
J Eng App Sci Technol, 2023 Volume 5(3): 1-3

Review Article Open Access

Method for Continuous Integration and Deployment Using a Pipeline
Generator for Agile Software Projects

10494 Red Stone Dr Collierville, Tennessee, USA

Naveen Muppa

Journal of Engineering and Applied
Sciences Technology

ISSN: 2634 - 8853

*Corresponding author
Naveen Muppa, 10494 Red Stone Dr Collierville, Tennessee, USA.

Received: May 07, 2023; Accepted:May 14, 2023; Published: May 22, 2023

Keywords: Agile Configuration Management, Containerization,
Continuous Delivery, Continuous Integration, Git, Version
Management

Introduction
The development of a product or service is achieved through
iterations or rapid development cycles carried out in a shorter
time. In other words, instead of a monolithic development
strategy, agile practices involve working on chunks of projects
at the same time, which makes changes and adjustments easy
and manageable. Initially, the developers will analyze the whole
journey a functionality is expected to take from the moment it is
born, to how it is defined and prioritized over other functionalities,
how the team that will implement it is chosen, how resources are
allocated, and how the work is planned. Only after all these stages
are complete, will the developers look at the implementation.

Continuous Integration
A widely used software development practice is one in which
developers integrate code into a shared repository multiple times
a day to quickly obtain feedback on the viability of that code.
CI supports automated builds and tests, so teams can quickly
collaborate on a single project. Also, CI enables software
companies to have a frequent and shorter release cycle.

This strategy facilitates a quick and reliable launch of the program
in production by utilizing the available practice sets. All of this is
due to the regular merging of operational software copies, which
eliminates and decreases software integration difficulties and,
hence, expenses. Adherents of CI urge their development teams

to create software in short iterations and to merge their functional
code into the root code as quickly as is feasible.

Continuous Delivery (CD)
Continuous delivery is a software engineering practice in which
teams design, build, test, and release software in short cycles.
It relies on automation at each stage to ensure the cycle is both
fast and reliable. It employs a set of practices and automatically
deploys and delivers software to a production-like environment.

Basically, the CD is a software development strategy that
automates the process by which changes made by an application
developer are delivered to the code repository or the container
registry, and it shows how the changes are automatically tested for
errors. Thus, all the changes can be deployed in a live production
environment by the operations team. By doing so, CD solves the
limited visibility and communication issue between DevOps and
business teams. To that end, the goal of CD is to guarantee that
implementing new code requires as little work as possible.

Proposed Solution Architecture
The pipeline generator discovers build and deployment files in the
git repositories and automatically creates pipeline jobs to execute
them. To ensure that pipelines that inherit the CI/CD templates
are always up to date, the pipeline will auto-regenerate on merge
requests.

The generator creates an extra job that executes the regenerate
pipeline script:

ABSTRACT
Lately, the software development industry is going through a slow but real transformation. Software is increasingly a part of everything, and, software
developers, are trying to cope with this exploding demand through more automation. The pipelining technique of continuous integration (CI) and continuous
delivery (CD) has developed considerably due to the overwhelming demand for the deployment and deliverability of new features and applications. As a
result, DevOps approaches and Agile principles have been developed, in which developers collaborate closely with infrastructure engineers to guarantee that
their applications are deployed quickly and reliably. Thanks to pipeline approach thinking, the efficiency of projects has greatly improved. Agile practices
represent the introduction to the system of new features in each sprint delivery. Those practices may contain well-developed features or can contain bugs
or failures which impact the delivery. The pipeline approach, depicted in this paper, overcomes the problems of delivery, improving the delivery timeline,
the test load steps, and the benchmarking tasks. It decreases system interruption by integrating multiple test steps and adds stability and deliverability to the
entire process. It provides standardization which means having an established, time-tested process to use, and can also decrease ambiguity and guesswork,
guarantee quality and boost productivity.

Citation: Naveen Muppa (2023) Method for Continuous Integration and Deployment Using a Pipeline Generator for Agile Software Projects. Journal of Engineering
and Applied Sciences Technology. SRC/JEAST-372. DOI: doi.org/10.47363/JEAST/2023(5)256

J Eng App Sci Technol, 2023 Volume 5(3): 2-3

•	 the pipeline configuration files (i.e., .gitlab-ci.yml and the
files from the .ci/ folder) are regenerated with the latest stable
templates;

•	 if there are changes, the pipeline configuration files are pushed
back to the remote HEAD, and the current pipeline is forced
to terminate.

A new pipeline is triggered each time the pipeline configuration
file is changed, but only for Merge Requests. Any changes made to
the .gitlab-ci.yml or files from the .ci/ folder other than those from
the pipeline generator are ephemeral. Every time a Merge Request
pipeline has been executed any changes to it will be lost. The only
exception is the .ci/custom.yml file, which can contain any custom
jobs, and which is persistent between pipeline regeneration.

The pipeline generator has two ways to regenerate: one if it is used
with the default template jobs and the if it is used with custom
jobs. The default jobs are basically jobs that are executed on most
of the git repositories: code versioning, creating an AWS ECR
repository, building Docker images, and deploying Helm charts
on Kubernetes. These types of jobs are the basis of any pipeline
and provide a centralized way to version, build, and deploy the
code. While projects have much in common, there are still actions
that are specific to each environment. Some projects may require
uploading a file to an AWS S3 bucket, while others may need to run
an extended test suite. To ensure the flexibility of this framework,
the ability to extend the default pipeline was added. To include
custom jobs in the pipeline, the need to add them to a file called
.ci/custom.yml arises.

 Figure 1: Solution Architecture
Versioning
This flow is performed first and is triggered when a git commit is
merged into the master: the pipeline creates a lock for versioning
so that other pipelines will not start until versioning is complete.
If the commit contains deployable code changes, the commit is
marked as a release candidate, then the pipeline versioning lock
is released. Further, the test suites are executed, and if all the
tests have passed, then the commit is marked as a stable release.
Exemplifies the entire flow, while represents a code block from
the versioning Bash script.

 Figure 2: Versioning

Build
In the following, the CI principles in just one pipeline are detailed.
If there are any buildable code changes, the pipeline triggers a job
that builds an image from the Docker file, and the build context
as the root of the project. The image is tagged with two tags: a
stable tag (the prefix—e.g., rc—and the branch name—e.g., rc-
master), and a unique tag (the prefix—e.g., rc—and the branch
name and the commit hash—e.g., rc-master-adc11dad). The image
labels are updated in this way: the generic labels are appended
to the image labels and, afterward, the image is published to the
Container Repository: the AWS Elastic Container Registry. This
flow expects to have one or more Docker files in the repository
and will do the same steps for all of them.

An image is promoted only on the master branch when there are
deployable code changes, by adding the semantic version tags
to the latest image built on this branch and pushing the image to
the Container Repository, which can be from different providers.

In below, an entire build step with its dependencies is exemplified.
Is a pipeline diagram provided by GitLab, which describes more
clearly the processes that are part of the pipeline. Shows an
alternative way of describing the pipeline by also showing the
jobs’ dependencies.

 Figure 3: Build

Deploy
This subsection covers the CD principles in one pipeline. It
verifies whether there are any object definitions or values files.
The deployment pipeline is automatically triggered if it detects
any such files. This pipeline contains the linting step, which is
executed to test the chart with a specific values file, and contains
the version update step, which updates the application and chart
versions in Chart.yaml file.

If the deployment step fails, a rollback job is triggered to bring
the application back to the stable variant.

This solution can be easily adapted to any type of preference or any
type of customization. It is easy to use it because the developed
code can be easily integrated with multiple third parties.

Figure represents a diagram flow, presenting the entire automated
pipeline which was described in this section.

Citation: Naveen Muppa (2023) Method for Continuous Integration and Deployment Using a Pipeline Generator for Agile Software Projects. Journal of Engineering
and Applied Sciences Technology. SRC/JEAST-372. DOI: doi.org/10.47363/JEAST/2023(5)256

J Eng App Sci Technol, 2023 Volume 5(3): 3-3

Copyright: ©2023 Naveen Muppa. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

 Figure 4: Deploy
Conclusion
Continuous integration systems help project members focus
various resources on key issues, thereby reducing development
time and improving software quality. The development team can
spend more resources on software design; the double integration
work is undertaken by machine. Continuous rapid feedback
enables testers to be adequately tested. The continuous integration
delivery system is a breakthrough for automated operation and
maintenance. It helps to improve the maturity of software projects,
implement continuous improvement of lean processes, promote
the improvement of software service levels, and promote high-
quality development of software systems through operation and
maintenance mechanisms.

This paper presents a complex and automated pipeline generator
with CI/CD principles for the deployment of multiple types of
applications. The solution is based on Agile practices, which are
responsible for the automatic integration, testing, and delivery of
features for applications.

The proposed solution serves as a baseline for common CI/CD
tasks and encapsulates the following specifics: all code must
be versioned by semantic versioning standards; builds are
created automatically by using Docker and the Docker layers
are cached for later reuse; most deliverables are submitted to the
Docker Container Registry; and most deliverables are deployed
to a Kubernetes cluster via Helm. These practices ensure high
availability with no downtime, fast and easy scalability, rolling
back automatically to a stable version, scanning vulnerabilities
in Docker, detecting any change in the application source code,
and triggering an entire chain of actions and events based on
what has been changed. If there are changes on the infrastructure
manifests, but not on the application code, the process of building
and testing pipelines will not be triggered, thereby the same
artifacts’ “pollution” is brought down. This feature, even if the
same artifacts have distinct tag, leads to higher speed on pipeline
duration [1-3].

References
1.	 Hodgson P (2024) Continuous Delivery in the Wild.

O'Reilly Split https://www.split.io/continuous-
delivery-in-the-wild/?utm_campaign=LP-OReilly-
CD-in-the-Wild-PPC&utm_source=google&utm_
medium=paid+search&utm_content=US_Deployment&utm_
term=build%20and%20deployment%20automation
&gclid=CjwKCAjwmrqzBhAoEiwAXVpgou9lP7_
bBky519HvruSN5oMhbfGx56siCAKRCXxQ8AzsGg_
IY25NERoC2XQQAvD_BwE&gad_source=1.

2.	 (2024) Agile 101: Using Agile project management methods
to deliver customer value. ServiceNow

	 https://www.servicenow.com/lpebk/agile-project-
management.html?campid=107374&cid=p:spm:dg:n
b:prsp:phr:Google_Other:ams:all&s_kwcid=AL!1169
2!3!648256817419!p!!g!!agile%20methodology%20
process&ds_c=GOOG_AMS_All_EN_DEMANDGEN_
SPM_PRSP_NonBrand_PHR_Other&cmcid=71
700000102278031&ds_ag=Agile+Methodology_
PHR&cmpid=58700008156364558&ds_kids=p79372254
482&gad_1ACPaS9K3LEMDq7wH5LVPPbwXEw1MJGr
OOT3jie1mQvN7RoCvEAQAvD_BwE&gclsrc=aw.ds.

3.	 Cheat Sheet: 8 Tips for Securing Your CI/CD Pipeline. snyk
	 https://go.snyk.io/cicd-security-cheatsheet.html?utm_

medium=paid-search&utm_source=google&utm_
campaign=nb_lg_ci-cd-pipeline&utm_content=devsec&utm_
term=devsecops%20ci%20cd&gad_source=1&gcli d=CjwK
CAjwmrqzBhAoEiwAXVpgonbs9bBf83taG9QOfayZRhhvR
fHCOcs9QiyFYcV GnFKKbAepp8m7PRoC8sIQAvD_BwE.

