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Introduction
Cyanobacteria, or blue-green algae, are photosynthetic 
microorganisms of aquatic ecosystems. They are prevalent in 
freshwater systems where they can amass into algal blooms [1]. 
These blooms feed off nutrient pollution from agricultural runoff 
and municipal wastewater [2]. Most algal blooms are innocuous, 
while others pose a danger to domestic animals, people, and 
wildlife [3]. Harmful algal blooms (HABs) are increasing in 
frequency and magnitude worldwide [4]. About 25% to 75% of 
HABs are toxic, emitting toxins into water bodies. Toxic HABs 
are known for disrupting water quality aesthetics of drinking 
water, fisheries, and recreation [5,6]. The microcystins (MCs) 
are considered the most hazardous blue-green algae toxins in 
eutrophic waters [7]. 

MCs are monocyclic compounds produced by cyanobacterial 
species [8]. Microcystis is MC’s chief producer, but several other 
species can synthesize the metabolite [9]. MCs are waterborne 
contaminants with environmental and human health implications 
[10,11]. Two variable amino acids within MCs determine structural 
variation and toxicity. Microcystin-LR (MC-LR), the most toxic 
variant, contains leucine (L) at position 2 and arginine (R) at 
position 4 [12].  

Studies have demonstrated MC-LR toxicology in mammalian 
organs [13,14]. The liver is the primary target organ for MC-LR, 
which can inhibit phosphatase activity [15]. Hepatocytes use the 
bile acid transporter and organic anion transporting peptides to 
absorb toxic MC-LR concentrations [16,17]. Protein phosphatase 
1 (PP1) and protein phosphatase 2 (PP2) inactivation occur by 
MC-LR binding to active sites on the proteins [18].

Subsequently, phosphatase inactivation results in hyperphosphorylated 
proteins and irregular PP1 and PP2 cellular functions, including 
cytoskeleton degradation, hemorrhage formation, and hepatocyte 
disfiguration [18-20].  

In the United States, MC-LR is a priority algal toxin [21]. While 
MC-LR toxicology in humans is less understood, its association 
with human health is significant. MC-LR is a potential human 
carcinogen, and the male testis is considered a target organ [22]. 
MC-LR toxicity can interfere with sperm morphology and motility 
and affect the reproductive system [23]. MC-LR is abundant in 
surface waters at environmentally relevant concentrations [24]. 
Testing methods have been developed to detect MC-LR in cells 
and water rapidly [25]. The recommended guidance value of 
MC-LR in drinking water and recreational water is 1 μg/L and 
10 μg/L, respectively [26]. 

There is evidence of HAB toxins, such as MCs, causing animal 
and human health effects [27]. When HABs release toxins into 
their surroundings, MC exposure can occur, causing morbidity 
or mortality. Animal poisonings are due to direct, high-intensity 
harmful cyanobacteria exposure [28]. Dogs comprise most animal 
poisonings because they drink contaminated water, lick their fur, 
and swallow algal scum [29]. Companion animals may experience 
acute effects, such as bleeding, convulsions, diarrhea, profuse 
salivation, vomiting, weakness, and sudden death [30,31]. Thus, 
it seems harmful cyanobacteria are equally a human health threat. 

Short-term effects in humans include gastrointestinal symptoms, 
kidney and liver failure, and skin irritation [32]. The long-term 
effects of harmful cyanobacteria remain unclear [33]. Therefore, 
MCs should receive more attention because they can cause 
serious environmental health risks. In this review, we describe 
MC exposure pathways and highlight epidemiological studies 
on human health. We also provide some insights on monitoring 
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ABSTRACT
 Microcystins (MCs) are blue-green algal toxins produced by freshwater cyanobacteria. Their environmentally relevant concentrations throughout global 
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epidemiological studies to support MCs’ critical exposure pathways. A discussion on monitoring and mitigation strategies provides a guide for policy 
development in adopting MCs’ regulatory levels to protect public health.
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and mitigation strategies to inform policy development to reduce 
MC exposure.

Exposure Pathways and Human Health
Acute and chronic exposure to MCs is an environmental health 
hazard. A complete evaluation of MCs’ exposure pathways can 
help human risk assessment and practical strategies prevent toxic 
occurrences. The most common exposure pathway to MCs is the 
accidental ingestion of contaminated drinking water. Aerosol 
inhalation or dermal contact is not uncommon during water 
recreation activities. To a lesser extent, algae dietary supplement 
intake, consumption of contaminated food, and hemodialysis are 
MC exposure pathways.

Contaminated Drinking Water
Contaminated drinking water is the primary exposure pathway of 
MCs, representing approximately 80% of human exposure [34]. 
Algal cell disruption may cause elevated MC concentrations in 
drinking water used for consumption. Generally, humans are 
chronically exposed to low MC concentrations [35]. In Lucas 
County, Ohio, a municipal water supply had MC levels above 
the Ohio Environmental Protection Agency (EPA) drinking water 
advisory threshold of 1.0 μg/L [36]. MCs are stable in water 
reservoirs for a week and endure longer in deionized or filtered 
water [37]. Consequently, implementing water treatment processes 
for efficient toxin removal is essential to protecting public health.

Sporadic epidemiological studies have indicated relationships 
between contaminated drinking water and gastrointestinal cancer 
[38-40]. Ueno et al. identified blue-green algal toxins in China’s 
drinking water sources of endemic areas of primary liver cancer 
(PLC). Ditches/ponds and rivers contaminated by MCs constituted 
an environmental risk factor for increased PLC incidence. In a 
retrospective cohort study, Zhou et al. correlated high colorectal 
cancer incidence with MC contaminated drinking water. Those 
who ingested polluted river water containing MCs had an increased 
risk for colorectal cancer. Fleming et al. linked hepatocellular 
carcinoma risk to proximity to surface water drinking supplies 
in Florida. The above epidemiological findings revealed that MC 
contaminated drinking water exposure increased gastrointestinal 
cancer risk. 

Dermal Contact
Bathing, canoeing, or swimming are water contact activities of 
dermal contact exposure. Recreationalists have experienced a 
wide range of symptoms in cyanobacterial bloom waters, such 
as asthma, dermatitis, and hay fever, to name a few. Reported 
symptoms occurred in coastal waters of Australia, Japan, Hawaii, 
and Florida (41-44). Freshwater cyanobacterial blooms have 
resulted in reported symptoms among people who partook in 
swimming or water contact sports [45]. Cyanobacterial toxins, 
including MCs, can persist in fresh and marine environments. 
Recreationalists should take preventive measures (avoid 
entering water body, adhere to local or state guidance) if harmful 
cyanobacteria harbor recreational waters.

Aerosol Inhalation
Aerosol inhalation is likely when individuals engage in recreational 
or occupational field activities [44,46,47]. MC are waterborne 
toxins aerosolized through a bubble-bursting mechanism, leading 
to increased respiratory symptoms upon exposure [48]. Showering 
and industrial or agricultural practices involving water use with 
algal cells and toxins can release aerosols, thereby supporting 
inhalation as one probable human exposure [45].  

Recreational exposure to MCs is a health risk in bloom lakes. 
MC aerosol exposure at low concentrations was examined in a 
small lake undergoing a cyanobacterial HAB [46]. Participants 
recounted no symptom increases after the pursuit of water-based 
recreational activities. Increased self-reported symptoms for the 
7 to 10 days after exposure were more consistent with reported 
symptoms for 5 days before the study than reported symptoms 
immediately before or after recreational exposure. As such, MC 
aerosol inhalation may present symptoms a day or a few days 
after water-based recreational activities. 

Toxic Microcystis HABs in two California lakes were sampled 
to assess recreational exposure to MCs [47]. Bloom lakes had 
variable MC concentrations where children and adults planned 
recreational activities. Personal air samples, blood samples, and 
nasal swabs were tested for MCs. Low concentrations were 
detected in personal air samples and nasal swabs, while non-
detectable concentrations occurred in blood samples  MC detection 
in human samples may indicate stirred up aerosolized cyanotoxins 
inhaled during water recreation.

Algae Dietary Supplement Intake
Algae dietary supplement intake constitutes another MC exposure 
pathway. Globally, the consumption of algae dietary supplements 
(ADS) is merited for putative beneficial health effects. They are 
known to alleviate stress, enhance mood, increase energy, improve 
alertness, and reduce weight [49]. ADS sourced from sizable lakes 
with periodic toxic Microcystis blooms can become contaminated 
when harvested for retail, increasing health risks for patrons who 
consume large doses over time [50]. 

Contaminated Food
Consumption of contaminated food is an alternative route of MC 
exposure. Aquatic organisms are integral to ecosystem functioning 
and provide nutritional value to humanity. Duck, fish, shellfish, 
prawns, and zooplankton can bioaccumulate MCs when they 
breathe or feed in water [51]. MCs’ effects on animals’ hepatic 
problems support human toxicity through oral consumption of 
toxic animal tissue [52]. Besides aquatic organisms, fruits and 
vegetables are probable candidates for MC contamination. Lakes 
and reservoirs source irrigated water for agriculture. Contaminated 
water tapped from these waters can reduce the overall quality and 
yield of crops [53]. Therefore, the consumption of contaminated 
fruits and vegetables may represent a potential risk factor for 
humans. 

Hemodialysis
Perhaps the most infamous exposure pathway for MCs is 
hemodialysis. Treatment failures are possible at multiple points 
in the procedure once dialysate is prepared from surface drinking 
water supplies [54]. The largest human MC poisoning outbreak 
occurred in Caruaru, Brazil, killing 76 hemodialysis patients 
[55]. Since 2001, municipal drinking water in Brazil must 
undergo reverse osmosis before dialysate preparation to protect 
hemodialysis patients from cyanotoxin exposure [54]. Careful, 
consistent monitoring and treatment methods of surface drinking 
water supplies may prevent harmful episodes of MC poisonings 
in hemodialysis centers. 

Monitoring and Mitigation Strategies
Cyanobacterial HABs are an environmental health problem, 
diminishing water quality in lakes, reservoirs, and rivers [56]. 
Toxic HABs impair surface drinking water supplies, despite 
inconsistent toxin treatment processes for algal toxins in the United 
States. Cyanobacterial toxins are important algal toxins of public 
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health concern [57]. Algal toxins are in the Contaminant Candidate 
List 3 (CCL 3) of 116 chemical and microbiological contaminants 
[58]. Yet, regulatory methods for the mandatory analysis of algal 
toxins in drinking water are unstandardized.  

In recent decades, monitoring and mitigation strategies of 
cyanobacterial HAB toxins have become increasingly common 
for protecting drinking water quality and public health. Bioassays 
for algal toxins, including MCs, provide relevant toxicological 
information. They are desirable when the objective is to screen for 
toxin levels or identify potentially toxic species in environmental 
samples. Insights on advancements in cyanotoxin detections are 
presented by a discussion on enzyme-linked immunosorbent assay 
(ELISA) and quantitative real-time polymerase chain reaction 
(qPCR).

Enzyme-Linked Immunosorbent Assay
ELISA is widely used for the quantitative analysis of algal 
toxins. Unlike liquid chromatography-mass spectrometry (LC-
MS), ELISA can detect covalently bound MC toxin. LC-MS, 
however, is reliant on congener standards and the amount of non-
covalently bound MC in samples. Immunoassays are affordable, 
quick, and demand less expertise. Additionally, newly developed, 
and improved ELISA methods have exhibited lower detection 
limits for rapid screening and algal toxins monitoring. ELISAs 
possess technical limitations, including cross-reactivity due to 
various toxigenic substances, false-positive detection at low 
concentrations, and overestimation of toxin variant levels [59]. 

Quantitative Real-Time Polymerase Chain Reaction
An emerging molecular technique for detecting and quantifying 
low concentration, potentially toxic cyanobacteria is qPCR [60]. 
Its utility to identify cyanotoxin genes in bloom samples has 
increased over the years. Anticipated qPCR applications include 
studying the dynamics of fluctuations in toxin production by 
different strains in response to environmental conditions and 
the surveillance of toxic cyanobacterial bloom occurrences [61]. 
Pioneer studies in the early 2000s demonstrated the quantitative 
ability of qPCR to detect MC-producing genotypes in water [62-
65]. Since then, many studies have combined MC quantification 
and qPCR to estimate bloom toxicity. The consistent usage of 
qPCR for cyanotoxin measurement may enhance MC human 
exposure assessment.

HAB Mitigation Approaches
HAB mitigation approaches serve to reduce HAB incidents. 
Numerous mitigation strategies have been established in response 
to human exposures, including physical, chemical, and biological 
controls. These control methods differ in their mode of action and 
are described below. 

Physical controls use physical means to prevent the proliferation 
and spatial distribution of blooms and remove cells or toxins from 
the water column [66]. Closer observations of sediment contact to 
eliminate MCs from drinking water could prove useful for toxic 
bloom management. Sediment texture and redox conditions are 
critical factors in MC elimination during sediment passage [67]. 
Grützmacher et. al determined that fine-grained aquifer materials 
and aerobic conditions exhibited the highest rates of adsorption and 
degradation of MCs, respectively. Though sediment texture may 
be a reasonable MC control, local processes, mixing processes, 
as well as pH and oxidation, can wield notable effects on MC 
concentrations in sediment spatial distribution and adsorption [68]. 

Chemical controls include compounds that inhibit or disrupt 

HAB cellular growth [66]. Copper sulfate, a standard commercial 
algaecide, destroys cyanobacterial cell membranes through 
interactions between copper ions and lipids. The algaecide, 
however, can kill other algal species, which reduces HABs [69]. 
Hydrogen peroxide prevents photosynthesis in cyanobacteria and 
produces benign final products, such as water and oxygen [70,71]. 
Water treated with varying concentrations of hydrogen peroxide 
has been used for cyanobacterial bloom mitigation [72,73]. Sinha 
et al. demonstrated that 2.5 mg/L hydrogen peroxide treatments 
were sufficient to reduce observed MC concentrations, with 
effects lasting up to 5 weeks. One year later, Wang et. al found 
that treatments with hydrogen peroxide concentrations ranging 
from 96 µM to 165 µM for 2 hours were successful in mitigating 
Microcystis blooms.

Biological controls, such as organisms and processes, eliminate 
HABs [66] Bacterial species, including Acinetobacter, cause 
lysis of Microcystis aeruginosa through metabolite release, 
while the bacterial cells themselves reduce MC concentrations 
[74]. The algicidal compound B3, isolated from Streptomyces 
species L74 destroys cyanobacterial antioxidant systems, 
triggering an increase in malondialdehyde production within the 
cells [75]. Cyanobacterial infection by cyanophages decreased 
host populations significantly and may contribute to increased 
resistance in cyanobacterial species over time [76,77]. These 
biological mitigation techniques appear successful, though 
uncertainties linger in their long-term effectiveness.

Conclusions
MCs are environmental hepatotoxins hazardous to human health. 
MC exposure can result in various health effects, ranging from 
acute to moderately fatal. Evidence suggests that the multitude 
of MC exposure pathways increases human risk. Ingestion of 
contaminated drinking water represents the highest percentage of 
human exposures. Currently, regulations on MC concentrations 
in drinking and recreational waters vary globally, indicating MC 
exposure can differ by region. Monitoring HABs using ELISA 
and qPCR methods may improve cyanotoxin exposure detection 
and guide policy development to mandate tolerance levels for 
MCs in surface water supplies. Mitigation approaches can reduce 
HAB prevalence despite negative ecological impacts and a 
gradual decline in other control measures’ effectiveness. Further 
investigations on human MC exposure are necessary to identify 
the most critical exposure pathway for preventing toxic encounters. 
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