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Introduction
Computer vision and natural language processing (NLP) have 
seen explosive growth, with transformative impact across science 
and industry. Using data-driven deep learning methods, computer 
vision has achieved super-human performance on tasks like image 
classification while NLP models can generate remarkably coherent 
text [1, 2]. Integrating these modalities to perform sophisticated 
joint visual and linguistic understanding remains an open challenge. 
This literature review synthesizes current progress and limitations, 
providing a comprehensive overview of the state-of-the-art at the 
intersection of computer vision and NLP. 

Theoretical Background
Multimodal machine learning aims to model interactions between 
diverse modalities like vision, language, acoustics, etc. [3]. By 
learning alignments between textual, visual, and speech data, 
multimodal systems could unlock new capabilities in areas like 
visual context reasoning, natural language generation, human-AI 
interaction, and more. Potential real-world applications range from 
assistive technologies to intelligent surveillance, search, robotics, 
autonomous vehicles, and beyond [4]. Tackling these challenges 
may also spur development of more robust and holistic evaluation 
methodologies for AI systems.

Computer Vision
Computer vision has achieved remarkable advances in problems 
like image classification object detection, semantic segmentation 

and more [5-7]. Convolutional neural networks (CNNs) now 
dominate, offering superior representation learning abilities 
over earlier hand-crafted features. Various CNN architectures 
pre-trained on huge labelled datasets like ImageNet can encode 
transferable visual features [8]. Recently, Transformer models have 
also been adapted for computer vision, achieving promising results 
in tasks like image classification and object detection [9-11].

Unsupervised pre-training has become increasingly popular, 
with models like BEiT, MAE and Mask Feat (Wei et al., 2021) 
matching or exceeding supervised pre-training performance [12, 
13]. Loss functions based on contrastive learning, predicting 
masked patches, and other self-supervision signals have proven 
effective. Transfer learning from these generative models provides 
benefits across down-stream tasks.

Natural Language Processing
NLP has progressed rapidly, with neural models reaching new 
milestones in translation question answering dialogue systems 
and other tasks [14-16]. Pre-trained language models like ELMo, 
BERT, GPT-3 and T5 have been especially impactful [2, 17-19]. 
By pre-training on vast unlabelled corpora using objectives like 
masked language modelling and text generation, they develop 
general linguistic representations that transfer effectively. 
Performance on benchmark NLP datasets has substantially 
increased through their use.

However, fundamental challenges remain around relational 
reasoning, interpretability, and grounding language in real-world 
knowledge [20].Combining textual understanding with computer 
vision provides an avenue for developing more human-like 
language intelligence.
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Vision and Language Integration
There has been growing interest in unified modelling of vision and 
language (Baltrušaitis et al., 2019). Relevant tasks include image 
captioning visual question answering visual, video description, 
embodied agents, grounding textual concepts in images and more. 
Large datasets like COCO, Flickr30k, and VQA have enabled 
data-driven progress. Multimodal Transformer models like 
ViLBERT, LXMERT, VL-BERT, UNITER and OSCAR have 
proven effective by learning cross-modality representations [21-
31]. Other approaches integrate CNN image features into language 
model architectures via attention mechanisms. However, issues 
around model interpretability, bias, and spurious correlations 
remains a concern [32].

Robustly grounding language in rich visual contexts is still 
difficult, as is leveraging temporal/causal reasoning and common 
sense knowledge. Generalization across domains and capturing 
nuanced semantics and higher-order relationships between vision 
and language remains an open challenge [33]. Developing more 
human-centric evaluations and multimodal datasets is an active 
area of inquiry.

Recent Advances
Cutting-edge techniques at top conferences provide insight 
into current progress and limitations. In computer vision, self-
supervised models matching supervised pre-training (BEiT, MAE, 
MaskFeat) demonstrate the power of contrastive self-supervision 
(Wei et al., 2021) [12, 13]. Object detectors combining CNNs and 
Transformers (DETR, Deformable DETR) show advantages of 
attention for vision (Zhu et al., 2020) [11].

In NLP, models leveraging self-supervision over images and text 
(CLIP, ALIGN) make promising steps towards grounding language 
in vision [34, 35]. Large multimodal models like FLAVA achieve 
strong performance by pre-training on diverse vision, language, 
speech, and audio data [36]. However, issues like bias, safety, and 
robust evaluation persist.

There are also emerging efforts to build more human-like 
multimodal agents using virtual environments and simulations 
(Yan et al., 2020) [37]. Still translating such progress to real-world 
domains remains challenging.

Discussion
This review highlights remarkable innovation at the intersection 
of computer vision and NLP, while also revealing persistent gaps. 
Fundamental problems around contextual reasoning, uncertainty, 
generalization, and human collaboration are largely still open. 
Potential research directions include leveraging neuro-symbolic AI 
techniques combining neural networks and declarative knowledge, 
developing causal reasoning capabilities, and increased focus on 
human-centric benchmarks and safety.

Conclusion
In conclusion, this literature review has provided a comprehensive 
overview of the state-of-the-art in combined computer vision and 
NLP systems. Although progress has accelerated, core challenges 
around semantic understanding, reasoning, and human interaction 
remain open. As research continues rapidly, multimodal AI 
systems may gradually approach human-level visual and linguistic 
intelligence through innovations in representation learning, context 
modelling, and human-AI collaboration.
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