
Research Article Open Access

Load Balancing Based on Many-objective Particle Swarm Optimization
Algorithm with Support Vector Regression in Fog Computing

Faculty of Computing and Information Technology, King Abdul Aziz University, Jeddah, JE, 21589 SA

Mona Albalawi*, Entisar Alkayal, Ahmed Barnawi and Mehrez Boulares

*Corresponding author
Mona Albalawi, Faculty of Computing and Information Technology, King Abdul Aziz University, Jeddah, JE, 21589 SA.
E-mail: mh.albalawi@ut.edu.sa

Received: January 27, 2022; Accepted: February 01, 2022; Published: February 03, 2022

Journal of Engineering and Applied
Sciences Technology

Keywords: Optimization Algorithm, PSO, SVR, Fog Computing,
Load Balancing

Introduction
Currently, several types of devices connected to the internet, and
the total devises’ number continues to increase exponentially
[1]. In essence, anyone and anything can connect to the internet
anytime and anywhere; this is the notion of the Internet of Things
(IoT) [1]. However, IoT may lack some of the data due to the
constraints in IoT (limited energy, limited storage capacity, etc.)
[2]. Providing consumers, the best experience when using IoT is
critical since the speed of performance and high storage capacity
are end-user requirements. Consequently, cloud and fog paradigms
have been developed.

Fog Computing extends the cloud to handle the cloud’s limitations,
such as high latency, low security, etc [3]. Fog computing provides
low latency, high performance, reliable, mobile, secure, and
interoperable characteristics [3]. Fog computing offers service,
computation, and storage to the end-users [3].

Fog computing consists of a huge number of users and
heterogeneous resources spread in a wide geographic area. The
increase in resources and users in IoT leads to increasing IoT
traffic. This increase in IoT traffic may affect the load balance

in fog computing. IoT traffic maybe over- loaded in some areas
and under-loaded in others [2]. So, the processing workload must
be distributed efficiently to avoid this problem. Load balancing
between these resources is a significant research issue in fog
computing [4,5]. Due to the importance of load balancing fog
computing, the fast response to the users is very important in it [6].

Load balancing means efficiently distributing tasks among
resources. Besides, load balancing helps resources perform tasks
efficiently, leading to improved fog performance [7]. On the other
hand, a lack of load balancing means that some fog nodes are
under-loaded or idle, while others are overloaded. This problem
will affect fog-computing performance, namely by increasing
the response time, decreasing throughput, and increasing energy
consumption. Consequently, the satisfaction of clients and service
providers is negatively affected [8]. Our research aims to satisfy
customers and service providers by improving fog computing to
distribute the load efficiently among fog nodes. Many techniques
and algorithms exist to balance the load in fog computing, such
as optimization algorithms or machine learning.

The optimization algorithms are mathematical algorithms that
maximize or minimize the objectives’ value [9]. Optimization
is the action of delivering the best possible decision under given
conditions [9,10]. Regarding machine learning, it is a branch of

J Eng App Sci Technol, 2022

ISSN: 2634 - 8853

ABSTRACT
With the development in computing technologies, fog computing is developing as public and robust computing, which complements cloud computing
to provide services, computation, and storage on the edge network. The future growth and support of 5G access networks additional advance the
viability and implementation of fog networks and widen the scope of devices that can participate and serve in IoT communication. However, scaling
fog computing, the number of end-users increases. Hence, the workload between fog nodes needs to be distributed efficiently. Otherwise, some of the
nodes will be overloaded, and others will be under-loaded. Consequently, one of the critical factors for managing resources in fog computing efficiently
and avoiding overloaded or under-loaded is load balancing. Therefore, load balancing between these resources is a challenge in fog computing. There
are different techniques to balance the load, such as optimization algorithms or machine learning. This paper proposes a load balancing model in
fog computing based on a many-objective particle swarm optimization (PSO) algorithm with support vector regression (SVR). The proposed load
balancing model considered four metrics to optimize them while distributing the load: response time, energy consumption, resource utilization, and
throughput. Besides, It combines SVR with PSO to improve PSO performance. The proposed model has been simulated and tested to evaluate the
performance from different aspects. The experiments show that the proposed model efficiently balances the load with optimizing the four metrics.
In addition, it improves the performance of PSO, which is used to balance the load.

 Volume 4(1): 1-10

Citation: Mona Albalawi, Entisar Alkayal, Ahmed Barnawi, Mehrez Boulares (2022) Load Balancing Based on Many-objective Particle Swarm Optimization Algorithm
with Support Vector Regression in Fog Computing. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.org/10.47363/JEAST/2022(4)138

J Eng App Sci Technol, 2022

artificial intelligence (AI) that supports the systems to learning
themselves and make decisions with a little human intervention
[11]. Machine learning models can be trained to make decisions
based on using historical data [12]. Several researchers using these
techniques to balance the load in fog computing.

This paper is organized as follows. Section 2 provides a problem
definition and related works in load balancing in fog computing.
Section 3 presents the proposed load balancing fog computing
architecture. and explain the details about the proposed PSOSVR
algorithm. Section 4 provides the details about the parameters that
used in experiments. Section 5 presents the experiments results.
Section 6, dis- cusses the results of the experiments and how the
proposed model fulfills the contribution of this paper. Finally,
Section 7 concludes this paper.

Problem Definition
Load balancing means distributing the workload between nodes in
a balanced way [2]. In fact, the number of fog users utilizing fog
services is increasing exponentially. Further- more, the number of
services on fog computing provided to users is also increasing rapidly.
Due to many services and users on the fog, and without a suitable
mechanism to distribute the workload among fog nodes, some nodes
are under-loaded, and others are overloaded. Consequently, this
affects the network’s performance essential to the user, such as the
response time and throughput because when nodes are overloaded,
the nodes take more time to begin processes the task due to the huge
number of tasks in a queue need to process. Moreover, it affects
some parameters essential for service providers, such as energy
consumption, resource utilization. To resolve this problem, the load
between fog nodes needs to balance in the best way [2].

After we studying the previous works that applying optimization
algorithms and machine learning to balance the load in fog
computing, we noticed that the researches in this scope (i.e.,
load balancing in fog computing) distributes the load between
fog nodes based on resource allocation or task scheduling. This
means that it is not dealing with load balancing directly, and load
balancing results from resource allocation or task scheduling.
Therefore, we will focus on applying our proposed solution to
resource allocation to balance the load. Besides, we focus on
just computational tasks and do not consider any storage tasks.

Our target is balancing the load between fog nodes, improving the
user’s experience quality, and maximizing the service provider’s
benefit by decreasing response time, energy consumption, and
increasing throughput and resource utilization. We utilize a hybrid
load balancing algorithm named PSOSVR. We combine support
vector regression (SVR) with Particle Swarm Optimization
(PSO) algorithm to improve the PSO algorithm’s performance.
PSO has multiple advantages such as has few parameters, easy
implementation, and efficiency to the optimization [13]. However,
in PSO, the particles initialize randomly; this could decrease the
algorithm’s chance to converge to the best solution and take more
time to it [14]. To solve this problem, the particles are initializing
based on the prediction result from SVR.

Kamal et al. use a heuristic min-conflicts optimization algorithm
for load balancing the VM in fog architecture [15]. The fog
architecture has a load balancer that is responsible for allocating
requests to VM in fog computing. The metrics of the optimization
lead to minimizing processing and cost. However, the architecture
here is centralized and there is no fault tolerance for example use
a backup. Many constraints and complexity in the system could
lead to slow work and, hence, to increase response time.

Load balancing in fog computing may occur through re- source
allocation improves fog computing performance and resource
utilization. Zafar et al. in propose a technique for resource
allocation using the Bio-inspired Bat Algorithm (BA) to optimize
the load balancing on the fog nodes. The system consists of six
regions [16]. Each region comprises one fog which attached to
tow clusters. Each cluster contains fifteen buildings that include
multiple homes, and each fog connects with Micro-grid for
electricity supply. The cloud analyst simulator is used to simulate
the system. The simulation proves that BA minimizing processing
time and response time. However, the proposed technique produces
low Makespan when the closest data centers are not avail- able.

Zahoor et al. propose a hybrid algorithm that com- bines the Ant
Colony Optimization (ACO) and Artificial Bee Colony (ABC)
algorithms [17]. The authors use cloud-fog computing with smart
grids to provide resources to end users efficiently, and they use the
proposed hybrid algorithm to balance the load between the VMs in
the fog layer. The simulation proves that the proposed technique
reduces energy consumption. However, the architecture is
centralized, and there is no fault-tolerance technique. Furthermore,
the centralized architecture has low scalability.

Talaat et al. propose a new load balancing technique called Effective
Load Balancing Strategy (ELBS). ELBS balances the load between
fog nodes by scheduling tasks in an efficient way [18]. ELBS consists
of five modules; including Fuzzy, and the other is the Probabilistic
Neural Net- work. This technique distributes tasks between resources
to improve performance. The architecture consists of the following
four layers: “Cloud Layer, Fog Layer, Dew Layer, and End-User
Layer”. All the layers as well as the fuzzy and probabilistic neural
network modules have their own procedures to carry out in order to
achieve the overall goal. The overall goal is to provide load balancing
with de- crease response time and increase throughput. However, the
model’s rescheduling process will take time, and there will be many
migrations that will affect system performance.

The Proposed Fog Computing Model
The proposed model’s architecture consists of a hierarchal fog
computing architecture to provide more resource allocation
management and distribute the load among various nodes in
several regions as shown in Figure 1. The model includes three
framework layers, including an access layer, a local control layer,
and a global control layer.

Figure 1: The System Architecture

 Volume 4(1): 2-10

Citation: Mona Albalawi, Entisar Alkayal, Ahmed Barnawi, Mehrez Boulares (2022) Load Balancing Based on Many-objective Particle Swarm Optimization Algorithm
with Support Vector Regression in Fog Computing. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.org/10.47363/JEAST/2022(4)138

J Eng App Sci Technol, 2022 Volume 4(1): 3-10

• Access Layer:
In this layer of architecture, there are many Fog Server (FS)
nodes. These FS are distributed into multiple regions, and each
region has several FS nodes responsible for processing tasks from
specific users. For instance, region-1 is a building with five floors.
Hence, the region has five servers, and each server covers only
one floor—the connections be- tween them are made through
wireless communication links by routers and switches. The FS
receives computational tasks only from end-users to process them
and send the results back to the end-users.
• Local Control Layer (LCL):
LCL consists of multiple Fog Manager Server (FMS); there is only
one FMS for each region. The FMS is responsible for managing
the resource allocation between the fog servers in its region. This
means that the FMS does not receive and process any tasks from
end-users. It receives only the tasks that its FS cannot process and
forwards them to the best available FS to process them. There is
a table in the FMS that has information about all the fog servers
in its region. This information comprises (Server ID, Task IDs
that the server is still working on, and Available or not). This
table is used to determine which FS is avail- able/unavailable FS
in the region. Hence, there are no processing operations in the
FMS; it is responsible for running the proposed load balancing
PSOSVR for resource allocation and load balancing, which will
explain in Section 4.

• Global Management Layer (GML):
GML is the higher layer that contains only one Fog Server Master
(FMS Master). The FMS Master is responsible for finding the best
available FS in all regions to process the task if the FMS in the
LCL does not find any available FSs in its region to process the
task. The FMS will forward the task to FMS Master to find the
best available FS in another region to pro- cess it. A table in FMS
Master contains information about all fog servers in all regions:
Server ID, Task IDs that the server is still working on, available
or not, and the server’s region. This table is used to find available/
unavailable FSs in all regions. Hence, there are no processing
operations in the FMS Master; it is only responsible for running
the proposed load balancing PSOSVR for resource allocation and
load balancing, which will explain in Section 4.

Load Balancing PSOSVR Algorithm
As explained in Section 3, FMS and FMS Master run load-
balancing PSOSVR algorithm to distribute the load in a balanced
way between the fog nodes. This section describe in detail the
proposed load-balancing PSOSVR algorithm. The algorithm input
is task T, and its output is the best FS node to process this task.
Figure 2 presents the flowchart of the steps of load balancing
PSOSVR algorithm. It consists of two main steps, which will
explain in the next subsections in detail.

Figure 2: Flowchart illustrating the PSOSVR steps

Citation: Mona Albalawi, Entisar Alkayal, Ahmed Barnawi, Mehrez Boulares (2022) Load Balancing Based on Many-objective Particle Swarm Optimization Algorithm
with Support Vector Regression in Fog Computing. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.org/10.47363/JEAST/2022(4)138

J Eng App Sci Technol, 2022 Volume 4(1): 4-10

Support Vector Regression
Support vector regression (SVR) is a type of support vector
machine. Proposed by Drucker et al. it supports linear

Figure 3: Flowchart illustrating the SVR model

and non-linear regressions [19]. Our research leverages the
principle behind SVR to predict future output Z from S input
samples. The prediction model is

Z(t) = F (S(t)), where t is a data set.

To predict output Z accurately, we use training sample T = (S1, Z1),
....., (Si, Zi) before we use the test sample [20,21]. The first step
in the PSO algorithm involves initializing the particles randomly.
This random initialization could reduce the algorithm’s chance to
converge to the best solution as well as require more time for the
same [14]. Consequently, SVR can improve the performance of
the PSO algorithm in terms of the execution time, average fitness
value, and optimization time.

To apply SVR to predict the particle initialization, we utilized the
Libsvm library in the Java environment. It is a simple, easy-to-use,
and efficient software for SVR. Figure 3 shows the flowchart of
the SVR predictor.

The steps in the SVR predictor in detail:
• Use a historical dataset for training and testing the SVR model
as the input to the SVR. Source this historical dataset from our
architecture used to run the round-robin algorithm for resource
allocation five times. Implement 5000 tasks and store the output
information about the variables using in Equations 1, 2, 3, and 4.
Use these variables to initialize the particles:
– Exct, Subt
– Pi, Ti, Pu, Tu
– UsedC, totalC
– C, T

•	 Initialize the SVR parameters, namely constraint (C), gamma
(γ), and epsilon (ε). Use the default values in the Libsvm
library (i.e., C = 1, γ = 1, ε = 1e−3.

•	 Train the SVR model with the RBF kernel.
•	 After completing the SVR prediction mode, use the results to

predict the variables in Equations 1 to 4, for each incoming
task.

•	 Apply the result of the prediction as the input to the first step
of the PSO algorithm (particle initialization).

Many-objective PSO
Consequently, to obtain the result from applying many objective
PSO, it will generate a PSO function for each metric, and then it
will use the ranking strategy to determine the result from many-
objective PSO. This means that it deal with the many-objective
problem as one objective [22]. The ranking strategy uses to solve
many-objective optimization problems because if the number of
objectives increases, the convergence ability of particles decreases.
Consequently, the ranking strategy deals with many objectives
quickly by simplifying evaluation of the objective function [22,23].
Many- objective optimization algorithm optimizes problems that
include more than three objectives. It is a special case from multi-
objective optimization which means optimizes problems that
include two or three objectives [24]. The steps of many-objective
PSO used in the proposed solution with SVR to balance the load
in fog computing are illustrated in the following flowchart. The
proposed Many-objective PSO algorithms for the four metrics
are shown in algorithm 1

Algorithm 1: Many objective PSO algorithm
1: for each f s εFC do
2: RT(f s) ← RTPSO(fs)
3: EC(f s) ← ECPSO(fs)
4: RU(f s) ← RUPSO(fs)
5: TH(f s) ← THPSO(fs)
6: end for
7: bestFS = Ranking(RT(f s);EC(f s);RU(f s); TH(f s)) //the result
from algorithm3
8: return best FS

For each task that comes to the FMS or FMS_Master, they run
many_objective PSOSVR, algorithm 1 will be executed. Steps
2, 3, 4, and 5 run in parallel for each server. The results from
these steps will be the input for ranking (step 7), which returns
the best FS for processing the task. The steps 2-5 are in details
in the next paragraph.

Algorithm 2: Standard PSO
1: Initialize (position; velocity; pbest; gbest) //Particle initialization
based
on SVR prediction result.
2: while (t < iteration) do
3: for each particle p do
4: best ← FitnessFunction(p) //Using Eq. 1 to 4
5: if (best < pbest) then
6: pbest ← best
7: end if
8: end for
9: if (best < gbest) then
10: gbest ← best
11: end if
12: Update (position and velocity)
13: end while
14: return gbest

As presented in the algorithm 2, the particle’s best fitness functions
are calculated according to the fitness function. The fitness function
is the equation of WT, EC, RU, or TH. Details of these metrics
are as follows:

Citation: Mona Albalawi, Entisar Alkayal, Ahmed Barnawi, Mehrez Boulares (2022) Load Balancing Based on Many-objective Particle Swarm Optimization Algorithm
with Support Vector Regression in Fog Computing. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.org/10.47363/JEAST/2022(4)138

J Eng App Sci Technol, 2022 Volume 4(1): 5-10

• Response Time (RT): The response time of a task is measured by
computing the difference between the time the task is submitted
to the system and the time of starting the execution of the task,
as shown in Equation 1.
RT (fs) = Exct(t) − Subt(t)	 (1)

where: ExcT (t) indicates the start time of execution of the task t
SubT (t) indicates the time for submission of the task t

• Energy consumption (EC): The energy consumption of each
server fs can be represents as Equation 2
EC(fs) = Pi * Ti + Pu * Tu	 (2)

where:
Pi denotes the power consumption while idle
Ti is the total idle time
Pu is the power consumption while utilized
Tu is the total time utilized

• Resource Utilization (RU): In our research, we focus on CPU
utilization only because we focus only on computational tasks.
Therefore, CPU utilization is computed by Equation 3
CU (fs) = (UsedC(fs)/totalC(fs)) * 100	 (3) Where: UsedC
is the used CPU for all tasks executed in server fs
totalC(fs) is the total CPU of server fs

• Throughput (TH): Throughput is the number of tasks that execute
in a simulation time.
TH(fs) = (C(fs)/T (4)

where: TH indicates the throughput of server fs
C is the total number of completed tasks
T is the simulation time in seconds

As shown in Algorithm1, after determining each server’s best
particle in the four metrics, the ranking strategy will execute
(step7). Our research computes the many-objective optimization
algorithm in a short time based on a modified ranking strategy

developed by to simplify objective function evaluation [23].

Algorithm 3: Ranking Strategy for many-objectives
1: for each fs do
2: f1(fs) = Min(RT(fs);EC(fs);RU(fs); TH(fs)) Using Equation 5
3: f2(fs) = Sum(RT(fs);EC(fs);RU(fs); TH(fs))Using Equation 6
4: rank(fs) = f1(fs) � 0:5 + f2(fs) *� 0:5
5: end for
6: bestfs ← min(rank)
7: return bestfs

The ranking strategy is based on the minimum ranking and sum
ranking strategies. The minimum ranking (step 2) in algorithm 3
is Equation 5. The sum of ranking (step 3) is shown in Equation
6. Finally, in step 4, a weighted sum is computed for the minimum
and sum ranks for all servers to find the solution’s final rank, as
presented in Equation 7.

 (5)

 (6)
 (7)

Finally, after all steps of the proposed load balancing PSOSVR
are applied, the best FS is determined as the best server to process
the incoming task. Therefore, FMS or FMS_Master will send the
task to this best FS for processing.

Experiments
To simulate the proposed architecture, iFogSim simulation is used
to simulate the proposed fog computing [25]. iFogSim is an open-
source toolkit in Java language used to simulate fog computing
environments. It is used to evaluate the resource allocation and
scheduling algorithms in a fog computing environment; thus, we
could measure the effect of energy consumption, operational cost,
latency, and other parameters on the suggested strategies. Figure
4 presents a screenshot of the iFogSim environment.

Figure 4: iFogSim environment

Citation: Mona Albalawi, Entisar Alkayal, Ahmed Barnawi, Mehrez Boulares (2022) Load Balancing Based on Many-objective Particle Swarm Optimization Algorithm
with Support Vector Regression in Fog Computing. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.org/10.47363/JEAST/2022(4)138

J Eng App Sci Technol, 2022 Volume 4(1): 6-10

Table 1 presents the configuration of our architecture. We use the default configuration in the iFogSim simulation as in iFogSim
tutorial paper [26].

Table 1: System Configuration for Experiments
Parameters The number of

parameters
Up link

Bandwidth
Down link
Bandwidth

CPU (MIPS) Memory (Ram)

Fog Server(FS) 50 10000 10000 1500 - 4100 4000 - 6300
Fog Manager
Server (FMS)

10 10000 10000 3550 - 8000 4000 - 8000

Fog Manager
Master (FMS Master)

1 10000 10000 44800 40000

End Users 500 - - - -

The testing relied on many methodologies for experiments and
covered various aspects to measure the performance. After running
the simulation, particular aspects are measured based on our
contributions. After running the simulation, particular aspects are
used to measure the performance are the following:

•	 Response time: calculate the average of the difference
between the time of start to execute the tasks and the
submitted time of these tasks. Equation 1 is used to measure
response time.

•	 Energy consumption: is the average of the energy
consumption of each server. Equation 2 is used to measure
energy consumption.

•	 Throughput: The number of completed tasks within a
simulation time. The equation of throughput has defined in
Equation 4.

•	 Resource Utilization: Equation 3 used to calculate CPU
utilization of fog servers and calculate the average for each
experiment.

•	 The Imbalance Degree: is the degree to measure the load
balancing between nodes. The small value of the imbalance
degree means that the load is more balanced [27,23]. The
equation of imbalance presents in the Equation 8.

 (8)

Where:
IMD is the imbalance degree

TEmax is the maximum execution time of tasks
TEmin is the minimum execution time of tasks
TEavg is the average execution time of tasks

Execution Time: is the overall time to run the simulation.
The simulation program calculates the executiontime.

Simulation_End_Time-Simulation_Start_Time (9)

• The optimization time or convergence time: is used to
determine the time taken by the algorithm to converge to the best
solution [28]. It is calculated as the following equation:

 (10)

Where:
Ti is the time taken for ith iteration

 is the total time for complete iteration

The average fitness value: is determine if or if not, the algorithm
falls in local minima [23,28]. It calculates the average of all values
of the fitness function.

 (11)

Where:
FV is the average fitness value for all tasks
iT is the index of the task
F(iT) is the value of fitness function for all solutions

Results and Discussions
There are three experiments to evaluate different aspects of the
proposed architecture, each experiment was run ten times and
calculate the average value. The next sub-sections will present
details of the three methodologies used in the test phase.

Improve the PSO Algorithm Performance
This experiment in our research is to test the effect of integrating
SVR with PSO. Test if it does or does not improve PSO algorithm
performance in terms of execution time, average fitness value,
and optimization time. In this test, we compare PSOSVR and
PSO algorithms.

The Execution Time:
It is the overall time to run the simulation.
Figure 5 show the comparison between PSO and
PSOSVR results according to the execution time.

Figure 5: PSO vs. PSOSVR in term of execution time

Figure 5 shows the effectiveness of integrating SVR with PSO.
It reduces the execution time of the algo- rithm, thus improve
the performance of the PSO al- gorithm. The execution time was

Citation: Mona Albalawi, Entisar Alkayal, Ahmed Barnawi, Mehrez Boulares (2022) Load Balancing Based on Many-objective Particle Swarm Optimization Algorithm
with Support Vector Regression in Fog Computing. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.org/10.47363/JEAST/2022(4)138

J Eng App Sci Technol, 2022 Volume 4(1): 7-10

reduced by about 27%. The decreasing execution time results
from ini- tializing the particles position based on prediction results
from SVR. Because the random initialization increases the number
of walking particles, and that this has a negative influence on
convergence time in PSO, consequently, the execution time of
the algorithm increases [29].

2) The optimization time:
The optimization time called convergence time is used to determine
the time taken by the algorithm to converge to the best solution
[28]. As we mentioned earlier, if PSO particles initialize randomly,
this could decrease the algorithm’s chance to converge to the best
solution and take more time to it [14]. To solve this problem, the
particles are initializing based on the prediction result from SVR.

Figure 6 illustrates the comparison between PSO and PSOSVR
results according to the optimization time.

Figure 6: PSO vs. PSOSVR in term of optimization time

Figure 6 shows the effectiveness of initializing particles based on
the result of SVR prediction. It reduces the optimization time taken
by the algorithm to converge to the best solution, thus improving
the PSO algorithm’s performance. We test it by applying the
Equation 10 and measure it according to changing the numbers
of fog nodes. As shown in Figure 6, the PSO and PSOSVR
algorithms have a linear relationship between the optimization
time and the numbers of fog nodes. However, PSOSVR reduces the
optimization time by 58%. This result means PSOSVR optimizes
the solution faster than PSO.

3) The average fltness value:
It determines if or if not the algorithm falls in local minima. It
calculates the average of all values of the fitness function. If the
fitness function values for all solutions are the same or close to
each other, this means the algorithm falls in local minima, and
the personal best position (pbest) may not change across several
iterations [23,28].

Figure 7: PSO vs. PSOSVR in term of the average fitness value

Figure 7 shows the effectiveness of SVR on PSO in according
prevent PSO from falling in local optima. We measure the average
fitness value according to changing the iteration numbers in PSO.
The iterations are the step 2 in algorithms 2. We notice in Figure
7 that the PSO fitness value did not change; it is the same while
the number of iterations changing. This result means the PSO
falls in local optima, and the personal best (pbest) position is
approximately the same. In contrast to, PSOSVR the average
fitness value changes as the number of iterations change. This
result proves PSOSVR did not fall in local optima.

Proving load balancing between fog nodes
In this experiment, we measured if the proposed algorithm balances
the load between fog nodes or not. We calculated the imbalance
degree by Equation 8. We calculated the difference between the
maximum execution time of all tasks and the minimum execution
time of all tasks then divided it by the average execution time
of all tasks. If the imbalance degree is small, this is means there
is a balancing between fog nodes. The next Table illustrates a
comparison between the proposed PSOSVR, RR, and FCFS
according to imbalance degree.

Table 2: The Imbalance Degree and No. of Fog Nodes
No. of Fog

Nodes
PSOSVR RR FCFS

4 7.06 43.54 39.37
6 7.06 42.06 82.30
8 5.94 37.06 41.07
10 0.21 32.33 25.60
15 0.11 40.42 8.40
20 0.21 39.65 41.82
25 0.30 39.76 39.59
30 0.11 16 8.30
35 0.42 15.72 25.01
40 0.11 15.72 24.96
45 0.11 42.08 12.51
50 0.12 42.08 9.98

As shown in Table 2, we note that the proposed algorithm PSOSVR
has the lowest imbalance degree comparing to other algorithms.
No matter how the number of fog nodes varies, the proposed
algorithm achieves the load balance according to the lower
imbalance degree, so there is a very high load balance between
them. Another observation is that if we look at the column of the
PSOSVR algorithm, we will notice approximately the imbalance
degree decreases as we increase the number of nodes. Thus,
the more nodes we increase, the load balance is achieved more
between nodes. We conclude from this: the significant number of
fog nodes does not affect the load balance, but on the contrary, it
increases the load balance.

Performance Comparison between PSOSVR, FCFS and RR
This experiment Compare PSOSVR with FCFS and RR to prove
that the proposed PSOSVR decrease response time, energy
consumption, and increase throughput, resource utilization better
than RR and FCFS. Figure 8 show the simulation results according
to the four aspects, which are RT, EC, TH, RU.

Figure 8 (a) shows that the relationship between RT values and
the number of tasks is a linear relationship as the value of RT
changes linearly with the number of tasks increases. It is observed

Citation: Mona Albalawi, Entisar Alkayal, Ahmed Barnawi, Mehrez Boulares (2022) Load Balancing Based on Many-objective Particle Swarm Optimization Algorithm
with Support Vector Regression in Fog Computing. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.org/10.47363/JEAST/2022(4)138

J Eng App Sci Technol, 2022 Volume 4(1): 8-10

that the proposed PSOSVR method has achieved the lowest RT
compare to RR and FCFS, the RT was reduced by about 31%.
Hence, the first objective of our optimization algorithm of load
balancing is achieved.

Similarly, Figure 8 (b) shows the linear relationship be- tween
EC values (normalized to the maximum value) and the number
of tasks. It is observed that the proposed solution has performed
significantly better than both RR and FCFS by about 56%.
However, it is observed that the performance of FCFS and RR
are almost similar to one another because there is no sleeping
mode feature on the servers that do not have tasks to process, so
these servers remain working all the time even if they do not have
any task to process; this explains why the performance of FCFS
and RR is almost similar to one another in energy consumption.
Contrary to our proposal model, the load is distributed based on
reducing energy consumption. As far as possible, the servers that
do not have any load should not receive tasks to process, and these
servers go to sleeping mode to reduce the energy.

On the other hand, Figure 8 (c) shows how the CPU utilization
is affected as the number of tasks increases. We can observe that
the proposed solution has achieved the highest utilization level
in comparison to RR and FCFS by 26%. This reflects that, on the
one hand, our system utilizes better the available resources, and
on the other that the utilization of the system is not exponentially
consumed. This is because, as we explained earlier, in the
consumption of energy to reduce it, we try as much as possible
servers that do not have a load to go to sleep mode. This explains
to us that the resources are consumed at the highest possible value,
taking into account the reduction in energy consumption.

Finally, Figure 8 (d) shows that the proposed solution has achieved
the highest TH (in terms of byte/second) than RR and FCFS. It is
shown that we can improve the throughput by 46%, and thus the

fourth objective of our optimization algorithm of load balancing
is achieved, which is to increase the throughput.

Discussion
The aim of proposing the load balancing PSOSVR algorithm
is balancing the load between fog nodes with optimizing the
response time, energy consumption, throughput, and re- source
utilization. SVR combined with the PSO algorithm to improve the
PSO algorithm performance. The experiments aimed to evaluate
PSO performance after utilizing SVR to initialize the particle in
PSO. In addition, they evaluate the proposed PSOSVR algorithm
in terms of distributes the load in a balanced way. Finally, they
evaluate the proposed PSOSVR algorithm optimizes the response
time, energy consumption, resource utilization, and throughput
while distributing the load.
The main results gathered from the experiments are as follows:

• Comparing PSOSVR and PSO to prove that initialize the particles
by SVR provides a positive effect on the PSO performance:
–	 Combining SVR with PSO reduces the execution time by

about 27% compared to the PSO.
–	 Combining SVR with PSO reduces the optimization time by

about 58% compared to the PSO.This result means PSOSVR
optimizes the solution faster than PSO.

–	 By evaluate the average fitness value of PSO
	 and PSOSVR and compared them, we conclude that PSOSVR

did not fall in local optima like PSO.

• Comparing imbalance degree results of PSOSVR, RR, and
FCFS prove that:
–	 PSOSVR has the lowest imbalance degree comparing to

other algorithms. No matter how much fog nodes in the
architecture, PSOSVR achieves the load balance according
to the lower imbalance degree, so there is a very high load
balance between the nodes.

Figure 8: The First Experimental Methodology Results

Citation: Mona Albalawi, Entisar Alkayal, Ahmed Barnawi, Mehrez Boulares (2022) Load Balancing Based on Many-objective Particle Swarm Optimization Algorithm
with Support Vector Regression in Fog Computing. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.org/10.47363/JEAST/2022(4)138

J Eng App Sci Technol, 2022 Volume 4(1): 9-10

• Comparing PSOSVR results with FCFS and RR re- sults prove
that the proposed PSOSVR:
–	 Decrease response time by about 31%.
–	 Decrease energy consumption by about 56%.
–	 Increase throughput by 26%.
–	 Increase resource utilization by 46%.

Conclusion
With the fast growth of IoT, fog computing is becoming one
of the most robust paradigms for processing IoT applications.
The future growth and support of 5G access networks additional
advance the viability and implementation of fog networks and
widen the scope of devices that can participate and serve in IoT
communication. However, scaling fog computing, the number
of end-users increases. Hence, the workload between fog nodes
needs to be distributed efficiently. Consequently, one of the critical
factors for man- aging resources in fog computing efficiently and
avoiding overloaded or under-loaded is load balancing. Therefore,
load balancing between these resources is a challenge in fog
computing. However, there is an issue in load balancing, which
has not yet been fully solved. Load balancing is an essential field
in fog computing to avoid over/under loading. Various algorithms
are used to optimize load balancing in fog environments for giving
a better quality of service. This paper proposes a many-objective
PSOSVR to distribute the tasks among resources in an efficient
way to satisfy load balancing. The proposed load balancing model
considered four metrics to optimize them while distributing the
load: response time, energy consumption, resource utilization, and
throughput. Besides, It combines SVR with PSO to improve PSO
performance. The proposed model has been simulated and tested to
evaluate the performance from different aspects. The experiments
show that the proposed model efficiently balances the load with
optimizing the four metrics. Besides, it improves the performance
of PSO, which is used to balance the load. In the future we will
deal with the storage tasks and resources (size of the disk and the
memory size) when distributing the load, improve the proposed
architecture, and use real tasks dataset to test the solution.

Acknowledgments
I would like to send my most heartfelt thankfulness to all those who
supported me in completing this paper. Send my gratitude to my
supervisors, Prof. Ahmed, Dr. Entisar, for their incredible personal
and professional support to me. Also, I want to thank Dr. Mehrez
for his helping and support. Moreover, my biggest thanks to my
family for all the support you have shown me through this thesis.

References
1.	 Alfaqih TM and Al-Muhtadi J (2016) Internet of things

security based on devices architecture. International Journal
of Computer Applications 975: 8887.

2.	 Chowdhury A, Raut SA (2018) A survey study on internet
of things resource management. Journal of Network and
Computer Applications 120: 42–60.

3.	 Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing
and its role in the internet of things. Proceedings of the first
edition of the MCC workshop on Mobile cloud computing
13-16 ACM.

4.	 Hu P, Dhelim S, Ning H, Qiu T (2017) Survey on fog comput-
ing: architecture, key technologies, applications and open
issues. Journal of network and computer applications 98:
27-42.

5.	 Mukherjee M, Shu L, Wang D (2018) Survey of fog computing:
Fundamental, network applications, and research challenges.
IEEE Communications Surveys & Tutorials 20:1826- 1857.

6.	 Talaat FM, Saraya MS, Saleh AI, Ali HA, Ali SH (2020)

A load balancing and optimization strategy (lbos) using
reinforcement learning in fog computing environment. Journal
of Ambient Intelligence and Humanized Computing 1-16.

7.	 Chou TCK, Abraham JA (1982) Load balancing in distributed
systems,” IEEE Transactions on Software Engineering 4:
401-412.

8.	 Mir RN (2018) Resource management in pervasive internet of
things: A survey. Journal of King Saud University-Computer
and Information Sciences.

9.	 Rai D, Tyagi K (2013) Bio-inspired optimization techniques:
a critical comparative study. ACM SIGSOFT Software
Engineering Notes 38: 1-7.

10.	 Deb K (2014) Multi-objective optimization in Search
methodologies Springer 403-449.

11.	 Mitchell TM, Carbonell JG, Michalski RS (1986) Machine
learning: a guide to current research. Springer Science &
Business Media 12.

12.	 Kashyap P (2018) Machine Learning for Decision Makers:
Cognitive Computing Fundamentals for Better Decision
Making Apress.

13.	 Wang Y (2019) Research of improved particle swarm
optimization algorithm based on big data,” in 2019
International Conference on Robots & Intelligent System
(ICRIS) 287-290.

14.	 Alkhashai HA, Omara FA (2016) “An enhanced task
scheduling algorithm on cloud computing environment.
International Journal of Grid and Distributed Computing
9: 91-100.

15.	 Kamal MB, Javaid N, Naqvi SAA, Butt H, Saif T, et al.
(2018) Heuristic min-conflicts optimizing technique for load
balancing on fog computing in International Conference on
Intelligent Networking and Collaborative Systems Springer
207-219.

16.	 Zafar F, Javaid N, Hassan K, Murtaza S, Rehman S, et
al. (2018) Resource allocation over cloud-fog framework
using ba,” in International Conference on Network-Based
Information Systems. Springer 222-233.

17.	 Zahoor S, Javaid S, Javaid N, Ashraf M, Ishmanov F, et al.
(2018) Cloud–fog–based smart grid model for efficient re-
source management. Sustainability 10: 2079.

18.	 Talaat FM, Ali SH, Saleh AI, Ali HA (2019) Effective
load balancing strategy (elbs) for real-time fog computing
environment using fuzzy and probabilistic neural networks.
Journal of Network and Systems Management 27: 883-929.

19.	 Drucker H, Burges CJ, Kaufman L, Smola AJ, Vapnik V
(1997) Support vector regression machines in Advances in
neural information processing systems 155–161.

20.	 Devia Agustina S, Bella C, Anang Ramadhan M (2018)
Support vector regression algorithm modeling to predict the
availability of foodstuff in indonesia to face the demographic
bonus. JPhCS 1028: 012240.

21.	 Zhong Y, Zhao L, Liu Z, Xu Y, Li R (2010) Using a support
vector machine method to predict the development indices of
very high water cut oilfields. Petroleum Science 7: 379-384.

22.	 Garza-Fabre M, Pulido GT, Coello CAC (2009) Ranking
methods for many-objective optimization in Mexican
international conference on artificial intelligence Springer
633-645.

23.	 Alkayal E (2018) Optimizing resource allocation using multi-
objective particle swarm optimization in cloud computing
systems. PhD thesis, University of Southampton.

24.	 Mesbahi M, Rahmani AM (2016) Load balancing in cloud
computing: a state of the art survey. Int. J. Mod. Educ.
Comput. Sci, 8: 64.

25.	 Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R (2017)

Citation: Mona Albalawi, Entisar Alkayal, Ahmed Barnawi, Mehrez Boulares (2022) Load Balancing Based on Many-objective Particle Swarm Optimization Algorithm
with Support Vector Regression in Fog Computing. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-170. DOI: doi.org/10.47363/JEAST/2022(4)138

J Eng App Sci Technol, 2022

Copyright: ©2022 Mona Albalawi, et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

 Volume 4(1): 10-10

ifogsim: A toolkit for modeling and simulation of resource
management techniques in the internet of things, edge and fog
computing environments. Software: Practice and Experience
47: 1275-1296.

26.	 Mahmud R, Buyya R (2019) Modelling and simulation of
fog and edge computing environments using ifogsim toolkit.
Fog and edge computing: Principles and paradigms 1-35.

27.	 Kong L, Mapetu JPB, Chen Z (2020) Heuristic load balancing
based zero imbalance mechanism in cloud computing Journal
of Grid Computing 18: 123-148.

28.	 Junaid M, Sohail A, Rais RNB, Ahmed A, Khalid O, et al.
(2020) Modeling an optimized approach for load balancing
in cloud,” IEEE Access 8: 173208-173226.

29.	 Engelbrecht A (2012) Particle swarm optimization: Velocity
initializa- tion,” in 2012 IEEE congress on evolutionary
computation. IEEE 1-8.

