
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2022 Volume 1(4): 1-7

Review Article

Kubernetes Advanced Auto Scaling Techniques
Ramasankar Molleti

*Corresponding author
Ramasankar Molleti, Independent Researcher, USA.

Received: December 01, 2022; Accepted: December 13, 2022, Published: December 19, 2022

Keywords: Autoscaling, Metrics, Pod, Node, API, Optimization,
HPA, VPA, Prometheus

Introduction
Overview of Kubernetes
Kubernetes is an open source container orchestration solution that
tries to fully automate practically every aspect about the containers
that consist of an application. From the above conclusions the
following can be argued-It provides a good basis for guaranteeing
availability of applications, and their modularity in addition to
their resource utilization. Kubernetes supports something that
is called a ‘platform,’ which abstracts the essence of layers and,
at the same time, handles a significant number of chores for the
developer [1]. Kubernetes provides a declarative and an extremely
versatile configuration model to manage the adaptive structure
and processes of today’s cloud-native environments and it is
a standard choice when it comes to choosing an orchestration
manager for a container.

Importance of Autoscaling in Container Orchestration
Autoscaling is a mandatory attribute of container orchestration
since applications can only increase the consumed resources
when workload increases. This capability helps in best resource
utilisation and also can balance the cost based on the loads that
are likely to be available or generated. Autoscaling enables an
application to request additional resources during high traffic
and to release these during low traffic, and decreases the need
for a human to constantly monitor an application’s resource
consumption. Among the key functions used in the context of
Kubernetes, it should be noted that autoscaling mechanisms are
critical for fulfilling the main rock-solid mission and ensuring the
effective overall self-healing mechanism of the platform.

Figure1: Containers Orchestration (Source: https://
d3i71xaburhd42.cloudfront.net)

ABSTRACT
This paper discusses some sophisticated autoscaling strategies in Kubernetes, and they include horizontal and vertical pod autoscaling, cluster levels
autoscaling, and metrics based autoscaling. In this regard, it covers the topics of both predictive and event-triggered auto scaling approaches and their
applications, the advantages and the potential issues relating to them, and more. Some of the questions answered by the study include how to improve
application throughput and resource efficiency and how to achieve cost-efficient K8s clusters for practitioners while providing directions for the research
on CA autoscaling in container orchestration.

Independent Researcher, USA

Citation: Ramasankar Molleti (2022) Kubernetes Advanced Auto Scaling Techniques. Journal of Mathematical & Computer Applications. SRC/JMCA-126.
DOI: doi.org/10.47363/JMCA/2022(1)E126

J Mathe & Comp Appli, 2022 Volume 1(4): 2-4

Basic Kubernetes Autoscaling Concepts
Kubernetes offers several native autoscaling opportunities
which can be used to address various kinds of scaling issues.
The Horizontal Pod Autoscaler (HPA), is used for the scaling up
as well as the scaling down of pods depending on CPU usage or
metrics. The Vertical Pod Autoscaler – VPA influences higher and
lower request and limit of some pods in regard to the identified
resources. The node pool size task has been handled manually by
the Cluster Autoscaler in the current times. All of these autoscalers
are active simultaneously to allow the applications to acquire the
required resources and to control the full use rate in the cluster
[2]. Here are concepts that get to the fundamentals of Kubernetes
and are probably vital to anyone who wishes to autoscale in
Kubernetes landscapes.

Purpose and Scope of the Paper
This paper intends to elaborate more on autoscaling in Kubernetes
and not just the basic theory and recognizing the different aspects
of autoscaling. It will explain the specifics of horizontal and
vertical pod autoscaling, cluster-level autoscaling, and custom
metrics. The paper will also look at new trends in auto scaling
including; Predictive and event-based autoscaling. Thus, the
topical coverage of the paper aims to help practitioners understand

and improve the performance and resource efficiency, as well as
the cost-effectiveness of their applications and services deployed
in Kubernetes environments.

Horizontal Pod Autoscaler (HPA)
Core Concepts and Functionality
HPA or Horizontal Pod Autoscaler is used to scale pod replicas
in a deployment or replication controller based on CPU usage or
metric specified. It from time to time compares these metrics to a
target value and computes the desired number of replicas to sustain
the target [3]. This process is helpful to make sure the resource
of the application is well utilised and the control available for the
application is good for a number of workloads.

Configuration
Configuring HPA is done by setting the desired CPU utilisation or
any other metrics, setting minimum and maximum replica count,
and lastly the scaling policy. Usually, implementation involves
the creation of an HPA resource by using ‘kubectl’ or YAML
manifests. This enables the HPA controller to then watch out for
the said metrics and make necessary changes to the replica count
that match the desired scaling behaviour of the application.

Table 1: Comparison of HPA Metrics and Their Use Cases
Metric Type Description Use Case Advantages Limitations
CPU Utilisation Percentage of

requested CPU
General-purpose

applications
Easy to configure,

built-in
May not reflect

application
performance

Memory Usage Percentage of
requested memory

Memory-intensive
applications

Prevents OOM
errors

Can lead to over-
provisioning

Custom Metrics Application-
specific indicators

Specialised
workloads

Highly tailored
scaling

Requires additional
setup

External Metrics Metrics from
external sources

Cloud services,
queues

Scales based on
external factors

Dependency on
external systems

Limitations and Challenges
Despite the strength of HPA, there are some known issues;
for instance, metric changes lead to intensive scaling, latency-
related issues by pod startup times, and multi-dimensional scaling
requirements. However, CPU metrics tend to be unsuitable for
specific applications, when solely used by themselves [4]. They
are the set of features and restrictions that can only be mitigated
by fine-tuning the HPA and possibly integrating it with other
forms of auto-scaling.

Vertical Pod Autoscaler (VPA)
Operating Principles
The Vertical Pod Autoscaler (VPA) scales the containers in pods
and changes the CPU and memory resource requests. Based on
the historical data of resource consumption and current requests,
it may suggest or automatically assign the most suitable resource
utilisation [5]. The concept of VPA is to increase the efficiency of
the use of cluster resources and the speed of the application by
adjusting the amount of resources available to pods.

Figure 2: VPA (Source: https://www.kubecost.com)

Citation: Ramasankar Molleti (2022) Kubernetes Advanced Auto Scaling Techniques. Journal of Mathematical & Computer Applications. SRC/JMCA-126.
DOI: doi.org/10.47363/JMCA/2022(1)E126

J Mathe & Comp Appli, 2022 Volume 1(4): 3-4

Uses and Benefits
VPA is most beneficial for workflows with non-static resource
requirements or for those that must be set up manually. This aspect
assists in avoiding the cases of under-utilising or over-allocation
of resources, thus enhancing cost efficiency of the clusters. VPA
is advantageous in the lack of interaction of big applications with
a few users in response time and resource allocation and appeals
to applications that are not frequently required to process an
excessive amount of data all at once while their demands rise
incrementally.

Integration with HPA
VPA can cooperate with the Horizontal Pod Autoscaler or HPA
which gives encompassing scaling options. While HPA controls the
total amount of pod replicas, VPA controls the distribution of pods’
resources [6]. Integration achieved at this level offers a precise
degree of control over the extent to which applications are scaled
both, laterally and vertically, while at the same time optimising the
use of resources in different scenarios, thus enhancing application
performance.

Cluster Autoscaler
Architecture and Components
The Cluster Autoscaler is an additional element of the Kubernetes
which is aimed at a dynamic process of the addition or removal of
nodes in the cluster. It is made up of a main loop, which runs every
interval, and looks for pods that are unable to be scheduled because
of resource availability [7]. The autoscaler is communicating with
the API of the chosen cloud provider to operate node groups,
scale the cluster.

Figure 3: Kubernetes Cluster Autoscaler (Source: https://www.
kubecost.com)

Scaling Policies and Strategies
The Cluster Autoscaler uses the following techniques in
managing the extent of the cluster. It can increase when pods are
unschedulable because of the resource limitations and decrease
when the nodes have low CPU usage. It also aims at providing
scale recommendations based on various things such as resource
quantity and quality requested by pods, nodes’ resource usage,
priority level of various pods and the like. This also adheres to
user-provided constraints like minimum and maximum number
of nodes to create.

Cloud Provider-Specific Considerations
Several cloud providers have special characteristics and
restrictions, which influence the behaviour of Cluster Autoscaler.

These are instance types, and the pricing of such instances, and
the Node worthy APIs for Node Group management [8]. There
might be a necessity to tune autoscaler settings to take advantage
of such advanced features of cloud providers as ASGs or MIGs,
respectively, to achieve the best results in terms of cost and
efficiency in AWS or GCP.

Custom Metrics Autoscaling
Prometheus Adapter
Prometheus Adapter converts Prometheus metrics to the
infrastructure of Kubernetes auto-scaling. It converts Prometheus
queries into a form digestible by the Custom Metrics API so that
HPA can leverage application level metrics for scale calculations.
This adapter allows autoscaling for various parameters, from
request rates to business ones, improving autoscaling policies’
flexibility and accuracy.

Figure 4: Prometheus Adapter (Source: https://d2908q01vomqb2.
cloudfront.net)

Custom Metrics API
The Custom Metrics API is new from Kubernetes and broadens
the autoscaling options to not just CPU and memory. It offers
a common way of exposing application-specific metrics to the
HPA [9]. This API is used for multiple metric sources that can be
included into the autoscaling process and therefore allows to scale
on more than server load, queue length, latency or even business
metrics which make the autoscaling more application-aware.

Advanced Strategies for Custom Metrics-Based Autoscaling
The process of using advanced methods accompanied by custom
metrics to scale an application. This is made up of metrics that
involve the use of more than one counter; metrics that adopt the
use of rate of change to scale; and the use of percentile metrics to
establish the true capacity needed. Some of these strategies may
need fine-tuning, and the use of custom rules to analyse application
behaviours to improve on the auto scaling efficiency.

Predictive Auto Scaling Techniques
Machine Learning Approaches
Predictive auto scaling as used in the technique of machine
learning then gathers information on the resource consumption
patterns so that the requirement in the future can be estimated.
This is made with the support of such activities as regression
analysis, time series forecasting and use of neural networks to

Citation: Ramasankar Molleti (2022) Kubernetes Advanced Auto Scaling Techniques. Journal of Mathematical & Computer Applications. SRC/JMCA-126.
DOI: doi.org/10.47363/JMCA/2022(1)E126

J Mathe & Comp Appli, 2022 Volume 1(4): 4-4

predict workload tendencies [10]. These models analyse the past
behaviour of resource usage and other applications, the actual
parameter of utilisation and other external factors in order to

predict the need for scaling in the future and, therefore, minimise
reaction time to such scales.

Table 2: Comparison of Predictive Auto Scaling Models
Model Type Technique Strengths Weaknesses Complexity
Linear Regression Time series forecasting Simple, interpretable Limited to linear

relationships
Low

ARIMA Time series analysis Handles trends and
seasonality

Assumes stationarity Medium

Neural Networks Deep learning Can capture complex
patterns

Requires large datasets,
black box

High

Random Forest Ensemble learning Robust to outliers, handles
non-linearity

Can overfit,
computationally intensive

Medium-High

Prophet Additive model Handles holidays, missing
data

May oversimplify
complex patterns

Medium

Time-series Analysis Models
Different kinds of time series models are also quite handy for
predictive auto scaling in the Kubernetes system. Methods
such as ARIMA, exponential smoothing, and Prophet assist in
identification of trends, seasonality, as well as cyclicality of
the resources. Such models can be used in detecting temporal
dependencies within the workload behaviour and thus, based on
the resources required that will influence autoscaling, the short
run and long run behaviour can be predicted.

Figure 5: Time Series-Based Approach to Elastic Kubernetes
(Source: https://www.mdpi.com)

Challenges in Predictive Auto Scaling
There are some problems with which predictive auto scaling
becomes difficult and these are some issues related to autoscaling.
The ability to manage accuracy over the models in terms of handling
different workloads and even a shift in their usage is something
which proves to be quite complex. The issues concerning the
trade off of different parameters like the accuracy at the different
prediction levels and the time taken in the computations should also
be well handled [11]. However, reversing possible anomalies, the
possibility of feedback into the solution, and the way of integrating
the predictions with other solutions for Kubernetes autoscaling are
the issues of constant further discussion in this sphere.

Multi-dimensional Autoscaling
Combining HPA and VPA
The utilisation of pods along with CPU is called multi-dimensional
autoscaling, and working with both HPA and VPA concurrently.
This allows the users to scale up the number of pods and scale up
or scale down the resource that is needed in a pod [12]. Particular
emphasis should be placed on the creation of While one should
not interfere with each other, HPA working in harmony with
VPA should improve the application’s execution and resource
utilisation.

Multi-metric Auto Scaling Strategies
Regarding the multi-metric auto scaling strategies, this is the
procedure to make decisions on scaling taking into account several
metrics. This can be done by adopting the use of the measures
of CPU, memory, and specific to the particular application that
is desired, measures like request latency or queue length. These
strategies can be viewed as the more general conception of the
application, and therefore, such autoscaling processes may be
more effective and precise.

Citation: Ramasankar Molleti (2022) Kubernetes Advanced Auto Scaling Techniques. Journal of Mathematical & Computer Applications. SRC/JMCA-126.
DOI: doi.org/10.47363/JMCA/2022(1)E126

J Mathe & Comp Appli, 2022 Volume 1(4): 5-4

Figure 6: AWS Auto-Scaling (Source: https://k21academy.com)

Trade-offs and Optimizations
Multi-dimensional auto scaling means that a rather significant
amount of trade-offs must be worked through in order to achieve
the desired outcomes, if they are desirable at all. The above are;
dealing with more than one scaling dimension, competition issues
in scaling up, and improved operating expense [13]. Optimisations
can include setting focus on some of these metrics at the expense
of others, incorporating checks so that the system’s scaling actions
go up and down, and on tuning the thresholds to get the right
level of reaction from the autoscaling system to achieve stability.

Event-driven Autoscaling
KEDA (Kubernetes Event-driven Autoscaling)
KEDA stands for Kubernetes Events Driven Autoscaler and is an
autoscaler categorised as open-source. It is suitable for making
micro-overscale with respect to the number of events that make the
application alive. Currently KEDA supports the following event
sources: There are message queues, databases, and own metric
[14]. Thus, when there is no event, the scale is almost zero; and it
is the same when talking about Kubeless and KEDA that assists
in the optimal usage of the application resources and, therefore,
a low impact on costs in event-driven jobs.

Table 3: KEDA Scalers and Their Applications
Scalar Type Event Source Use Case Scaling Metric
Apache Kafka Kafka topics Stream processing Message lag
RabbitMQ RabbitMQ queues Asynchronous job processing Queue length
Prometheus Custom metrics Application-specific scaling Query result
Azure Blob Azure Storage File processing Blob count
AWS SQS SQS queues Serverless workflows Queue length
Cron Time-based events Scheduled scaling Schedule

Server Less Auto Scaling Patterns
The patterns correlated to server less auto scaling in Kubernetes originate from access to the application scaling concerning customers’
requests or events. They are referred to as zero-to-zero and zero-to-many patterns, similar to Function-as-a-service. There are toolchains
like Native which are used to deploy and run server less applications on Kubernetes; it self-scales for event-based deployment with
a minimal amount of configuration. This approach enables one to easily reach high levels of scalability where the load is burst or
unpredictable.

Figure 7: Scaling Server less Applications (Source: https://storage.googleapis.com)

Citation: Ramasankar Molleti (2022) Kubernetes Advanced Auto Scaling Techniques. Journal of Mathematical & Computer Applications. SRC/JMCA-126.
DOI: doi.org/10.47363/JMCA/2022(1)E126

J Mathe & Comp Appli, 2022 Volume 1(4): 6-4

aReal-world Applications
Specifically, the technique of auto scaling based on the events
is invaluable for a plethora of real-life applications. It is most
valuable in the micro services architecture, Iota data processing,
and for the work that is performed on a batch basis. For instance,
the payment processing system has to grow in tandem with the
growing transaction queue, similarly images that are uploaded
would depend on how many such uploads are there for an image
processing service [15]. These applications can take full advantage
of the outward characteristics of event-driven scaling; this is
because such applications most of the time are characterized by
unpredictable demands.

Future Directions and Conclusion
Emerging Auto scaling Technologies
Newer trends in auto scaling in Kubernetes relate to the
improvement of precise predictions and self-decision processes.
The approaches that are obtainable with the help of machine
learning are growing more complex, including the real-time data
analysis and machine learning algorithms that learn on the go.
Integration of edge computing is also starting to happen as it
allows for auto scaling of various units to be distributed [16].
Furthermore, while improving the container technology or other
approaches to resource isolation provided a basis for the new
scaling mechanisms, it is now possible to scale elements in the
application down to being much finer-grained when it comes to
truly isolating the things that need to scale separately.

Integration with Cloud-Native Ecosystems
Subsequent generation auto scaling options nonetheless likely
to become much more tightly integrated with other aims and
features of the cloud-native panorama. This is because the new
version offers a better compatibility with service meshes and server
less computing platforms; has integration with multiple clusters’
management tools. Accuracy in regard to specific observability
tools means that the context of scaling decisions will be less
ambiguous [17]. But regarding the growth of the new cloud-
native technologies, micro-service auto scaling mechanisms will
transform, to fit new opportunities and coexist with different and
more assorted environments.

Figure 8: Cloud Native Development Services (Source: https://
cdn.azilen.com)

Summary of Key Findings
This paper has therefore looked at some of the more complex
Kubernetes auto-scaling mechanisms that include auto-scaling
based on pods, consumption metrics, vertical auto scaling, and
even anti-patterns. Several studies’ major insights include MSD
being critical to auto scaling and custom metrics gradually
becoming ingrained to auto scaling processes. The ML and TS
combination introduced the improvement of prediction, while
auto scaling based on events introduced the new paradigms for
resource adaptation.

Recommendations for Practitioners
It is recommended that practitioners pay cognizance to the fact
that different workloads would require different types of auto
scaling and thus, orchestrating more than one technique for auto
scaling should be the approach taken by most practitioners. There
is a lot of emphasis in making sure that auto scaling has adequate
monitoring and observability systems that can be implemented for
auto scaling. In fact, it is suggested to begin with the Kubernetes
auto scaling and extend it with the use of the other sophisticated
methods, such as the custom metrics and predictive auto scaling
[18]. Another point that needs to be further discussed is frequency
of the auto-scaling settings checks and their further tuning
according to the application needs.

References
1. Taherizadeh S, Grobelnik M (2020) Key influencing factors

of the Kubernetes auto-scaler for computing-intensive
microservice-native cloud-based applications. Advances in
Engineering Software 140: 102734.

2. Zhao A, Huang Q, Huang Y, Zou L, Chen Z, et al. (2019)
Research on resource prediction model based on kubernetes
container auto-scaling technology. In IOP Conference Series:
Materials Science and Engineering 569: 052092.

3. Altaf U, Jayaputera G, Li J, Marques D, Meggyesy D, et al.
(2018) Auto-scaling a defence application across the cloud
using docker and kubernetes. 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion
(UCC Companion) 327-334.

4. Rattihalli G, Govindaraju M, Lu H, Tiwari D (2019) Exploring
potential for non-disruptive vertical auto scaling and resource
estimation in kubernetes. 2019 IEEE 12th International
Conference on Cloud Computing (CLOUD) 33-40.

5. Nguyen TT, Yeom YJ, Kim T, Park DH, Kim S (2020)
Horizontal pod autoscaling in kubernetes for elastic container
orchestration. Sensors 20: 4621.

6. Baresi L, Hu DYX, Quattrocchi G, Terracciano L (2021)
KOSMOS: Vertical and horizontal resource autoscaling for
kubernetes. International Conference on Service-Oriented
Computing Cham: Springer International Publishing 821-829.

7. Thurgood B, Lennon RG (2019) Cloud computing with
kubernetes cluster elastic scaling. Proceedings of the 3rd
International Conference on Future Networks and Distributed
Systems 1-7.

8. Perera HCS, De Silva TSD, Wasala WMDC, Rajapakshe
RMPRL, Kodagoda N, et al. (2021) Database scaling on
Kubernetes. 3rd International Conference on Advancements
in Computing (ICAC) 258-263.

9. Podolskiy V, Jindal A, Gerndt M (2018) Iaas reactive
autoscaling performance challenges. 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD)
954-957.

10. Poniszewska-Marańda A, Czechowska E (2021) Kubernetes
cluster for automating software production environment.

Citation: Ramasankar Molleti (2022) Kubernetes Advanced Auto Scaling Techniques. Journal of Mathematical & Computer Applications. SRC/JMCA-126.
DOI: doi.org/10.47363/JMCA/2022(1)E126

J Mathe & Comp Appli, 2022 Volume 1(4): 7-4

Sensors 21: 1910.
11. Ju L, Singh P, Toor S (2021) Proactive autoscaling for edge

computing systems with kubernetes. Proceedings of the 14th
IEEE/ACM International Conference on Utility and Cloud
Computing Companion 1-8.

12. Turin G, Borgarelli A, Donetti S, Johnsen EB, Tapia Tarifa
SL, et al. (2020) A formal model of the kubernetes container
framework. International Symposium on Leveraging
Applications of Formal Methods. Cham: Springer International
Publishing 558-577.

13. Sayfan G (2018) Mastering Kubernetes: Master the art of
container management by using the power of Kubernetes.
Packt Publishing Ltd https://www.amazon.in/Mastering-
Kubernetes-Master-container-management/dp/1788999789.

14. Dang-Quang NM, Yoo M (2021) Deep learning-based
autoscaling using bidirectional long short-term memory for
kubernetes. Applied Sciences 11: 3835.

15. Delnat W, Truyen E, Rafique A, Van Landuyt D, Joosen W
(2018) K8-scalar: a workbench to compare autoscalers for
container-orchestrated database clusters. Proceedings of the
13th International Conference on software engineering for
adaptive and self-managing systems 33-39.

16. Deshpande N (2021) Autoscaling Cloud-Native Applications
using Custom Controller of Kubernetes. (Doctoral dissertation,
Dublin, National College of Ireland) https://norma.ncirl.
ie/5089/1/nehanarendradeshpande.pdf.

17. Xing S, Qian S, Cheng B, Cao J, Xue G, et al. (2019) A QoS-
oriented Scheduling and Autoscaling Framework for Deep
Learning. 2019 International Joint Conference on Neural
Networks (IJCNN) 1-8.

18. Beni EH, Truyen E, Lagaisse B, Joosen W, Dieltjens J (2021)
Reducing cold starts during elastic scaling of containers in
kubernetes. Proceedings of the 36th Annual ACM Symposium
on Applied Computing 60-68.

Copyright: ©2022 Ramasankar Molleti. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

