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Introduction
Currently, several types of devices connected to the internet, and 
the total devises’ number continues to increase exponentially 
[1]. In essence, anyone and anything can connect to the internet 
anytime and anywhere; this is the notion of the Internet of Things 
(IoT) [1]. However, IoT may lack some of the data due to the 
constraints in IoT (limited energy, limited storage capacity, etc.) 
[2]. Providing consumers, the best experience when using IoT is 
critical since the speed of performance and high storage capacity 
are end-user requirements. Consequently, cloud and fog paradigms 
have been developed.

Fog Computing extends the cloud to handle the cloud’s limitations, 
such as high latency, low security, etc [3]. Fog computing provides 
low latency, high performance, reliable, mobile, secure, and 
interoperable characteristics [3]. Fog computing offers service, 
computation, and storage to the end-users [3].

Fog computing consists of a huge number of users and 
heterogeneous resources spread in a wide geographic area. The 
increase in resources and users in IoT leads to increasing IoT 
traffic. This increase in IoT traffic may affect the load balance 

in fog computing. IoT traffic maybe over- loaded in some areas 
and under-loaded in others [2]. So, the processing workload must 
be distributed efficiently to avoid this problem. Load balancing 
between these resources is a significant research issue in fog 
computing [4,5]. Due to the importance of load balancing fog 
computing, the fast response to the users is very important in it [6].

Load balancing means efficiently distributing tasks among 
resources. Besides, load balancing helps resources perform tasks 
efficiently, leading to improved fog performance [7]. On the other 
hand, a lack of load balancing means that some fog nodes are 
under-loaded or idle, while others are overloaded. This problem 
will affect fog-computing performance, namely by increasing 
the response time, decreasing throughput, and increasing energy 
consumption. Consequently, the satisfaction of clients and service 
providers is negatively affected [8]. Our research aims to satisfy 
customers and service providers by improving fog computing to 
distribute the load efficiently among fog nodes. Many techniques 
and algorithms exist to balance the load in fog computing, such 
as optimization algorithms or machine learning.

The optimization algorithms are mathematical algorithms that 
maximize or minimize the objectives’ value [9]. Optimization 
is the action of delivering the best possible decision under given 
conditions [9,10]. Regarding machine learning, it is a branch of 
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ABSTRACT
With the development in computing technologies, fog computing is developing as public and robust computing, which complements cloud computing 
to provide services, computation, and storage on the edge network. The future growth and support of 5G access networks additional advance the 
viability and implementation of fog networks and widen the scope of devices that can participate and serve in IoT communication. However, scaling 
fog computing, the number of end-users increases. Hence, the workload between fog nodes needs to be distributed efficiently. Otherwise, some of the 
nodes will be overloaded, and others will be under-loaded. Consequently, one of the critical factors for managing resources in fog computing efficiently 
and avoiding overloaded or under-loaded is load balancing. Therefore, load balancing between these resources is a challenge in fog computing. There 
are different techniques to balance the load, such as optimization algorithms or machine learning. This paper proposes a load balancing model in 
fog computing based on a many-objective particle swarm optimization (PSO) algorithm with support vector regression (SVR). The proposed load 
balancing model considered four metrics to optimize them while distributing the load: response time, energy consumption, resource utilization, and 
throughput. Besides, It combines SVR with PSO to improve PSO performance. The proposed model has been simulated and tested to evaluate the 
performance from different aspects. The experiments show that the proposed model efficiently balances the load with optimizing the four metrics. 
In addition, it improves the performance of PSO, which is used to balance the load.
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artificial intelligence (AI) that supports the systems to learning 
themselves and make decisions with a little human intervention 
[11]. Machine learning models can be trained to make decisions 
based on using historical data [12]. Several researchers using these 
techniques to balance the load in fog computing.

This paper is organized as follows. Section 2 provides a problem 
definition and related works in load balancing in fog computing. 
Section 3 presents the proposed load balancing fog computing 
architecture. and explain the details about the proposed PSOSVR 
algorithm. Section 4 provides the details about the parameters that 
used in experiments. Section 5 presents the experiments results. 
Section 6, dis- cusses the results of the experiments and how the 
proposed model fulfills the contribution of this paper. Finally, 
Section 7 concludes this paper.

Problem Definition
Load balancing means distributing the workload between nodes in 
a balanced way [2]. In fact, the number of fog users utilizing fog 
services is increasing exponentially. Further- more, the number of 
services on fog computing provided to users is also increasing rapidly. 
Due to many services and users on the fog, and without a suitable 
mechanism to distribute the workload among fog nodes, some nodes 
are under-loaded, and others are overloaded. Consequently, this 
affects the network’s performance essential to the user, such as the 
response time and throughput because when nodes are overloaded, 
the nodes take more time to begin processes the task due to the huge 
number of tasks in a queue need to process. Moreover, it affects 
some parameters essential for service providers, such as energy 
consumption, resource utilization. To resolve this problem, the load 
between fog nodes needs to balance in the best way [2].

After we studying the previous works that applying optimization 
algorithms and machine learning to balance the load in fog 
computing, we noticed that the researches in this scope (i.e., 
load balancing in fog computing) distributes the load between 
fog nodes based on resource allocation or task scheduling. This 
means that it is not dealing with load balancing directly, and load 
balancing results from resource allocation or task scheduling. 
Therefore, we will focus on applying our proposed solution to 
resource allocation to balance the load. Besides, we focus on 
just computational tasks and do not consider any storage tasks.

Our target is balancing the load between fog nodes, improving the 
user’s experience quality, and maximizing the service provider’s 
benefit by decreasing response time, energy consumption, and 
increasing throughput and resource utilization. We utilize a hybrid 
load balancing algorithm named PSOSVR. We combine support 
vector regression (SVR) with Particle Swarm Optimization 
(PSO) algorithm to improve the PSO algorithm’s performance. 
PSO has multiple advantages such as has few parameters, easy 
implementation, and efficiency to the optimization [13]. However, 
in PSO, the particles initialize randomly; this could decrease the 
algorithm’s chance to converge to the best solution and take more 
time to it [14]. To solve this problem, the particles are initializing 
based on the prediction result from SVR.

Kamal et al. use a heuristic min-conflicts optimization algorithm 
for load balancing the VM in fog architecture [15]. The fog 
architecture has a load balancer that is responsible for allocating 
requests to VM in fog computing. The metrics of the optimization 
lead to minimizing processing and cost. However, the architecture 
here is centralized and there is no fault tolerance for example use 
a backup. Many constraints and complexity in the system could 
lead to slow work and, hence, to increase response time.

Load balancing in fog computing may occur through re- source 
allocation improves fog computing performance and resource 
utilization. Zafar et al. in propose a technique for resource 
allocation using the Bio-inspired Bat Algorithm (BA) to optimize 
the load balancing on the fog nodes. The system consists of six 
regions [16]. Each region comprises one fog which attached to 
tow clusters. Each cluster contains fifteen buildings that include 
multiple homes, and each fog connects with Micro-grid for 
electricity supply. The cloud analyst simulator is used to simulate 
the system. The simulation proves that BA minimizing processing 
time and response time. However, the proposed technique produces 
low Makespan when the closest data centers are not avail- able.

Zahoor et al. propose a hybrid algorithm that com- bines the Ant 
Colony Optimization (ACO) and Artificial Bee Colony (ABC) 
algorithms [17]. The authors use cloud-fog computing with smart 
grids to provide resources to end users efficiently, and they use the 
proposed hybrid algorithm to balance the load between the VMs in 
the fog layer. The simulation proves that the proposed technique 
reduces energy consumption. However, the architecture is 
centralized, and there is no fault-tolerance technique. Furthermore, 
the centralized architecture has low scalability.

Talaat et al. propose a new load balancing technique called Effective 
Load Balancing Strategy (ELBS). ELBS balances the load between 
fog nodes by scheduling tasks in an efficient way [18]. ELBS consists 
of five modules; including Fuzzy, and the other is the Probabilistic 
Neural Net- work. This technique distributes tasks between resources 
to improve performance. The architecture consists of the following 
four layers: “Cloud Layer, Fog Layer, Dew Layer, and End-User 
Layer”. All the layers as well as the fuzzy and probabilistic neural 
network modules have their own procedures to carry out in order to 
achieve the overall goal. The overall goal is to provide load balancing 
with de- crease response time and increase throughput. However, the 
model’s rescheduling process will take time, and there will be many 
migrations that will affect system performance.

The Proposed Fog Computing Model
The proposed model’s architecture consists of a hierarchal fog 
computing architecture to provide more resource allocation 
management and distribute the load among various nodes in 
several regions as shown in Figure 1. The model includes three 
framework layers, including an access layer, a local control layer, 
and a global control layer.

Figure 1: The System Architecture
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• Access Layer:
In this layer of architecture, there are many Fog Server (FS) 
nodes. These FS are distributed into multiple regions, and each 
region has several FS nodes responsible for processing tasks from 
specific users. For instance, region-1 is a building with five floors. 
Hence, the region has five servers, and each server covers only 
one floor—the connections be- tween them are made through 
wireless communication links by routers and switches. The FS 
receives computational tasks only from end-users to process them 
and send the results back to the end-users.
• Local Control Layer (LCL):
LCL consists of multiple Fog Manager Server (FMS); there is only 
one FMS for each region. The FMS is responsible for managing 
the resource allocation between the fog servers in its region. This 
means that the FMS does not receive and process any tasks from 
end-users. It receives only the tasks that its FS cannot process and 
forwards them to the best available FS to process them. There is 
a table in the FMS that has information about all the fog servers 
in its region. This information comprises (Server ID, Task IDs 
that the server is still working on, and Available or not). This 
table is used to determine which FS is avail- able/unavailable FS 
in the region. Hence, there are no processing operations in the 
FMS; it is responsible for running the proposed load balancing 
PSOSVR for resource allocation and load balancing, which will 
explain in Section 4.

• Global Management Layer (GML):
GML is the higher layer that contains only one Fog Server Master 
(FMS Master). The FMS Master is responsible for finding the best 
available FS in all regions to process the task if the FMS in the 
LCL does not find any available FSs in its region to process the 
task. The FMS will forward the task to FMS Master to find the 
best available FS in another region to pro- cess it. A table in FMS 
Master contains information about all fog servers in all regions: 
Server ID, Task IDs that the server is still working on, available 
or not, and the server’s region. This table is used to find available/
unavailable FSs in all regions. Hence, there are no processing 
operations in the FMS Master; it is only responsible for running 
the proposed load balancing PSOSVR for resource allocation and 
load balancing, which will explain in Section 4.

Load Balancing PSOSVR Algorithm
As explained in Section 3, FMS and FMS Master run load- 
balancing PSOSVR algorithm to distribute the load in a balanced 
way between the fog nodes. This section describe in detail the 
proposed load-balancing PSOSVR algorithm. The algorithm input 
is task T, and its output is the best FS node to process this task. 
Figure 2 presents the flowchart of the steps of load balancing 
PSOSVR algorithm. It consists of two main steps, which will 
explain in the next subsections in detail.

Figure 2: Flowchart illustrating the PSOSVR steps
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Support Vector Regression
Support vector regression (SVR) is a type of support vector 
machine. Proposed by Drucker et al. it supports linear

Figure 3: Flowchart illustrating the SVR model

and non-linear regressions [19]. Our research leverages the 
principle behind SVR to predict future output Z from S input 
samples. The prediction model is

Z(t) = F (S(t)), where t is a data set.

To predict output Z accurately, we use training sample T = (S1, Z1), 
....., (Si, Zi) before we use the test sample [20,21]. The first step 
in the PSO algorithm involves initializing the particles randomly. 
This random initialization could reduce the algorithm’s chance to 
converge to the best solution as well as require more time for the 
same [14]. Consequently, SVR can improve the performance of 
the PSO algorithm in terms of the execution time, average fitness 
value, and optimization time.

To apply SVR to predict the particle initialization, we utilized the 
Libsvm library in the Java environment. It is a simple, easy-to-use, 
and efficient software for SVR. Figure 3 shows the flowchart of 
the SVR predictor.

The steps in the SVR predictor in detail:
• Use a historical dataset for training and testing the SVR model 
as the input to the SVR. Source this historical dataset from our 
architecture used to run the round-robin algorithm for resource 
allocation five times. Implement 5000 tasks and store the output 
information about the variables using in Equations 1, 2, 3, and 4. 
Use these variables to initialize the particles:
–    Exct, Subt
–    Pi, Ti, Pu, Tu
–    UsedC, totalC
–    C, T

•	 Initialize the SVR parameters, namely constraint (C), gamma 
(γ), and epsilon (ε). Use the default values in the Libsvm 
library (i.e., C = 1, γ = 1, ε = 1e−3.

•	 Train the SVR model with the RBF kernel.
•	 After completing the SVR prediction mode, use the results to 

predict the variables in Equations 1 to 4, for each incoming 
task.

•	 Apply the result of the prediction as the input to the first step 
of the PSO algorithm (particle initialization).

Many-objective PSO
Consequently, to obtain the result from applying many objective 
PSO, it will generate a PSO function for each metric, and then it 
will use the ranking strategy to determine the result from many-
objective PSO. This means that it deal with the many-objective 
problem as one objective [22]. The ranking strategy uses to solve 
many-objective optimization problems because if the number of 
objectives increases, the convergence ability of particles decreases. 
Consequently, the ranking strategy deals with many objectives 
quickly by simplifying evaluation of the objective function [22,23]. 
Many- objective optimization algorithm optimizes problems that 
include more than three objectives. It is a special case from multi-
objective optimization which means optimizes problems that 
include two or three objectives [24]. The steps of many-objective 
PSO used in the proposed solution with SVR to balance the load 
in fog computing are illustrated in the following flowchart. The 
proposed Many-objective PSO algorithms for the four metrics 
are shown in algorithm 1
 
Algorithm 1: Many objective PSO algorithm
1: for each f s εFC do
2: RT(f s)  ← RTPSO(fs)
3: EC(f s)  ← ECPSO(fs)
4: RU(f s)  ← RUPSO(fs)
5: TH(f s)   ← THPSO(fs)
6: end for
7: bestFS = Ranking(RT(f s);EC(f s);RU(f s); TH(f s)) //the result
from algorithm3
8: return best FS

For each task that comes to the FMS or FMS_Master, they run 
many_objective PSOSVR, algorithm 1 will be executed. Steps 
2, 3, 4, and 5 run in parallel for each server. The results from 
these steps will be the input for ranking (step 7), which returns 
the best FS for processing the task. The steps 2-5 are in details 
in the next paragraph.

Algorithm 2: Standard PSO
1: Initialize (position; velocity; pbest; gbest) //Particle initialization 
based
on SVR prediction result.
2: while (t < iteration) do
3: for each particle p do
4: best ←  FitnessFunction(p) //Using Eq. 1 to 4
5: if (best < pbest) then
6: pbest  ← best
7: end if
8: end for
9: if (best < gbest) then
10: gbest ← best
11: end if
12: Update (position and velocity)
13: end while
14: return gbest

As presented in the algorithm 2, the particle’s best fitness functions 
are calculated according to the fitness function. The fitness function 
is the equation of WT, EC, RU, or TH. Details of these metrics 
are as follows:



Citation: Mona Albalawi, Entisar Alkayal, Ahmed Barnawi, Mehrez Boulares (2022) Load Balancing Based on Many-objective Particle Swarm Optimization Algorithm 
with Support Vector Regression in Fog Computing. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.org/10.47363/JEAST/2022(4)138

J Eng App Sci Technol, 2022     Volume 4(1): 5-10

• Response Time (RT): The response time of a task is measured by 
computing the difference between the time the task is submitted 
to the system and the time of starting the execution of the task, 
as shown in Equation 1. 
RT (fs) = Exct(t) − Subt(t)	 (1)

where: ExcT (t) indicates the start time of execution of the task t 
SubT (t) indicates the time for submission of the task t 

• Energy consumption (EC): The energy consumption of each 
server fs can be represents as Equation 2
EC(fs) = Pi * Ti + Pu * Tu	   (2)

where:
Pi denotes the power consumption while idle
Ti is the total idle time
Pu is the power consumption while utilized
Tu is the total time utilized

• Resource Utilization (RU): In our research, we focus on CPU 
utilization only because we focus only on computational tasks. 
Therefore, CPU utilization is computed by Equation 3
CU (fs) = (UsedC(fs)/totalC(fs)) * 100	 (3) Where: UsedC 
is the used CPU for all tasks executed in server fs 
totalC(fs) is the total CPU of server fs

• Throughput (TH): Throughput is the number of tasks that execute 
in a simulation time.
TH(fs) = (C(fs)/T  (4)

where: TH indicates the throughput of server fs 
C is the total number of completed tasks 
T is the simulation time in seconds

As shown in Algorithm1, after determining each server’s best 
particle in the four metrics, the ranking strategy will execute 
(step7). Our research computes the many-objective optimization 
algorithm in a short time based on a modified ranking strategy 

developed by to simplify objective function evaluation [23].

Algorithm 3: Ranking Strategy for many-objectives
1: for each fs do
2: f1(fs) = Min(RT(fs);EC(fs);RU(fs); TH(fs)) Using Equation 5
3: f2(fs) = Sum(RT(fs);EC(fs);RU(fs); TH(fs))Using Equation 6
4: rank(fs) = f1(fs) � 0:5 + f2(fs) *� 0:5
5: end for
6: bestfs ←  min(rank)
7: return bestfs

The ranking strategy is based on the minimum ranking and sum 
ranking strategies. The minimum ranking (step 2) in algorithm 3 
is Equation 5. The sum of ranking (step 3) is shown in Equation 
6. Finally, in step 4, a weighted sum is computed for the minimum 
and sum ranks for all servers to find the solution’s final rank, as 
presented in Equation 7.

                                                                                            (5)

                                                                                            (6)
                                                                                            (7)

Finally, after all steps of the proposed load balancing PSOSVR 
are applied, the best FS is determined as the best server to process 
the incoming task. Therefore, FMS or FMS_Master will send the 
task to this best FS for processing.

Experiments
To simulate the proposed architecture, iFogSim simulation is used 
to simulate the proposed fog computing [25]. iFogSim is an open-
source toolkit in Java language used to simulate fog computing 
environments. It is used to evaluate the resource allocation and 
scheduling algorithms in a fog computing environment; thus, we 
could measure the effect of energy consumption, operational cost, 
latency, and other parameters on the suggested strategies. Figure 
4 presents a screenshot of the iFogSim environment.

Figure 4: iFogSim environment
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Table 1 presents the configuration of our architecture. We use the default configuration in the iFogSim simulation as in iFogSim 
tutorial paper [26].

Table 1: System Configuration for Experiments
Parameters The number of 

parameters
Up link 

Bandwidth
Down link 
Bandwidth

CPU (MIPS) Memory (Ram)

Fog Server(FS) 50 10000 10000 1500 - 4100 4000 - 6300
Fog Manager
Server (FMS)

10 10000 10000 3550 - 8000 4000 - 8000

Fog Manager
Master (FMS Master)

1 10000 10000 44800 40000

End Users 500 - - - -

The testing relied on many methodologies for experiments and 
covered various aspects to measure the performance. After running 
the simulation, particular aspects are measured based on our 
contributions. After running the simulation, particular aspects are 
used to measure the performance are the following:

•	 Response time: calculate the average of the difference 
between the time of start to execute the tasks and the 
submitted time of these tasks. Equation 1 is used to measure 
response time.

•	 Energy consumption: is the average of the energy 
consumption of each server. Equation 2 is used to measure 
energy consumption.

•	 Throughput: The number of completed tasks within a 
simulation time. The equation of throughput has defined in 
Equation 4.

•	 Resource Utilization: Equation 3 used to calculate CPU 
utilization of fog servers and calculate the average for each 
experiment.

•	 The Imbalance Degree: is the degree to measure the load 
balancing between nodes. The small value of the imbalance 
degree means that the load is more balanced [27,23]. The 
equation of imbalance presents in the Equation 8.

                                                                                         (8)

Where:
IMD is the imbalance degree

TEmax is the maximum execution time of tasks
TEmin is the minimum execution time of tasks
TEavg is the average execution time of tasks

Execution Time: is the overall time to run the simulation.
The simulation program calculates the executiontime.

Simulation_End_Time-Simulation_Start_Time              (9)  

• The optimization time or convergence time: is used to 
determine the time taken by the algorithm to converge to the best 
solution [28]. It is calculated as the following equation:

                                                                                       (10)

Where:
Ti is the time taken for ith iteration

                              is the total time for complete iteration

The average fitness value: is determine if or if not, the algorithm 
falls in local minima [23,28]. It calculates the average of all values 
of the fitness function.

                                                                                      (11)

Where:
FV is the average fitness value for all tasks
iT is the index of the task
F(iT ) is the value of fitness function for all solutions

Results and Discussions
There are three experiments to evaluate different aspects of the 
proposed architecture, each experiment was run ten times and 
calculate the average value. The next sub-sections will present 
details of the three methodologies used in the test phase.

Improve the PSO Algorithm Performance
This experiment in our research is to test the effect of integrating 
SVR with PSO. Test if it does or does not improve PSO algorithm 
performance in terms of execution time, average fitness value, 
and optimization time. In this test, we compare PSOSVR and 
PSO algorithms.
 
The Execution Time:
It is the overall time to run the simulation.
Figure 5 show the comparison between PSO and
PSOSVR results according to the execution time.

Figure 5: PSO vs. PSOSVR in term of execution time

Figure 5 shows the effectiveness of integrating SVR with PSO. 
It reduces the execution time of the algo- rithm, thus improve 
the performance of the PSO al- gorithm. The execution time was 
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reduced by about 27%. The decreasing execution time results 
from ini- tializing the particles position based on prediction results 
from SVR. Because the random initialization increases the number 
of walking particles, and that this has a negative influence on 
convergence time in PSO, consequently, the execution time of 
the algorithm increases [29].

2) The optimization time:
The optimization time called convergence time is used to determine 
the time taken by the algorithm to converge to the best solution 
[28]. As we mentioned earlier, if PSO particles initialize randomly, 
this could decrease the algorithm’s chance to converge to the best 
solution and take more time to it [14]. To solve this problem, the 
particles are initializing based on the prediction result from SVR.

Figure 6 illustrates the comparison between PSO and PSOSVR 
results according to the optimization time.

Figure 6: PSO vs. PSOSVR in term of optimization time

Figure 6 shows the effectiveness of initializing particles based on 
the result of SVR prediction. It reduces the optimization time taken 
by the algorithm to converge to the best solution, thus improving 
the PSO algorithm’s performance. We test it by applying the 
Equation 10 and measure it according to changing the numbers 
of fog nodes. As shown in Figure 6, the PSO and PSOSVR 
algorithms have a linear relationship between the optimization 
time and the numbers of fog nodes. However, PSOSVR reduces the 
optimization time by 58%. This result means PSOSVR optimizes 
the solution faster than PSO.
 
3) The average fltness value:
It determines if or if not the algorithm falls in local minima. It 
calculates the average of all values of the fitness function. If the 
fitness function values for all solutions are the same or close to 
each other, this means the algorithm falls in local minima, and 
the personal best position (pbest) may not change across several 
iterations [23,28].

Figure 7: PSO vs. PSOSVR in term of the average fitness value

Figure 7 shows the effectiveness of SVR on PSO in according 
prevent PSO from falling in local optima. We measure the average 
fitness value according to changing the iteration numbers in PSO. 
The iterations are the step 2 in algorithms 2. We notice in Figure 
7 that the PSO fitness value did not change; it is the same while 
the number of iterations changing. This result means the PSO 
falls in local optima, and the personal best (pbest) position is 
approximately the same. In contrast to, PSOSVR the average 
fitness value changes as the number of iterations change. This 
result proves PSOSVR did not fall in local optima.

Proving load balancing between fog nodes
In this experiment, we measured if the proposed algorithm balances 
the load between fog nodes or not. We calculated the imbalance 
degree by Equation 8. We calculated the difference between the 
maximum execution time of all tasks and the minimum execution 
time of all tasks then divided it by the average execution time 
of all tasks. If the imbalance degree is small, this is means there 
is a balancing between fog nodes. The next Table illustrates a 
comparison between the proposed PSOSVR, RR, and FCFS 
according to imbalance degree.

Table 2: The Imbalance Degree and No. of Fog Nodes
No. of Fog 

Nodes
PSOSVR RR FCFS

4 7.06 43.54 39.37
6 7.06 42.06 82.30
8 5.94 37.06 41.07
10 0.21 32.33 25.60
15 0.11 40.42 8.40
20 0.21 39.65 41.82
25 0.30 39.76 39.59
30 0.11 16 8.30
35 0.42 15.72 25.01
40 0.11 15.72 24.96
45 0.11 42.08 12.51
50 0.12 42.08 9.98

As shown in Table 2, we note that the proposed algorithm PSOSVR 
has the lowest imbalance degree comparing to other algorithms. 
No matter how the number of fog nodes varies, the proposed 
algorithm achieves the load balance according to the lower 
imbalance degree, so there is a very high load balance between 
them. Another observation is that if we look at the column of the 
PSOSVR algorithm, we will notice approximately the imbalance 
degree decreases as we increase the number of nodes. Thus, 
the more nodes we increase, the load balance is achieved more 
between nodes. We conclude from this: the significant number of 
fog nodes does not affect the load balance, but on the contrary, it 
increases the load balance.

Performance Comparison between PSOSVR, FCFS and RR
This experiment Compare PSOSVR with FCFS and RR to prove 
that the proposed PSOSVR decrease response time, energy 
consumption, and increase throughput, resource utilization better 
than RR and FCFS. Figure 8 show the simulation results according 
to the four aspects, which are RT, EC, TH, RU.

Figure 8 (a) shows that the relationship between RT values and 
the number of tasks is a linear relationship as the value of RT 
changes linearly with the number of tasks increases. It is observed 
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that the proposed PSOSVR method has achieved the lowest RT 
compare to RR and FCFS, the RT was reduced by about 31%. 
Hence, the first objective of our optimization algorithm of load 
balancing is achieved.

Similarly, Figure 8 (b) shows the linear relationship be- tween 
EC values (normalized to the maximum value) and the number 
of tasks. It is observed that the proposed solution has performed 
significantly better than both RR and FCFS by about 56%. 
However, it is observed that the performance of FCFS and RR 
are almost similar to one another because there is no sleeping 
mode feature on the servers that do not have tasks to process, so 
these servers remain working all the time even if they do not have 
any task to process; this explains why the performance of FCFS 
and RR is almost similar to one another in energy consumption. 
Contrary to our proposal model, the load is distributed based on 
reducing energy consumption. As far as possible, the servers that 
do not have any load should not receive tasks to process, and these 
servers go to sleeping mode to reduce the energy.

On the other hand, Figure 8 (c) shows how the CPU utilization 
is affected as the number of tasks increases. We can observe that 
the proposed solution has achieved the highest utilization level 
in comparison to RR and FCFS by 26%. This reflects that, on the 
one hand, our system utilizes better the available resources, and 
on the other that the utilization of the system is not exponentially 
consumed. This is because, as we explained earlier, in the 
consumption of energy to reduce it, we try as much as possible 
servers that do not have a load to go to sleep mode. This explains 
to us that the resources are consumed at the highest possible value, 
taking into account the reduction in energy consumption.

Finally, Figure 8 (d) shows that the proposed solution has achieved 
the highest TH (in terms of byte/second) than RR and FCFS. It is 
shown that we can improve the throughput by 46%, and thus the 

fourth objective of our optimization algorithm of load balancing 
is achieved, which is to increase the throughput.

Discussion
The aim of proposing the load balancing PSOSVR algorithm 
is balancing the load between fog nodes with optimizing the 
response time, energy consumption, throughput, and re- source 
utilization. SVR combined with the PSO algorithm to improve the 
PSO algorithm performance. The experiments aimed to evaluate 
PSO performance after utilizing SVR to initialize the particle in 
PSO. In addition, they evaluate the proposed PSOSVR algorithm 
in terms of distributes the load in a balanced way. Finally, they 
evaluate the proposed PSOSVR algorithm optimizes the response 
time, energy consumption, resource utilization, and throughput 
while distributing the load.
The main results gathered from the experiments are as follows:

• Comparing PSOSVR and PSO to prove that initialize the particles 
by SVR provides a positive effect on the PSO performance:
–	 Combining SVR with PSO reduces the execution time by 

about 27% compared to the PSO.
–	 Combining SVR with PSO reduces the optimization time by 

about 58% compared to the PSO.This result means PSOSVR 
optimizes the solution faster than PSO.

–	 By evaluate the average fitness value of PSO
	 and PSOSVR and compared them, we conclude that PSOSVR 

did not fall in local optima like PSO.

• Comparing imbalance degree results of PSOSVR, RR, and 
FCFS prove that:
–	 PSOSVR has the lowest imbalance degree comparing to 

other algorithms. No matter how much fog nodes in the 
architecture, PSOSVR achieves the load balance according 
to the lower imbalance degree, so there is a very high load 
balance between the nodes.

Figure 8: The First Experimental Methodology Results
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• Comparing PSOSVR results with FCFS and RR re- sults prove 
that the proposed PSOSVR:
–	 Decrease response time by about 31%.
–	 Decrease energy consumption by about 56%.
–	 Increase throughput by 26%.
–	 Increase resource utilization by 46%.

Conclusion
With the fast growth of IoT, fog computing is becoming one 
of the most robust paradigms for processing IoT applications. 
The future growth and support of 5G access networks additional 
advance the viability and implementation of fog networks and 
widen the scope of devices that can participate and serve in IoT 
communication. However, scaling fog computing, the number 
of end-users increases. Hence, the workload between fog nodes 
needs to be distributed efficiently. Consequently, one of the critical 
factors for man- aging resources in fog computing efficiently and 
avoiding overloaded or under-loaded is load balancing. Therefore, 
load balancing between these resources is a challenge in fog 
computing. However, there is an issue in load balancing, which 
has not yet been fully solved. Load balancing is an essential field 
in fog computing to avoid over/under loading. Various algorithms 
are used to optimize load balancing in fog environments for giving 
a better quality of service. This paper proposes a many-objective 
PSOSVR to distribute the tasks among resources in an efficient 
way to satisfy load balancing. The proposed load balancing model 
considered four metrics to optimize them while distributing the 
load: response time, energy consumption, resource utilization, and 
throughput. Besides, It combines SVR with PSO to improve PSO 
performance. The proposed model has been simulated and tested to 
evaluate the performance from different aspects. The experiments 
show that the proposed model efficiently balances the load with 
optimizing the four metrics. Besides, it improves the performance 
of PSO, which is used to balance the load. In the future we will 
deal with the storage tasks and resources (size of the disk and the 
memory size) when distributing the load, improve the proposed 
architecture, and use real tasks dataset to test the solution.
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