
Open Access

J Arti Inte & Cloud Comp, 2022 Volume 1(3): 1-6

Journal of Artificial Intelligence &
Cloud Computing

ISSN: 2754-6659

Review Article

Mastering Test Automation: Bridging Gaps for Seamless QA
Rohit Khankhoje

*Corresponding author
Rohit Khankhoje, Department Independent Researcher working on E-Commerce Company in Technology, USA.

Received: September 08, 2022; Accepted: September 15, 2022; Published: September 22, 2022

Keywords: Automation Framework, API Integration, Test
Automation, Test Management Tools

Introduction
In the present-day dynamic and rapidly changing software
development landscape, the role of quality assurance (QA) is of
utmost importance in ensuring the dependability and performance
of software applications. With the increasing complexity of software
systems, there has been a surge in the demand for efficient and
effective test automation. “Mastering Test Automation: Bridging
Gaps for Seamless QA” is a scholarly article that delves into the
crucial aspects of test automation, addressing the challenges faced
by organizations in achieving uninterrupted quality assurance.

The significance of test automation cannot be overstated. It
promises expedited testing processes, expanded test coverage,
and the capability to detect defects at an early stage of the
development cycle. However, despite its potential advantages,
numerous organizations encounter obstacles and gaps in
knowledge when implementing test automation strategies. This
paper acknowledges that one of the primary challenges lies in the
disparity of comprehension between management, Manual QA and
automation engineers. Management often lacks a comprehensive
understanding of the appropriate scenarios and coverage necessary
for effective test automation in comparison to manual testing.
Furthermore, they may encounter difficulties in keeping abreast
of the overall automation status and trends. In the contemporary
DevOps environment, it is imperative for the team to possess a
comprehensive understanding of which aspects are encompassed
within automated testing and which elements remain unaddressed.
This knowledge will enable the QA team to shift their focus
towards the aspects that have not yet been automated.

To tackle these challenges, “Mastering Test Automation” proposes
innovative solutions that bridge these knowledge gaps and enhance
the bug reporting process. This integration not only facilitates
better communication between manual QA and automation teams
but also empowers management by providing comprehensive
insights into automation activities, bug origins, trends, and test
case specifics.

According to our understanding and investigation, there is a
dearth of literature pertaining to this particular field. We serve
as a valuable resource for organizations aiming to optimize their
QA processes through effective test automation. It sheds light on
common challenges and pitfalls while offering practical solutions
to create a more efficient and streamlined QA ecosystem. With a
focus on knowledge sharing and enhanced communication, this
article lays the foundation for uninterrupted quality assurance in
the era of test automation.

Background
Test automation is a technique used in software testing, whereby
automated tools and practices are employed to carry out test cases
and validate software functionality. This approach entails the
utilization of pre-scripted test scripts and software to automate
the manual testing process, thereby enhancing the efficiency,
repeatability, and accuracy of testing activities. The principal aim
of test automation is to identify defects, guarantee the dependability
and stability of software applications, and diminish the duration
and expenses associated with testing [1].

Test Automation Challenges
Most organizations do not encounter significant difficulties
when implementing automation for their products. However,

Department Independent Researcher working on E-Commerce Company in Technology, USA

ABSTRACT
The rapid evolution of software development practices has given rise to an increasing demand for efficient and effective test automation. The paper titled “Mastering Test
Automation: Bridging Gaps for Seamless QA” delves into the crucial aspects of test automation, addressing the obstacles faced by organizations in achieving flawless quality
assurance. The paper highlights the importance of bridging knowledge gaps within organizations, emphasizing the necessity for management to acquire a deeper comprehension
of test automation scenarios, coverage, report trends and importance of communication. To tackle these challenges, this paper introduces solutions, including the development
of an automation framework that seamlessly integrates with test cases and reporting tools like TestRail and Jira. This integration facilitates the automatic recording of bugs in Jira,
enhancing bug reporting and communication between manual QA and automation teams as well as TestRail have all newly added automated testcases as soon as it is part of the
automation suite. The paper demonstrates how this framework empowers management by providing clear insights into ongoing automation activities, bug origins, trend analysis,
and test case specifics. “Mastering Test Automation” serves as a comprehensive guide for organizations aiming to enhance their quality assurance processes through effective test
automation. It not only identifies the common pitfalls and challenges but also offers practical solutions to bridge the gaps, resulting in a more streamlined and efficient QA process.

Citation: Rohit Khankhoje (2022) Mastering Test Automation: Bridging Gaps for Seamless QA. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-219.
DOI: doi.org/10.47363/JAICC/2022(1)226

J Arti Inte & Cloud Comp, 2022 Volume 1(3): 2-6

organizations encounter difficulties in maintenance and
enhancement after implementation, which is when they truly derive
benefits from automation [2]. Here lies a collection of typical
challenges that serve as obstacles to achieving a comprehensive
communication in the realm of Quality Assurance procedures.

Determining the Scope of Automated Test Cases for
Stakeholders
Determining the extent of coverage for automated test cases is a
critical aspect of test automation. Without well-defined criteria,
management may encounter difficulties in comprehending the
scope of automation and distinguishing between automated and
manual processes [1]. It is imperative for management to have
confidence in the automation strategy. The process of determining
the scope of automated test cases involves selecting scenarios that
are both highly critical and repetitive in nature. In the absence
of a transparent and methodical selection process, management
may experience uncertainty regarding the level of test coverage
and the value derived from automation.

Knowledge Gaps and Lack of Visibility for Stakeholders
One of the challenges that arise when there are gaps in knowledge
within the automation team is that management may remain
unaware of the full extent of the problem. This lack of visibility
can result in underestimating the impact on testing timelines
and the quality of the product. Accurate information is vital for
management to make well-informed decisions [3]. Knowledge
gaps can lead to erroneous results, missed defects, and ineffective
problem-solving, thereby hindering management’s ability to assess
the health of the testing process.

Sharing Reports and Automation Efforts with other Team
and Management
Another challenge is encountered when it comes to reporting and
sharing test automation results and efforts with management. This
task can prove to be difficult if the reports are not presented in a clear
and concise manner or if management does not have easy access to
them. In such cases, monitoring the progress becomes challenging
for management [4]. To adequately supervise the advancement,
administration necessitates concise and comprehensible reports
that emphasize pivotal metrics and the accomplished progress.
Reports that are overly technical or inaccessible can create a
disconnect between testing teams and management.

Manual Bug Logging and Tracking in Coordination with
Automation Efforts
When automated tests identify issues, it is crucial to ensure
effective coordination between the automation and manual testing
teams for bug logging and tracking [5]. Without a streamlined
process in place, management may face difficulties in overseeing
and comprehending defect management. Manual bug logging and
tracking can result in delays and miscommunication. Moreover,
inconsistencies in language and details within bug reports can
make it arduous for management to assess the severity of defects
and their impact on the release.

By addressing these challenges and fostering clear communication,
organizations can bridge the gap between test automation teams
and management. This, in turn, leads to more effective automation
efforts and facilitates better decision-making.

In order to surmount the aforementioned challenges, we have
put forth a design proposal that incorporates a confluence of
diverse tools and frameworks. A diverse array of test automation

tools are readily available, such as Selenium, Test Complete, and
Rational tools, among others. Additionally, numerous tools exist to
provide support for automation. There are certain tools that may
not be directly associated with test automation but are nonetheless
pivotal for any organization’s quality assurance practices. These
tools include test management tools, as well as tracking and
project management tools. Test management tools are software
applications designed to facilitate the planning, execution, and
monitoring of software testing activities. These tools play a
significant role in ensuring that test teams can effectively manage
test cases, track defects, and generate test reports. They are of
utmost importance for maintaining transparency and fostering
collaboration within testing teams, as well as among various
stakeholders.

Here are two popular test management tools (Or any tools which
provide API interface to interact): We are using Jira and TestRail
as examples only here.

Jira, developed by Atlassian, is a widely used issue and project
tracking tool. It offers test management capabilities through add-
ons like Xray and Zephyr. Jira’s extensive customization and
integration options make it a favorite among agile and DevOps
teams.

TestRail is a dedicated test management tool known for its user-
friendly interface and strong reporting capabilities. It supports
the creation of test cases, test plans, and test runs, and it provides
comprehensive reporting features.

The integration of automation framework and test management
tools alone serves as a bridge to close the gap between the
Quality Assurance (QA) process, the automation team, and the
management. This integration not only enhances the visibility but
also allows for better tracking of progress within any organization.
We didn’t found any approach or framework which integrate
with test management tools, so this is kind of unique and custom
approach to reduce communication gap between teams

Proposed Automation Framework

Figure 1: Proposed Framework

The proposed framework will adhere to a layered architectural
approach, ensuring the distinct separation of concerns and the
effective utilization of resources:

Citation: Rohit Khankhoje (2022) Mastering Test Automation: Bridging Gaps for Seamless QA. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-219.
DOI: doi.org/10.47363/JAICC/2022(1)226

J Arti Inte & Cloud Comp, 2022 Volume 1(3): 3-6

1. Test Suite Layer: This layer comprises test cases and test scripts.
Test cases will be formulated to validate specific functionalities
of the application. - Test scripts will be tasked with executing test
cases using automation tools such as Selenium.

2. Test Data Layer: This layer will oversee the management of
test data, encompassing data creation, retrieval, and cleanup. - It
will address considerations pertaining to the privacy and security
of test data.

3. Test Logic Layer: The framework layer will oversee test
execution and control the flow of tests. - It will incorporate the
chosen design of the test framework (e.g., Page Object Model,
Data-Driven, Behavior-Driven Development) to promote the
reusability and maintainability of the framework.

4. Test Automation Layer: This layer will contain the fundamental
automation components and libraries. - It will encompass
functionalities for common automation tasks such as interaction
with elements, manipulation of data, and generation of reports.

5. Test API Layer: This layer will handle all external API calls,
particularly those with test management tools.

6. Utilities: This component will be responsible for generating
reports, logs, and snapshots.

Jira possesses a singular interface that allows for the creation
of issues and subsequently returns an issue identifier to the
framework for updating in TestRail. On the other hand, TestRail
provides two distinct interfaces: one for the creation of testcase
entries and another for the updating of testcase statuses along with
accompanying details.

The interaction with the API interface on Test Management tools
such as Jira and TestRail lies beyond the scope of framework
interaction. This requires the knowledge of Test Management
tools API details as well as the need for authentication. This
suggested framework is a versatile framework that is compatible
with any test management tool that has an API interface. The
sole essential information is the API implementation details or
the required information.

Figure 2: Flow of Interaction of Automation Framework to Test
Management Tools

The synergy between a test automation framework, TestRail (a
tool for managing tests), and Jira (a tool for tracking defects) can
be orchestrated in a smooth and continuous manner to optimize

the testing and issue management procedures. The following is
a step-by-step breakdown of the interaction between these tools:

1. Automation Framework: The test automation framework
carries out the execution of test cases and scenarios on the
application or software that is being tested. As soon as a new
testcase added, In first run Automation Framework push newly
added testcase into TestRail.

2. Test Execution Results: As the automated tests are executed,
the framework gathers the results of the test execution, including
the pass or fail status of each test case.

3. Reporting Test Results to TestRail: Upon the execution of a
test case, the automation framework establishes communication
with the TestRail API. It then updates the corresponding test run
in TestRail with the execution status of the test case, which can
be classified as “Passed,” “Failed,” or “Blocked.”

4. Creation of Jira Issues (in case of Test Failure): If a test case
fails during execution, the automation framework identifies the
failure and captures pertinent information, such as the nature of
the failure, the steps that led to the failure, and details about the
test environment.

5. Integration with Jira: The automation framework utilizes
the Jira API to generate a new issue in Jira, which represents the
test failure. The type of issue can be a bug, defect, or any other
relevant category.

6. Provision of Issue Details: The issue that is created in Jira is
populated with information derived from the test failure, including
the test case identification, description, steps for reproducing the
issue, and details about the test environment. Furthermore, the
automation framework can establish a link between the Jira issue
and the corresponding test case in TestRail, thereby ensuring
traceability.

7. Retrieval of the Issue ID: Upon the successful creation of the
issue in Jira, the automation framework receives a unique issue ID
that is attributed to the newly generated issue. This ID is essential
for monitoring and managing the issue in Jira.

8. Updating TestRail with Issue Details: The automation
framework establishes communication with TestRail once again,
updating the original test run and test case by referencing the Jira
issue ID. This connection between TestRail and Jira guarantees
that the test failure is associated with a specific issue in Jira.

9. Collaboration and Resolution: Testers, developers, or other
pertinent team members utilize the Jira issue to investigate,
prioritize, and address the reported problem. Any updates or
changes made in Jira can be linked back to TestRail through the
issue ID.

10. Ongoing Monitoring: The integration between TestRail and
Jira facilitates end-to-end traceability and collaboration between
the testing and development teams. In case of a test passed in
the second run, the automation framework removes the Jira ID
association from the TestRail test case. Testers have the ability to
monitor the status of the Jira issue directly from TestRail, thereby
ensuring transparency and efficient resolution of issues.

Citation: Rohit Khankhoje (2022) Mastering Test Automation: Bridging Gaps for Seamless QA. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-219.
DOI: doi.org/10.47363/JAICC/2022(1)226

J Arti Inte & Cloud Comp, 2022 Volume 1(3): 4-6

Here is a Jira pseudocode that can be utilized in conjunction with
any automation tool that possesses an API interface for invoking
and retrieving a response.

Figure 3: Jira API Pseudocode

Here’s a Pseudocode Example for Creating a Test Case in TestRail
and Updating the Test Status in a Test Run.

Figure 4: TestRail API Pseudocode

After the successful implementation of the integration of
an automation framework with Jira and TestRail, numerous
improvements can be witnessed in the realm of quality assurance.
This integration has effectively addressed various gaps and has
brought about notable enhancements in several key areas.

First and foremost, the defect management process has become
significantly more efficient. In the past, defect management was
a time-consuming endeavor, primarily due to the manual logging
and tracking of defects, which often resulted in delays. However,
with the automation framework now seamlessly integrated with
Jira, the defect management process has been streamlined [6].
This is achieved through the automatic creation of defects in Jira
directly from the automation framework, eliminating the need
for manual intervention. As a result, defects are now logged with
all the necessary information, enabling developers to promptly
access and address them. This has greatly reduced the resolution
times of defects, thereby enhancing the overall efficiency of the
defect management process.

Another area that has greatly benefited from this integration is
traceability. Ensuring traceability between test cases, defects, and
changes has always been a challenging task. However, through
the linking of test cases in TestRail to Jira issues, a seamless
traceability path has been established [7]. This allows teams to
easily trace issues back to specific test cases and monitor how
defects relate to changes in the application. This newfound
traceability has significantly improved the overall visibility and
understanding of the testing process, ultimately leading to more
informed decision-making.

Real-time reporting has also witnessed a remarkable transformation
as a result of this integration. Traditional reporting methods were
often time-consuming and lacked real-time updates. However,
with the automation framework now integrated with TestRail,
test results are automatically updated in real-time. This means
that QA teams and stakeholders can now access up-to-date testing
status and metrics instantly. This real-time reporting capability
has revolutionized the way testing progress is monitored and has
empowered stakeholders to make informed decisions based on
the most recent data.

Furthermore, the integration of the automation framework
with Jira and TestRail has significantly enhanced visibility into
testing progress and defect status. Previously, visibility in these
areas was limited, which often led to miscommunication and
misunderstandings. However, with the provision of dashboards
and reports by TestRail and Jira, comprehensive visibility has
been achieved [8]. These dashboards and reports offer detailed
insights into testing progress and defect status, ensuring that
all stakeholders are on the same page. This newfound level of
visibility has greatly improved collaboration and coordination
among teams, resulting in a more cohesive and efficient software
development and testing process.

Lastly, issue resolution has been expedited due to the
implementation of this integration. In the past, delays in issue
identification and resolution had a negative impact on product
quality. However, with the automated defect creation in Jira and
the streamlined defect management process, issue resolution
times have been significantly reduced. Defects are now addressed
promptly, leading to an overall enhancement in product quality.

In this real-world scenario, the integration of an automation
framework with Jira and TestRail has proven to be highly effective
in bridging gaps between teams, streamlining defect management,
enhancing traceability, and ultimately improving the overall quality
assurance process. The result is a more efficient, collaborative, and
high-quality software development and testing process.

Citation: Rohit Khankhoje (2022) Mastering Test Automation: Bridging Gaps for Seamless QA. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-219.
DOI: doi.org/10.47363/JAICC/2022(1)226

J Arti Inte & Cloud Comp, 2022 Volume 1(3): 5-6

Discussion
While the amalgamation of an automated framework with Jira and
TestRail presents a plethora of advantages, it also entails certain
restrictions and challenges. It is imperative to be cognizant of
these limitations in order to effectively tackle them and make
well-informed decisions. Here are some common constraints:

1. Complex Configuration: The integration of multiple tools can
be intricate and may necessitate technical expertise. The process
of setting up and maintaining the integration can be arduous,
particularly for smaller teams with limited resources.

2. Financial Implications: Certain integrations may incur
additional costs, such as licensing fees for specific connectors
or plugins. This monetary aspect can act as a hindrance for
organizations operating within budgetary constraints.

3. Compatibility of Tools: The chosen automation framework, Jira,
and TestRail must exhibit compatibility for seamless integration.
If any of these tools undergo updates while the integration remains
unadopted, it may lead to compatibility issues.

4. Maintenance and Updates: Ensuring that the integration
remains up-to-date with the latest versions of the tools can be
time-consuming. Failure to do so may result in breakdowns or
data synchronization issues.

5. Learning Curve: Team members may require a certain amount
of time to acquire proficiency in effectively utilizing the integrated
tools. Training and onboarding processes may be necessary to
ensure that all individuals comprehend the workflow.

6. Additional Burden: An integration can introduce supplementary
workload, particularly in terms of the time spent configuring and
maintaining it. Initially, this can impede the testing process.

7. Security Concerns: The sharing of data between tools can give
rise to security concerns. It is imperative to safeguard sensitive test
data and defect information, and the integration should comply
with established security standards.

8. Limited Customizability: Integrations may not provide all
the desired customizations for a specific workflow. Teams may
need to adapt their processes to accommodate the capabilities of
the integrated tools.

9. Reliance on Third-party Plugins: Many integrations depend
on third-party plugins or connectors, which may possess their own
limitations or may not be officially supported by the tool providers.

10. Performance Impact: Depending on the complexity of the
integration and the volume of data exchanged, there can be a
performance impact on the tools and the overall system.

11. Restricted Functionality: While integrations facilitate
the exchange of data, they may not always offer complete
functionality. Certain actions may still require manual input or
navigation between tools.

12. Data Loss: If the integration is not configured properly or
experiences issues, there is a risk of data loss or inconsistencies
between tools.

13. Tool-Specific Modifications: When one of the integrated tools

undergoes significant changes or an upgrade, it may necessitate
updates to the integration, which can cause disruption.

In order to mitigate these limitations, it is crucial to meticulously
plan the integration process, ensure that all tools and connectors
are kept up-to-date, and conduct regular testing to verify that
the data exchange and workflows are functioning as expected.
Additionally, organizations should evaluate whether the benefits
of integration outweigh these limitations and align with their
specific testing and development requirements.

Conclusion
In conclusion, this paper “Mastering Test Automation: Bridging
Gaps for Seamless QA” presents a novel methodology to tackle
the frequently encountered difficulties in the domain of quality
assurance and testing. The suggested automation framework, when
combined with the utilization of TestRail and Jira like tools, offers
a comprehensive resolution to enhance cooperation, traceability,
and efficiency in the process of software testing.

By seamlessly connecting automated testing with the tools for test
management and defect tracking, the framework efficiently closes
the gap between teams engaged in automation and management, as
well as between automation and manual quality assurance teams.
It provides real-time reporting, transparent tracking of issues, and
streamlined workflows that result in expedited issue resolution
and improved product quality.

The user-friendly design of the framework, along with the adoption
of standardized practices for reporting bugs, facilitates easy
implementation and fosters collaboration between automation
engineers and professionals in manual quality assurance.
Furthermore, the adaptability and inclination towards improvement
inherent in the framework ensure its ability to evolve in accordance
with the changing requirements of the organization.

The integration of TestRail and Jira in the automation process not
only simplifies the reporting of test results and issues, but also
enables data-driven decision-making. It empowers management
with a more lucid comprehension of testing activities, trends, and
the specifics of test cases.

Overall, “Mastering Test Automation: Bridging Gaps for Seamless
QA” demonstrates how the appropriate approach to automation,
coupled with effective integration of tools, can revolutionize
the landscape of testing. By addressing the common challenges
encountered in software testing and providing viable solutions,
it not only enhances the process of quality assurance, but also
contributes to a more efficient and collaborative approach to
software development, ultimately leading to improved product
quality and expedited release cycles.

References
1. Sei L (2015) Automating Test Activities: Test Cases Creation,

Test Execution, and Test Reporting with Multiple Test
Automation Tools. World Academy of Science, Engineering
and Technology https://zenodo.org/records/1109673.

2. Leung HKN (1998) Test tools for the Year 2000 challenges.
3. Skoglund M, Runeson P (2004) A case study on regression test

suite maintenance in system evolution. In IEEE International
Conference on Software Maintenance 38-442.

4. Rajal JS, Sharma S (2015) A Review on Various Techniques for
Regression Testing and Test Case Prioritization. International
Journal of Computer Applications 116: 0975-8887.

Citation: Rohit Khankhoje (2022) Mastering Test Automation: Bridging Gaps for Seamless QA. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-219.
DOI: doi.org/10.47363/JAICC/2022(1)226

J Arti Inte & Cloud Comp, 2022 Volume 1(3): 6-6

Copyright: ©2022 Rohit Khankhoje. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

5. Strandberg P, Afzal WJT (2017) Automated System-Level
Regression Test Prioritization in a Nutshell. Journals &
Magazines 34: 30-37.

6. Strandberg P, Sundmark D, Afzal W (2016) Automated
System Level Regression Test Prioritization Using Multiple
Factors. 2016 IEEE 27th International https://ieeexplore.ieee.
org/document/7774503.

7. Anindita F, Pramana K (2019) Automated Test Suite for
Regression Testing Based on Serenity Framework: A
Case Study. Computer Science https://ieeexplore.ieee.org/
document/8834609.

8. Dobles I, Martinez A, Quesada-Lopez C (2019) Comparing
the effort and effectiveness of automated and manual tests
https://ieeexplore.ieee.org/document/8760848.

