methodologies
increasingly adopted by financial institutions. They enable faster
innovation, granular scalability, and improved fault isolation,
making them ideal for modern fintech applications . For example,
banks can deploy new features or updates to specific services
without disrupting the entire system. This flexibility is particularly
valuable in a rapidly evolving financial landscape.

Advantages
•	 Granular Scalability: Services can be scaled independently

based on demand, allowing financial institutions to optimize
resource usage. This is particularly useful for handling peak
loads, such as during market openings.

•	 Fault Isolation: Ensures that failures in one service do not
affect the entire system, improving overall reliability. This is
critical for financial applications, where downtime can result
in significant financial losses.

•	 Continuous Delivery: Enables faster deployment cycles
through CI/CD pipelines, allowing financial institutions to
respond quickly to market demands.

Citation: Ashmitha Nagraj (2021) Microservices vs. Monoliths in Financial Applications: A Comparative Analysis for Scalable Architectures. Journal of Economics
& Management Research. SRC/JESMR-384. DOI: doi.org/10.47363/JESMR/2021(2)288

J Econ Managem Res, 2021 Volume 2(1): 3-6

Disadvantages and Challenges
•	 Operational Complexity: Managing multiple services

requires robust monitoring, logging, and tracing tools. This
can increase the operational overhead for financial institutions.

•	 Data Consistency: Ensuring transactional consistency across
services can be challenging, especially in distributed systems.
Financial applications often require strict adherence to
ACID principles, which can be challenging in microservices
architecture.

•	 Governance Overhead: Coordinating development across
multiple teams can increase management complexity.
Financial institutions must establish explicit governance
models to ensure service consistency and compliance.

Microservices and DevOps Integration
One of the key advantages of microservices architecture in
financial applications is its seamless integration with DevOps
methodologies, which emphasize continuous integration and
continuous deployment (CI/CD). By breaking down applications
into smaller, independently deployable services, microservices
enable financial institutions to adopt agile development cycles,
accelerating feature releases and bug fixes [1].

DevOps practices, such as automated testing, infrastructure as code
(IaC), and monitoring, play a crucial role in ensuring the reliability
of microservices-based financial systems [2]. Financial institutions
can use tools like Docker and Kubernetes to deploy microservices
in isolated environments, ensuring consistency across different
deployment stages. Service orchestration platforms such as Istio
and Consul also help manage inter-service communication,
security policies, and load balancing. By leveraging CI/CD
pipelines, banks and fintech firms can push updates to individual
services without affecting the entire system, reducing downtime
and improving customer experience. For instance, if a payment
processing service requires enhancement, it can be updated and
deployed independently, minimizing risks to other critical financial
functions [3-8].

Microservices and API-Driven Banking
The adoption of microservices in financial applications has
accelerated the growth of API-driven banking, enabling seamless
integration with third-party services and open banking platforms.
Financial institutions are increasingly offering public, private, and
partner APIs that allow external applications, fintech startups,
and regulatory bodies to access banking functionalities securely.

Figure 4: This Figure Depicts How APIs Work in Fintech

User makes the beginning request to use the API, before which
they are authenticated, and the request is sent to backend source
using APIs to retrieve the required information. This information
is transferred to the client-side through an API. For example, Open

Banking APIs enable authenticated customers to connect their
bank accounts to third-party financial services, providing enhanced
functionalities such as automated budgeting, loan comparisons, and
investment tracking. In monolithic architecture, such integrations
would be complex and require extensive code modifications,
whereas microservices allow banks to expose specific services
as APIs without disrupting the entire system. Event-driven API
gateways facilitate secure and efficient communication between
microservices and external systems. These gateways handle
authentication, request routing, and load balancing, ensuring
high availability and security for financial transactions [9-11].

Microservices in Fraud Detection and Risk Management
Microservices architectures support real-time fraud detection and
risk assessment by allowing financial institutions to deploy AI-
driven analytics services that continuously monitor transactions
for suspicious activity. Unlike monolithic systems, where fraud
detection logic may be embedded within a large, inflexible
codebase, microservices enable independent deployment of fraud
detection algorithms, ensuring rapid updates and improvements.

By leveraging machine learning-powered microservices, banks
can analyze historical transaction data, detect anomalies, and flag
potential fraud in real time. Furthermore, these microservices
can integrate with external fraud detection systems, enhancing
security measures without significantly modifying core banking
platforms. For instance, a dedicated fraud detection microservice
can evaluate transactions based on geolocation, spending patterns,
and behavioral biometrics. If suspicious activity is detected, it
can trigger an automated security response, such as temporary
account freezes, multi-factor authentication (MFA) challenges,
or real-time alerts to customers.

Challenges in Microservices Security for Financial Institutions
While microservices offer flexibility and scalability, they also
introduce unique security challenges in financial applications.
Unlike monolithic architectures, where security policies are
applied centrally, microservices require a distributed security
model where each service must be secured individually. One
primary concern is securing inter-service communication. Since
microservices communicate over APIs and message queues,
attackers can exploit vulnerabilities if proper authentication and
encryption mechanisms are not in place . Financial institutions
must implement Zero Trust security models, which enforce strict
access controls and continuous authentication for every service
interaction.

Data consistency and integrity present security risks in
microservices-based financial systems. Traditional monolithic
architecture ensures ACID (Atomicity, Consistency, Isolation,
Durability) compliance within a single database, whereas
microservices often rely on eventual consistency models, which
may introduce vulnerabilities in financial transactions. Financial
institutions can adopt distributed ledger technologies such as
blockchain to mitigate this, ensuring immutable transaction
records and enhanced transparency. Another key challenge is
API security, as financial microservices often expose critical
services through APIs. Implementing OAuth 2.0, JWT (JSON Web
Tokens), and API gateway security policies can help safeguard
sensitive financial data from unauthorized access [12].

Key Requirements for Financial Applications
•	 Performance and Scalability
 Financial applications must handle high transaction volumes

Citation: Ashmitha Nagraj (2021) Microservices vs. Monoliths in Financial Applications: A Comparative Analysis for Scalable Architectures. Journal of Economics
& Management Research. SRC/JESMR-384. DOI: doi.org/10.47363/JESMR/2021(2)288

J Econ Managem Res, 2021 Volume 2(1): 4-6

and provide real-time analytics. Scalability is critical to
accommodate peak loads, such as during market openings
or payment processing. Both monolithic and microservices
architecture must meet these demands, but they do so in
different ways. Monoliths scale vertically, while microservices
scale horizontally, offering greater flexibility.

•	 Security and Compliance
 Regulatory requirements like GDPR, PCI-DSS, and SOC2

mandate stringent security measures. Financial applications
must ensure secure data handling, encryption, and access
control. Microservices introduce additional security
challenges, such as securing inter-service communication,
but also offer opportunities for fine-grained access control.

•	 Reliability and Availability
 High availability and disaster recovery strategies are essential to

minimize downtime and ensure business continuity. Financial
institutions must implement robust failover mechanisms and
redundancy to meet these requirements. Microservices can
enhance reliability with fault isolation capabilities but require
careful orchestration to avoid cascading failures.

•	 Data Integrity and Consistency
 Financial transactions require strict adherence to ACID

principles, prioritizing data consistency. Monolithic
architectures inherently support ACID transactions, while
microservices often rely on eventual consistency models.
Financial institutions must carefully evaluate these trade-offs
when choosing an architecture.

Comparative Analysis
•	 Scalability
 Microservices offer granular scalability, allowing financial

institutions to scale specific services based on demand [4].
In contrast, monoliths require scaling the entire application,
which can lead to inefficiencies. This makes microservices
more suitable for applications with varying workloads.

•	 Complexity	and	Development	Effort
 Monoliths are simpler initially but become complex over

time as the codebase grows. Microservices require upfront
investment in infrastructure and tooling, but they offer greater
flexibility in the long term. Financial institutions must weigh
these factors based on their specific needs.

•	 Deployment and Operational Model
 Microservices enable faster, more frequent deployments,

while monoliths have longer deployment cycles. This
makes microservices more suitable for financial institutions
that prioritize rapid innovation. However, the operational
complexity of microservices can offset these benefits.

•	 Observability and Monitoring
 Microservices require distributed tracing and log aggregation,

whereas monoliths can be monitored as a single unit. This
increases the operational overhead for microservices but
provides greater visibility into system performance.

•	 Cost Implications
 Microservices may incur higher infrastructure and operational

costs due to the need for multiple containers or VMs.
Monoliths, while simpler, can become costly to scale and
maintain over time.

•	 Security Considerations
 Microservices increase the attack surface but allow for

fine-grained security controls. Monoliths, while simpler to
secure, may lack the flexibility needed to implement advanced
security measures.

As illustrated in Figure 5, the data exchange between components
differs significantly in monolithic and microservice architectures.
Using a monolithic architecture builds up an architectural debt by
incorporating stronger integrations and centralized data storage.
In contrast, microservices operate more autonomously, managing
their data with minimal dependencies

Figure 5: Model of Different Types of Software Architecture

Case Studies / Real-World Examples
•	 Large Financial Institution (Monolith to Microservices

Migration)
 A major bank migrated its core banking system to

microservices, reducing deployment times by 70% and
improving scalability. The migration involved breaking down
the monolithic application into more minor, independently
deployable services. This allowed the bank to respond more
quickly to market demands and improve fault isolation.

•	 Fintech Startup (Microservices from the Ground Up)
 A fintech startup adopted microservices early, enabling rapid

innovation and scaling to millions of users. By decomposing
its application into small, autonomous services, the startup
was able to deploy new features quickly and scale specific
services as needed. However, the startup also faced challenges
managing inter-service communication and ensuring data
consistency.

•	 Stable Monolith Scenario
 A trading platform retained its monolithic architecture due to

its stability and low maintenance requirements. The platform's
relatively simple requirements and low transaction volume
made a monolith a cost-effective choice. This case highlights
that monoliths can still be viable for specific financial
applications.

Implementation Challenges and Best Practices
•	 Organizational and Cultural Factors
 Adopting microservices requires a shift to DevOps and cross-

functional teams. Financial institutions must foster a culture
of collaboration and continuous improvement to succeed with
microservices [8]. This cultural shift can be challenging, but
realizing the benefits of microservices is essential.

•	 Technological Enablers
 Containerization (Docker, Kubernetes) and service meshes

(Istio) are critical for microservices. These technologies
provide the infrastructure needed to manage and orchestrate

Citation: Ashmitha Nagraj (2021) Microservices vs. Monoliths in Financial Applications: A Comparative Analysis for Scalable Architectures. Journal of Economics
& Management Research. SRC/JESMR-384. DOI: doi.org/10.47363/JESMR/2021(2)288

J Econ Managem Res, 2021 Volume 2(1): 5-6

microservices effectively. Financial institutions must invest
in these tools to ensure the success of their microservices
initiatives.

•	 Testing and Quality Assurance
 Contract testing and continuous testing are essential for

microservices. These practices ensure that services remain
compatible and functional as they evolve. Financial institutions
must implement robust testing frameworks to maintain the
reliability of their microservices-based applications.

•	 Security and Compliance Best Practices
 Zero Trust principles and encryption are critical for securing

financial applications. Financial institutions must implement
these measures to protect sensitive data and comply with
regulatory requirements. Microservices offer opportunities
for fine-grained access control but also introduce additional
security challenges.

Scalability and Performance Tuning

Figure 6: Performance Comparison Between Monolithic and
Microservice Architectures Under Increasing Load.

Autoscaling and load balancing are key to handling peak loads.
Financial institutions must implement these strategies to ensure the
scalability and performance of their applications. Microservices,
with their granular scalability, are particularly well-suited for
these strategies.

As shown above (Figure 6), it demonstrates that while the
monolithic application's response time increases rapidly under high
load, the microservices architecture maintains better performance
as the load increases. This is mainly because the microservices
approach allows for independent scaling of individual services.

Future Trends and Innovations
•	 Serverless Architectures
 Serverless computing offers potential cost savings and

scalability for financial applications. By abstracting away
infrastructure management, serverless architecture allows
financial institutions to focus on developing business logic.
However, serverless computing is still maturing and may not
be suitable for all use cases.

•	 AI-Driven Observability
 AI can enhance system monitoring and incident management.

By leveraging machine learning algorithms, financial
institutions can predict and prevent system failures. This
can improve the reliability and performance of financial
applications.

Blockchain and Distributed Ledger Technologies
Blockchain can improve transparency and security in financial
transactions. Financial institutions are exploring the integration of
blockchain with microservices to enhance data integrity and reduce
fraud. However, blockchain introduces additional complexity and
scalability challenges.

Edge Computing
Edge computing can reduce latency for trading systems. By
processing data closer to the source, financial institutions can
improve the performance of latency-sensitive applications. This
is particularly relevant for high-frequency trading and real-time
analytics.

The Integration of Monoliths and Microservices: A Hybrid
Approach
Rather than fully committing to monolithic or microservices
architectures, many financial institutions embrace a hybrid strategy
that utilizes both. This approach retains monolithic structures for
stable core banking operations while implementing microservices
for adaptable, customer-facing functionalities. Organizations can
modernize their systems by gradually transitioning from monoliths
to microservices while minimizing operational risks. One effective
strategy within hybrid architectures is the “strangler pattern,”
which allows institutions to phase out monolithic components by
incrementally replacing them with microservices. This method
ensures seamless transitions, reducing potential downtime while
maintaining business continuity. Additionally, hybrid architectures
support the gradual adoption of cloud-native technologies, striking
a balance between cost-effectiveness and enhanced scalability.

Cloud-Native Adoption in Financial Systems
With cloud computing gaining widespread adoption, financial
organizations are increasingly shifting toward cloud-native
architectures that integrate well with microservices. These cloud-
native setups enable institutions to optimize their systems using
auto-scaling, containerization, and distributed computing, ultimately
improving efficiency and system reliability. Additionally, cloud-
based solutions facilitate multi-region deployment, ensuring
operational resilience and adherence to regulatory standards.
However, adopting cloud-native financial services presents
challenges related to regulatory compliance and data sovereignty.
Institutions must navigate issues such as cross-border data transfers,
security risks, and reliance on cloud providers. Nevertheless, modern
cloud platforms offer specialized compliance solutions, such as
region-specific data centers, robust encryption mechanisms, and
secure identity management frameworks to address these concerns.

Event-Driven Architecture for Financial Applications
Financial applications benefit significantly from event-driven
microservices architectures, which use messaging systems and event
logs to facilitate real-time data processing. By leveraging message
queues and pub/sub mechanisms, financial systems can efficiently
handle high transaction volumes without creating bottlenecks. This
approach benefits applications requiring instant data processing,
such as payment gateways, fraud detection systems, and trading
platforms.

For example, high-frequency trading firms rely on event-driven
architectures to process stock price updates, execute trades, and
assess risks in real time [13]. Distributed event-processing tools
like Apache Kafka and RabbitMQ ensure seamless communication
between microservices while improving fault tolerance and system
reliability.

Citation: Ashmitha Nagraj (2021) Microservices vs. Monoliths in Financial Applications: A Comparative Analysis for Scalable Architectures. Journal of Economics
& Management Research. SRC/JESMR-384. DOI: doi.org/10.47363/JESMR/2021(2)288

J Econ Managem Res, 2021 Volume 2(1): 6-6

Copyright: ©2021 Ashmitha Nagraj. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Artificial	Intelligence	and	Machine	Learning	in	Financial	
Services
Artificial Intelligence (AI) and Machine Learning (ML) are
transforming the financial sector by enhancing fraud detection,
risk analysis, and customer interactions. While microservices
architectures allow financial institutions to integrate AI-driven
tools seamlessly, organizations must address data consistency
and regulatory compliance concerns when implementing AI
solutions. AI-powered observability tools further strengthen
microservices monitoring by predicting system failures and
identifying performance anomalies. For instance, AI-driven
fraud detection mechanisms can analyze transaction behaviors
in real time, identifying suspicious activities before fraudulent
transactions are completed. Additionally, AI-powered chatbots
integrated within microservices frameworks enhance customer
experience by providing automated responses and personalized
financial recommendations.

Conclusion
•	 Key Insights
 This research highlights the advantages and challenges

of monolithic and microservices architectures in financial
applications. While monolithic systems offer simplicity
and centralized control, microservices provide flexibility,
improved scalability, and better fault isolation. Institutions
must carefully assess their operational needs, regulatory
requirements, and long-term objectives before choosing an
architecture.

•	 Recommendations for Financial Institutions
 Before adopting microservices, financial institutions should

evaluate their existing IT infrastructure to determine
the most effective transition strategy. A hybrid model
incorporating both architectures can facilitate modernization
while preserving the stability of critical financial systems.
Additionally, incorporating cloud-native technologies, event-
driven architectures, and AI-driven solutions can enhance the
efficiency and resilience of financial applications.

•	 Future Research Opportunities
 Further studies should investigate the potential of blockchain

integration, serverless computing in financial applications,
and AI-driven automation within microservices environments.
Long-term case studies evaluating the benefits and drawbacks
of microservices adoption in financial institutions would
provide valuable insights for industry’s best practices.

References
1. Balalaie Armin, Heydarnoori Abbas, Jamshidi Pooyan (2016)

Microservices Architecture Enables DevOps: an Experience
Report on Migration to a Cloud-Native Architecture. IEEE
Software 33: 1-1.

2. Bass Len, Weber Ingo, Zhu Liming (2015) DevOps: A
Software Architect's Perspective. https://www.amazon.in/
DevOps-Software-Architects-Perspective-Engineering/
dp/0134049845.

3. Dragoni Nicola, Giallorenzo Saverio, Lluch-Lafuente
Alberto, Mazzara Manuel, Montesi Fabrizio et al., (2017)
Microservices: yesterday, today, and tomorrow. https://www.
researchgate.net/publication/315664446_Microservices_
yesterday_today_and_tomorrow.

4. Fowler M, Lewis J (2014) Microservices. Martin Fowler
Blog. https://martinfowler.com/articles/microservices.html.

5. Jamshidi P, Pahl C, Mendonça NC (2018) Patterns for
microservices architecture. IEEE Software 35: 68-76.

6. Knoche H, Hasselbring W (2018) Using microservices for
legacy software modernization. IEEE Software 35: 44-49.

7. Nadareishvili I, Mitra R, McLarty M, Amundsen M (2016)
Microservice Architecture: Aligning Principles, Practices,
and Culture. O'Reilly Media https://www.corisys.ru/wp-
content/uploads/2020/10/microservice-architecture-aligning-
principles-practices-and-culture.pdf.

8. Newman S (2015) Building Microservices: Designing Fine-
Grained Systems. O'Reilly Media https://www.amazon.in/
Building-Microservices-Sam-Newman/dp/1491950358.

9. Pahl C, Jamshidi P (2016) Microservices: A systematic
mapping study. International Conference on Cloud Computing
and Services Science (CLOSER) https://www.researchgate.
net/publication/302973857_Microservices_A_Systematic_
Mapping_Study.

10. Richardson C (2018) Microservices Patterns: With Examples
in Java. Manning Publications https://www.manning.com/
books/microservices-patterns.

11. Taibi D, Lenarduzzi V, Pahl C (2017) Processes, motivations,
and issues for migrating to microservices architectures: An
empirical investigation. IEEE Cloud Computing 4: 22-32.

12. Thönes J (2015) Microservices. IEEE Software 32: 116-116.
13. Zimmermann O (2017) Microservices tenets: Agile approach

to service development and deployment. Computer Science
- Research and Development 32: 301-310.

