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Introduction 
Satisfied customers are critical in fostering loyalty and driving 
long-term business profitability. This underscores the significance 
of customer satisfaction in ensuring sustainability [1]. O’Sullivan 
and McCallig established a robust correlation between customer 
satisfaction and marketing performance [2]. Some studies have 
also demonstrated customer retention mediates satisfaction and 
profits [3]. However, specific industries, such as FMCG and finance, 
encounter challenges related to increasing customer churn despite 
substantial investments in Customer Relationship Management 
(CRM) initiatives [4]. One major challenge organizations face is 
measuring online customer satisfaction and developing continuous 
marketing solutions [2]. Various models are employed for this 
purpose, including NCSI, SERVQUAL, MUSA, Probit/Logit, 
Important Performance Analysis, and Cluster Analysis. Nevertheless, 
these models have practical limitations, such as outdated customer 
sentiment measurement and industry-specific applicability [5- 7]. 
Recent extensive research on customer satisfaction has led to the 
development of constructs such as customer loyalty, retention, 
churn, performance-importance analysis, and customer consonance. 
Nevertheless, the current body of research has not yielded a versatile 
online customer satisfaction measurement model that can be applied 
universally across industries [1-2,8-11]. The present study aims to fill 

this void by introducing a model for assessing and predicting online 
buyer satisfaction, thus enabling more effective marketing decisions, 
enhanced customer retention, loyalty, and sustainable performance 
[10,12]. Li et al. emphasized the importance of online customer 
reviews to gauge satisfaction [13]. This study’s significance lies 
in its capacity to offer insights that can enhance practices related 
to customer satisfaction measurement and potentially necessitate 
revisions to existing models within the current marketing landscape. 
As organizations increasingly emphasize customer orientation and 
relationship management, the findings from this study are poised 
to inform improved methodologies and marketing strategies, 
potentially leading to adjustments in marketing investments and 
the customization of offers to bolster long-term profitability [8,2].

Literature Review 
Customer satisfaction measurement is crucial for organizations as it 
enables them to analyze the most exigent performance criteria and 
the organizational performance related to each criterion. The most 
widely used customer satisfaction measurement tools grounded 
in the literature appear ineffective in today’s business context, 
especially given how customers share their sentiments with their 
friends and family network via social media [2]. This study seeks 
to model a customer satisfaction measurement model based on 
online reviews of customers interacting with organizations that 
conduct business by using online platforms. 

ABSTRACT
Companies invest significant resources in retaining their customers. Nonetheless, organizations have witnessed customer attrition due to inadequate loyalty. 
This trend is particularly prevalent among online customer bases. The root cause of this issue lies in the absence of an effective tool for measuring online 
customer satisfaction that surpasses the capabilities of existing methods. To address this concern, a quantitative study explored the dimensions of online 
customer satisfaction measurement and established a model applicable across industries for gauging and predicting online customer satisfaction. This was 
accomplished by conducting an online survey via SurveyMonkey with 384 respondents, employing supervised and unsupervised machine learning techniques 
in conjunction with the topic modeling algorithm, Latent Dirichlet Allocation (LDA). The findings of this study revealed a significant relationship between 
predictor variables such as navigation, playfulness, information quality, trust, personalization, and responsiveness and the target variable, online customer 
satisfaction, employing multiple linear modeling (LSM). Furthermore, it was observed that this phenomenon transcends age groups, impacting both younger 
and older customers alike. However, it is essential to acknowledge certain limitations, including the risk of overfitting, challenges in establishing external 
validity, a narrow focus on the retail sector (B2C), and a restricted scope limited to the United States market.

Department Chair for Business and Data Analytics, Wells College, Aurora, New York, USA



Citation: Gehan S Dhameeth (2024) Measuring Online Customer Satisfaction Based on Customer Reviews: Topic Modeling Method Using Latent Dirichlet Allocation 
(LDA) Algorithm . Journal of Marketing & Supply Chain Management. SRC/JMSCM-133. DOI: doi.org/10.47363/JMSCM/2024(3)120

J Market & Supply Chain Managem, 2024         Volume 3(1): 2-8

• Customer Satisfaction
Satisfaction, primarily rooted in social psychology, has also found 
relevance in marketing but suffers from inconsistent definitions, 
leading to academic challenges in selection, operationalization, 
interpretation, and comparison of definitions [14,15]. The most 
grounded definition is an emotional or cognitive response focused 
on pre- and post-evaluation expectations and experiences. Critical 
attributes tied to this definition include response, focus, time, 
and evaluation [16]. Individuals assess their satisfaction across 
various experiences, like product purchases, friendships, service 
consumption, or test results [17]. Satisfaction evaluation typically 
encompasses overall satisfaction, addressing entire processes, and 
aspect satisfaction, which concentrates on specific service points 
within a process [18]. Organizations deem customer satisfaction 
vital for their survival. It correlates with customer retention, 
loyalty, and financial performance [19]. Customer satisfaction 
results from assessing the rewards and costs of purchase compared 
to expectations, acting as a bridge between expectations and 
perceived product performance [20-22]. Bhattacharya et al. 
identify two levels: micro (intrinsic) linked to individual 
perception and macro (extrinsic) compared with competitor offers 
[1]. Customer satisfaction is seen in post-purchase evaluations 
matching pre-purchase expectations, influenced by customer 
expectations and experiences [23,24]. However, Wang et al. 
argue that it is a socially constructed response to the customer-
product-provider relationship, challenging existing definitions [9]. 
Factors like customer knowledge, equity, product performance, 
and discomfort moderate satisfaction [25]. Customer satisfaction 
results from disconfirming initial expectations [11]. It is rooted 
in anticipation and product delivery, leading to psychological 
discomfort when a product falls short of expectations [26]. An 
emotional response follows, gauging whether the product meets 
or disappoints [27]. This process defines customer satisfaction 
as the customer’s psychological state evaluating if pre-purchase 
expectations match the product [10]. Lazaris et al. describe it as 
an impression forming after product or service use, shaped by 
the gap between expectations and post-consumption satisfaction 
[28]. It can also be seen as an individual’s opinion, a reflective 
evaluation based on the overall experience involving the stages of 
need, evaluation, purchase, consumption, and post-consumption 
evaluation [29,30].

• Customer Online Reviews 
Customer opinions on social media strongly impact consumer 
attitudes, engagement, and brand choices [31]. Electronic word-
of-mouth (e-WOM) in virtual groups has become a powerful tool 
for shaping positive brand images [32]. Social interactions in 
e-WOM are driven by motives like social connections, economic 
incentives, altruism, and self-esteem [33]. Weblog users are seen 
as highly credible, especially in institutionally related domains 
[24]. Social media sites have gained preference over company 
and government websites [34], and the quality and quantity of 
consumer reviews significantly influence purchase intentions 
[35]. Customer reviews are pivotal for purchase decisions and 
loyalty, with virtual communities playing a crucial role driven 
by social identity, anticipated emotions, and desires [24,36]. 
The seller’s response to online customer reviews is critical for 
communication managers [37]. Analyzing and monitoring online 
reviews is essential for managing consumer attitudes and opinions. 
Neglecting negative reviews can harm an organization and impact 
consumer buying behavior [39]. Opinion seekers are highly 
influenced by e-word of mouth, especially in adopting online 
opinions, driven by technological advancements like Web 2.0. 
Consumers actively participate in virtual communities, motivated 
to share reviews for explanation and critique [12,24,40]. The 

accuracy of evaluations depends on the volume of reviews, with 
more postings enhancing accuracy [41]. Accumulating reviews 
exponentially boosts a product’s conversion rate, though users 
tend to focus on the first few reviews [42,43]. With technology 
and virtual communities, traditional word-of-mouth has evolved 
into e-word-of-mouth, enabling consumers to gather product 
information online before making purchase decisions [44].

• Network Theory 
Online reviews are influenced by network theory, a concept 
embraced across various fields [45]. In a network, relationships 
are represented by nodes and arrows, with relationship strength 
dictating ideas and information spread [46]. Network theory 
explores how network structures impact individuals and groups, 
examining properties, relationship types, and central figures 
[47,48]. The power within a network is defined by the standards 
for coordinating social interactions, and being a network member 
invests in social relations for returns, known as social capital 
[49,50]. Key network concepts include centrality, cohesion, and 
structural equivalence and social networks play a pivotal role in 
information diffusion, shaping connections for initiating, relaying, 
and adopting innovation-related information through various forms 
like friendship, advice, communication, or social support [51-53].

• Text Mining
Text mining, also known as data mining or knowledge discovery 
from textual databases, extracts valuable patterns from unstructured 
text [54]. It is a part of Knowledge Discovery in Databases (KDD), 
which uncovers logical configurations in data [55]. Text mining 
involves four stages: information extraction, text data mining, 
database knowledge discovery, and information retrieval [17]. 
Information extraction gathers facts from text, while text data 
mining explores patterns using algorithms, machine learning, 
and statistics, often requiring preprocessing with natural language 
processing (NLP) [56]. The process culminates in knowledge 
discovery databases and answering specific questions. Text mining 
is a complex task due to the unstructured nature of text data and 
differs from data mining. Standard text mining methods include 
Latent Semantic Analysis (LSA), Probabilistic Latent Semantic 
Analysis (PLSA), and Latent Dirichlet Allocation (LDA) [57]. 
LSA reduces vector space via singular value decomposition, 
PLSA employs conditional probability theory, and LDA fits a 
topic model based on word frequency [58-60]. 

Methodology 
This study sought to ground an online customer satisfaction 
measurement model based on customer reviews. In support of 
the above research objective, this study was nested on two critical 
learning approaches: unsupervised and supervised learning. The 
unsupervised learning encompassed text mining for topic modeling 
using the Latent Dirichlet Allocation (LDA) algorithm, while 
the supervised learning algorithm was used for linear modeling 
for predictions [57]. With the prior consent received from thirty 
(30) retail companies that conduct online businesses and use the 
customer reviews scraped from their websites, created the main 
word corpus for topic modeling using “topicmodels” package 
with “ggplot2” and “dplyr” in RStudio [58]. The word corpus 
created was subsequently used for tokenizing words and sentences, 
stopping- noise management on characters, and stemming- 
merging similar words [57]. The following equation was used 
for topic extraction. 
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Where:
Q = Query 
S = Satisfaction 
t = Topic 

Where P(Q|t, S) is the probability of generating query Q given topic t and satisfaction S. By assuming conditional independence 
between Q and S, P(Q|t, S) is simplified to P(Q|t). In the above process, every document created by web scraping is considered a 
mixture of topics, and every topic is a mixture of words [57]. A log ratio was used to distinguish between symmetrical topics. The 
word-topic probabilities were calculated based on yielded beta scores (β *word 1 + β * word 2 + β * word 3). Based on eigenvalues 
(see Table 1), greater than two were employed as a topic selection parameter to include in the final model.

Table 1: Eigenvalues
Predictor Navigability Playfulness Info-Quality Trust Personalization Responsiveness
Eigenvalue 2.004 2.002 2.026 2.132 2.154 2.009

Source: RStudio (Version 4.1.2)

The above calibration resulted in six (k = 6) topics influencing 
online customer satisfaction: navigability, playfulness, information 
quality, trust, personalization, and responsiveness.

•  Questions and Hypotheses
This study aimed to design and ground a customer satisfaction 
measurement model that provides solutions to the limitations 
associated with the most used models in professional settings 
and academia. These limitations include the incapability to 
measure customer online customer satisfaction levels promptly 
and more relevant for organizations to make timely decisions, 
apprehend only customer past satisfaction experience, and the 
lack of predictive power associated with the models [5-7]. Based 
on the above phenomenon, the research addressed the following 
research questions
1. What relationship existed between the independent 

variables (navigation, playfulness, information quality, 
trust, personalization, and responsiveness) and the dependent 
variable (online customer satisfaction)? 

2. Was there a difference between the younger and older online 
customers associated with overall customer satisfaction when 
interacting with online business transactions? 

3. What was the degree of influence of the independent 
variables (navigation, playfulness, information quality, 
trust, personalization, and responsiveness) on the dependent 
variable (online customer satisfaction) when predicting 
customer satisfaction? 

The following hypotheses were tested to ascertain the relationship 
between the independent and dependent variables, the degree of 
customer satisfaction, and the influence of independent variables on 
online customer satisfaction. H01. There is no relationship between 
all the independent variables and the dependent variable. Ha1. A 
significant relationship existed between at least one independent 
and dependent variable (Westlund et al., 2008). H02. The level of 
online customer satisfaction between the two age groups (young 
and old) was similar. Ha2. The level of online customer satisfaction 
between the two age groups (young and old) was different [6]. 
H03. No independent variable considered in this study significantly 
influences online customer satisfaction (β1+β2+β3+β4+β5+β6=0). 
Ha3. At least one independent variable in this study significantly 
influences online customer satisfaction [7].

• Instrument 
An instrument was developed based on the six topics (features) 
modeled and related words (dimensions) captured from the LDA 
algorithm employed. A pilot study used a sample of thirty (n=30) 

retail customers via SurveyMonkey. A scale of 1-5 was used to 
measure all the dimensions [62]. Those who had at least three or 
more online transaction experience within the last two months 
at the point they took the survey was employed as a qualifying 
criterion to partake in the survey administered. A linear regression 
was employed to find the answer to research question one, a 
two-sample t-test was employed to answer question two, and a 
least squares method (LSM) was employed to answer question 
three during the pilot phase of the study. Internal reliability was 
established with a reliable alpha score (α = .8) [63-65]. As a 
result, all the constructs were retained for a full-scale study [66-
67]. Internal validity was established with a reliable correlation 
coefficient score (r = .7). In contrast, construct validity was 
established with an adjusted R-squared score of .79. A full-scale 
study was administered using a sample of three hundred and 
eighty-four (n=384) [68]. 

Model Fitting and Prediction 
The primary model entailed one target and six predictor variables. 
The target variable is the online customer satisfaction (Y). 
The model’s intercept (β0) measures the degree of variance of 
online customer satisfaction when all the predictor variables are 
zero. The predictor variables considered in the model include 
navigation (X1), playfulness (X2), information quality (X3), trust 
(X4), personalization (X5), and responsiveness (X6).

Y=β0+β1 Nav+β2 Play+β3 Info:Qual+β4 Trust+β5 Person+β6 
Response+∈.
Based on the above model, the coefficients (β) for all the predictor 
variables were obtained to measure online customer satisfaction. 

Training and Testing 
A 10-fold (k=10) cross-validation, a resampling technique, was 
used for model evaluation and to reduce the risk of overfitting. 
A tenfold was determined as a rule of thumb to avoid biases 
and variance [69]. The average Mean Squared Error (MSE) was 
estimated using the following MSE formula to evaluate the model’s 
overall performance on the entire data set during cross-validation.

Findings 
• Relationship 
Multiple linear regression examined the relationship between the 
predictor variables (navigation, playfulness, information quality, 
trust, personalization, and responsiveness) and the response 
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variable (online customer satisfaction). There was a significant relationship between online customer satisfaction and navigability (a 
lower navigability score correlated with higher online customer satisfaction, β = -.101, p = .048) and playfulness (a lower playfulness 
score correlated with higher online customer satisfaction, β = -.140, p = .006) [70]. However, there was no evidence to suggest a 
correlation between online customer satisfaction and the rest of the predictor variables (information quality β = -.056, p = .278, trust 
β = -.029, p = .593, personalization β = -.022, p = .687, and responsiveness β = -.030, p = .552) due to higher p-values yielded than 
the .05 calibrated level. The R2 was .034, which means 3% of the variance in online customer satisfaction can be explained by the 
model containing navigability and playfulness, R(384) = .185, R2 = .034, F(6, 377) = 2.228, p = .04. Based on the above findings, the 
test was significant and rejected the first null hypothesis. The evidence suggested a significant relationship existed between at least 
one independent and dependent variable. 

• Age Groups 
Preliminary data screening showed that scores in both groups met the assumptions of equality of variance with Levene’s test and 
were insignificant (F = .159, p = .691), indicating that the assumption of homogeneity of variance had been met. Despite a difference 
between the two age groups, there seemed to be an overlap between those that had to be explored in detail using t-statistics. Two 
population means were compared using the two-sample t-test to see if they were equal. In this study, the two groups considered for 
the t-test are the younger and the older generations based on the age parameters set for each group [71]. The two age groups did not 
differ significantly, t (382) = -1.613, p = .11, 95% CI [-.56, .06], d = -.17. The mean satisfaction for the young customer group (M 
= 2.78, SD = 1.45) was not significantly different from the older customers group (M = 3.04, SD = 1.46) with a negative Cohen’s d 
effect size (d = -.17). Based on the above findings, the null hypothesis, the level of online customer satisfaction between the two age 
groups (young and old) was not different, was accepted. 

• Influence
Per the model summary and the ANOVA outputs, the overall model predicted approximately 3% of the variance in online customer 
satisfaction, R2 = .034, F (6,377) = 2.228, p = .040. 

Based on the coefficients depicted in the coefficient table (see Table 2), there was a significant influence of navigability (a one-unit 
increase in navigability decreases online customer satisfaction by .101 units, β = -.101, p = .048) and playfulness (a one-unit increase in 
playfulness decreases online customer satisfaction by .140 units, β = -.140, p = .006) on online customer satisfaction when predicting 
[70]. Based on the above findings, navigability and playfulness significantly influence online customer satisfaction when predicting 
customer satisfaction and rejected the third null hypothesis. The evidence suggested that at least one independent variable in this 
study significantly influences online customer satisfaction.

Table 2: Coefficients

Source: JASP (Version 0.16.4)

• Predicting Satisfaction
A systematic feature selection procedure was implemented to determine the optimal number of features to predict overall customer 
satisfaction. Consequently, based on the Akaike Information Criterion (AIC) assessment, which yielded a score of 1386.43, it was 
ascertained that all predictor variables remained indispensable for the precise prediction of overall customer satisfaction. A ten-fold 
(k = 10) cross-validation technique was executed following the selection process to derive an estimate for the Mean Squared Error 
(MSE). The resultant computed delta was within the range of 2.142187 to 2.138727. Subsequent to the above MSE estimation, 
online overall customer satisfaction was assessed by comparing actual satisfaction scores against the corresponding predicted scores 
(denoted as y and ŷ, respectively). The actual and predicted scores for overall customer satisfaction of the initial ten observations, 
i.e., the first ten customers, have been elucidated in Table 3 for reference.

Table 3: Satisfaction Prediction
Customer 1 2 3 4 5 6 7 8 9 10
Actual (1-5 scale) 4 3 5 3 2 4 2 2 1 3
Predicted (1-5 scale) 2.9 3.0 3.0 3.0 2.9 2.9 3.2 2.9 2.9 3.2

Source: RStudio (Version 4.1.2)
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As discerned from the tabular data in Table 3, a notable 
observation emerged, indicating that the first, third, and sixth 
customers were not anticipated to exhibit satisfaction according 
to the employed set of predictors, considering their quantity and 
inherent characteristics. Conversely, it is noteworthy that all other 
customers listed in the table are projected to manifest a state of 
satisfaction based on the predictive modeling outcomes.

Discussion 
Online customer satisfaction, crucial for businesses, stems from 
interactions with their online presence. With the internet’s growing 
role in shopping and communication, it has become a pivotal 
metric [72-76]. Feedback surveys, online reviews, social media 
monitoring, and website analytics offer insights into website quality, 
purchase ease, and customer service responsiveness. Enhancing 
website functionality, providing courteous service, offering 
personalized recommendations, and responding effectively to 
feedback can boost satisfaction [14]. Prioritizing online customer 
satisfaction can enhance reputation, foster loyalty, and drive sales. 
Online customer satisfaction, vital for businesses, has surged due 
to increased internet use. Metrics like surveys, reviews, social 
media monitoring, and analytics gauge it by assessing website 
quality, purchase ease, and customer service [14,15]. Enhancing 
website functionality, offering personalized recommendations, and 
responding promptly and courteously can bolster satisfaction and 
enhance reputation, loyalty, and sales. Organizations must gauge 
customer satisfaction across all channels to connect with customer 
attitudes and behavior [77]. Key indicators include purchasing 
behavior, customer growth, and financial performance [78]. This 
holds for both online and in-person interactions. Surprisingly, 
online customer satisfaction surveys are often neglected [79-82]. 
Online measurement should align with the digital e-commerce 
strategy, focusing on criteria like navigability, playfulness, 
information quality, trust, personalization, responsiveness, and 
overall satisfaction [83-85].

Different customer segments have distinct online transaction 
behaviors. The study found that contrary to expectations, 
playfulness and navigability equally influenced the satisfaction 
of both younger and older generations; however, increasing the 
complexity of these factors negatively affected overall satisfaction. 
This aligns with prior research, highlighting customer frustration 
with complexities in playfulness and navigability. Companies 
should prioritize simplicity in web design, process, and engagement 
to enhance online strategy [74,86-87]. Notably, this phenomenon 
is unique to this study. Efficient website navigation is essential for 
a positive user experience [88]. To achieve this, websites should 
feature clear and consistent navigation menus on every page. 
Using descriptive labels for menu items helps users understand 
their purpose, reducing confusion. Logical content organization 
and grouping related information simplify information retrieval. 
Visual aids like dropdown menus and breadcrumbs enhance user 
orientation [89]. User testing and feedback collection identify areas 
for improvement. By considering these factors, organizations can 
enhance website navigability and provide a better online buying 
experience.

Playfulness enhances online engagement and creates memorable 
website experiences [90]. Using vibrant colors consistent with 
the brand adds a playful touch. Micro-interactions, like bouncing 
buttons or loading animations, inject dynamism [91-92]. Playful 
language, such as puns and jokes, reflects a friendly brand 
personality. Playful illustrations break up text and simplify complex 

ideas. Interactive elements like quizzes educate and engage 
customers, but it is vital to balance playfulness with functionality 
[74]. Information quality is crucial for a positive user experience 
and trust-building [93]. It hinges on accuracy, relevance, clarity, 
authority, and timeliness. Accuracy ensures credibility, relevance 
aligns with purpose, clarity promotes understanding, and timeliness 
keeps content current and relevant. Trust is paramount for website 
success, influencing visitor attraction, retention, conversions, 
and goal achievement [79-81]. Trust hinges on credibility, user 
experience, conversion, reputation, and search engine ranking. 
Credibility fosters trust by establishing reputation and confidence. 
Positive user experiences promote interaction and desired actions. 
Trust aids conversions by addressing visitor concerns. It builds a 
positive reputation, driving brand loyalty and advocacy. Search 
engines reward trust with higher rankings, increasing visibility 
and traffic.

Personalization tailors a website to individual user needs and has 
several key benefits [74,86-87]. It enhances user experiences by 
offering relevant content and features, boosting engagement and 
loyalty. Personalization increases conversions through tailored 
recommendations and calls to action. It provides a competitive 
edge by creating a distinct and memorable user experience. Data-
driven insights from personalization inform improvements in 
design, content, and functionality. This enhances user service 
and business outcomes. Moreover, personalization fosters loyalty 
by meeting user needs, promoting retention, and advocacy. 
Responsiveness, the ability to adapt to various devices, is vital 
for websites for multiple reasons [83-85]. It enhances user 
experience across devices, boosting engagement and loyalty. 
A responsive site reaches a broader audience, improving traffic 
and brand visibility. Search engines favor responsive sites, 
leading to higher rankings and visibility. Additionally, it is cost-
effective, saving resources on development and maintenance. 
Responsive websites remain future-proof, adapting to new devices 
for long-term relevance and effectiveness. This study highlights 
the significance of playfulness and navigability in influencing 
overall online customer satisfaction. Increased playfulness and 
navigability were observed to hurt customer satisfaction when 
interacting with commercial organizations. However, information 
quality, personalization, and responsiveness showed no significant 
influence. While this study emphasizes the role of playfulness 
and navigability in customer satisfaction, it does not encompass 
all factors affecting it. Interestingly, online customers expressed 
satisfaction with transactions as long as website playfulness and 
navigability remained uncomplicated [88,91-92].

Limitations
As with any other study, this study also has a few limitations. 
Firstly, the predictor variables explained that the overall satisfaction 
(response) variance was only 3%, leaving 97% unexplained by 
the fitted model. Additionally, the Adjusted R-squared estimate 
suggested weaker parsimony of the fitted model. Based on the 
above premise, the fitted linear regression model was an overfitting 
model, a key limitation of this study [94]. Secondly, a cross-
sectional design was employed for this study. A longitudinal 
study yields more reliable results than a cross-sectional study, 
particularly when measuring customer satisfaction. Thirdly, this 
study is narrow-focused by only considering the retail sector 
(B2C) and being limited to the United States market. Considering 
the above limitations underscored, it is recommended that any 
potential research in the same direction carefully consider them 
to increase the study’s validity [95-97]. 
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Conclusion 
The investment made by companies in retaining customers has been 
substantial; however, the challenge of customer attrition persists, 
especially in the realm of online customer bases. The absence of 
a robust tool to effectively measure online customer satisfaction 
has been identified as a key contributor to this issue. To tackle this 
concern, a comprehensive quantitative study was conducted. This 
study delved into the dimensions of online customer satisfaction, 
culminating in a versatile model applicable across industries for 
evaluating and predicting online customer satisfaction. The results 
unveiled a substantial correlation between key predictor variables-
navigation, playfulness, information quality, trust, personalization, 
and responsiveness-and the pivotal variable of online customer 
satisfaction. Notably, this influence was observed across different 
age groups, impacting younger and older customers.
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