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Atherogenesis Mechanism
Atherosclerotic lesions begin after some type of injury to the 
endothelial layer, which is not only a simple mechanical barrier, but 
also synthesizes and releases vasoactive substances. Endothelial 
dysfunction is the initial event in the atherogenic process, resulting 
from several events, such as expression of leukocyte binding 
sites, production of growth factors, chemotactic and vasoreactive 
molecules, ability to oxidize low-density lipoprotein (LDL) and 
respond to oxidized lipoproteins, ability to express procoagulant 
activity, and modulation of vascular permeability [1-3]. 

Thus, the endothelium, when subjected to different conditions 
and factors, plays an active role in the development of 
atherosclerotic plaque. Animal studies show that diet-induced 
hypercholesterolemia and atherosclerosis produce more functional 
than anatomical abnormalities in the endothelium, altering 
endothelial function in the microcirculation as well [4,5].

In hyperlipidemic individuals, the transport of lipoproteins by 
endothelial cells from plasma to the arterial wall may result in 
modifications of some lipoproteins by the cells, and, in part, by 
their oxidation. These lipoproteins can, in turn, injure endothelial 
cells, resulting in adhesion of monocytes, T lymphocytes and 
production of chemotactic factors within the arterial wall, which 
conduct these leukocytes to the subendothelial intima layer [6].

Adhesion molecules: it is currently known that the expression 
of adhesion molecules in endothelial cells plays an important 
role in cell-cell interaction and in the adhesion of leukocytes to 
endothelial cells [7,8].

The expression of several adhesion molecules, such as intracellular 
adhesion molecule-1 (ICAM-1), E-selectin, vascular cell adhesion 
molecule-1 (VCAM-1), and P-selectin in atherosclerotic plaques, 
mediating the interaction between endothelial cells and leukocytes, 
has been described [9-13]. The expression of adhesion molecules in 
smooth muscle cells (SMC) of vessels can be induced by mediators 
such as gamma interferon, interleukin 4 (IL-4), interleukin 1B (IL-
1B), tumor necrosis factor alpha (TNF-α), suggesting that certain 
pro-inflammatory cytokines may regulate the expression of adhesion 
molecules and be related to the development of the lesion [14-16].

Macrophages: the modification of LDLs, in conjunction with other 
chemotactic factors produced by injured endothelial cells, recruit 
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circulating monocytes into the subendothelial space, where they 
become macrophages [17]. The modified lipoproteins inhibit the 
egress of macrophages from the lesion, in addition to making the 
cells capable of capturing large amounts of lipids. Unlike LDL 
uptake, which is mediated by LDL receptors and under negative 
feedback control, modified LDL uptake is mediated by scanning 
receptors, which are not subject to this type of control [18,19]. 
Because modified LDL uptake is not saturable, large amounts of 
modified LDL can be incorporated into macrophages and SMC, 
resulting in the formation of foam cells.

Within the lesions, macrophages also appear to be activated for 
an immune and/or inflammatory response, expressing major 
histocompatibility complexes, CD antigens, and a variety of 
cytokines and growth-regulating molecules [20-22].

Macrophages without lipid inclusions are often located closer to 
the lumen, while foam cells are found in deeper regions. When the 
lipid nucleus is present, the latter are usually more evident along 
the lumen and lateral margins of the nucleus. In places where 
the intima is relatively thin or in very complicated lesions, this 
distribution may not be as apparent.

Macrophages can express genes for proteins that participate in 
advanced lesion formation and modeling, such as monocyte 
chemotactic protein (MCP-1), tumor necrosis factor, genes for 
collagen and fibronectin, as well as collagenase and elastase. 
They can release lytic enzymes that degrade the fibrous cap, 
producing rupture of the atherosclerotic plaque. It has been found 
more frequently in patients with unstable angina and non-Q-
wave myocardial infarction, suggesting that macrophages may be 
markers of unstable atherosclerotic plaques and play a significant 
role in the pathophysiology of acute coronary syndrome [23-27].

Smooth muscle cells: the proliferation of SMCs is an important 
event in the progression of arterial injury, occurring in 3 stages: 
replication of the SMC still within the media layer; migration from 
the middle layer to the intima and proliferation within the intima.

Two types of SMCs are observed in both initial and advanced 
lesions: those rich in myofilaments (contractile) and those poor in 
myofilaments, but relatively rich in rough endoplasmic reticulum 
(synthetic).

The function and activity of SMC in the artery are dependent on 
the medium created by the surrounding cells and the components 
of the extracellular matrix. In a normal, non-injured artery, the 
phenotype and function of SMCs are largely determined by the 
extracellular matrix and by factors released by endothelial cells. 
With endothelial injury, infiltration of monocytes and lymphocytes, 
thrombosis and platelets, as observed in advanced atherosclerosis 
lesions, the balance between vasoactive and growth-regulating 
factors present at the site is altered. These extracellular factors 
can alter the phenotype of SMC and its function, migration, 
proliferation and synthesis of extracellular matrix [6,28-31].

One of the platelet-derived factors, heparinase, is an enzyme that 
degrades heparan sulfate, a polysaccharide, in the extracellular 
matrix of the arterial wall, which inhibits the proliferative 
migration of SMCs [32]. The combination of heparan levels with 
decreased release of prostacyclin (PGI2) and endothelium-derived 
relaxing factor nitric oxide (EDRF-NO), due to endothelial cell 
injury, allows the conversion of SMC from the arterial medial 
layer in a contractile form to a non-contractile synthesizing cell. 
Modified SMCs can release enzymes that degrade the extracellular 

matrix, allowing these cells to migrate to the intima, where they 
proliferate under the action of mitogens such as platelet-derived 
growth factor (PDGF) and other growth factors.

Lymphocytes: T lymphocytes have been identified in advanced 
lesions by monoclonal antibodies to CD antigens, and both T cell 
phenotypes, CD4+ helper/inducing cells and CD8+ cytotoxic cells 
have been detected, in ratios ranging from 1:2 to 1:4. B cells are 
rare or even absent [33-35].

Evidence suggests the involvement of humoral and cellular 
immune reactions at all stages of atherosclerotic development 
[36-38]. Regarding the humoral response, granular deposits 
of immunoglobulins and complement components have been 
observed within the atherosclerotic lesion. Since rare B cells are 
found at any stage of injury, it is likely that these immunoglobulins 
will not be produced at the site. T cells are the first cells that 
infiltrate the intima arteriosis in the early stages of atherosclerosis, 
perhaps even preceding monocytes. However, the mere presence of 
T-cell infiltrate is not evidence of pathogenic significance, although 
most of the T lymphocytes in the plaques express activation 
markers (interleukin-2 receptor - IL2R and human leukocyte 
antigen - HLA-DR) indicating that they would have the ability to 
secrete lymphokines and that an active immune response could 
be occurring inside the plaque [39].

Apoptosis: apoptosis is a physiological process of cell death and is 
involved in many pathological conditions. Since in atherosclerosis 
there is an accumulation of cells in the intima, and within the 
sclerotic region of the advanced atheromatous plaque there is a 
low density of cells with little presence of cellular debris, this 
alteration may be due to apoptotic processes. Apoptotic cells 
have been evidenced in the atherosclerotic lesion, suggesting that 
apoptosis is part of the normal vascular healing process, while 
dysregulated apoptosis and/or inefficient removal of apoptotic 
bodies may contribute to the progression of atherosclerotic plaque 
and increase disease severity [40-42].

Low-density lipoprotein: arterial wall cells secrete oxidative 
products from multiple pathways that can initiate the oxidation of 
LDL retained in the subendothelial space, occurring in two stages: 
the first stage occurs before monocytes are recruited and results 
in the oxidation of lipids to LDL, with little change in apoprotein 
B. The second stage begins when monocytes are recruited into 
the lesion and transform into macrophages. At this stage, the 
protein portion is also modified, leading to the loss of recognition 
by the LDL receptor, and starting to be recognized by the sweep 
receptors and/or oxidized LDL receptor [43-45]. This deviation for 
recognition via the scan receptor leads to cellular uptake of LDL 
by receptors that are not regulated by the cholesterol content in the 
cell, which results in intense accumulation of cholesterol inside.

Modified LDL (deialized and glycosylated or oxidized) are 
atherogenic, unlike native LDL, and the interaction of anti-
LDL antibodies with modified LDL increases their atherogenic 
potential. After forming an immune complex, the native LDLs, 
originally non-atherogenic, become atherogenic. By entering the 
subendothelial space of the arterial intima and interacting with 
subendothelial cells, lipoprotein-containing immune complexes 
can induce the full spectrum of atherosclerotic cellular disorders.

Circulating immune complexes with anti-LDL activity have been 
detected in the blood of patients with cardiovascular diseases as 
well as experimentally. Circulating immune complexes containing 
modified LDL and anti-LDL autoantibodies may be responsible 
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for the accumulation of cholesterol in vascular cells.

Macrophages derived from human monocytes are transformed 
into foam cells after incubation with LDL-containing immune 
complexes, which are internalized predominantly through Fc 
receptor-mediated phagocytosis [46]. In addition, activated 
macrophages release active oxygen radicals that may be involved 
in LDL oxidation.

High-density lipoprotein (HDL): has a protective role against 
the development of atherosclerosis by preventing the oxidation 
of LDL. This process can be mediated by two enzyme systems, 
demonstrated in vitro [47,48]. Thus, the inverse relationship 
between risk for atherosclerotic events and HDL levels may be due 
to the presence of HDL-associated enzymes that protect against 
LDL oxidation, in addition to acting in the reverse transport of 
cholesterol.

Extracellular matrix: the vessel wall is a component of the 
circulatory system that is continuously remodeling itself in 
response to hemodynamic and pathological conditions, its main 
structural components being: type I, III, IV and V collagens, 
elastin, proteoglycans and glycoproteins. These components 
interact, forming a complex structure in order to provide the 
physicoelastic characteristics of the blood vessel.

The composition of the matrix determines not only the physicoelastic 
properties of the vessel wall, but also its cellular composition, 
through the retention of cells and mediators in its structure [49]. 
Matrix metalloproteins (MMP) are enzymes dependent on Zn2+ 
and Ca2+, which are important in the resolution of the extracellular 
matrix, because, once activated, they can completely degrade the 
components of the extracellular matrix [50].

The integration of LDL apoprotein B with the sulfate group of 
glycosaminoglycans may be a mechanism for retaining LDL 
in the arterial intima. Sulfated glycosaminoglycans increase 
during the early stages of atherosclerosis and chondroitin 
sulfates positively correlate with accumulation of apoprotein B 
in the intima before lesions become macroscopically detectable 
[51,52]. Large extracellular proteoglycans, mainly molecules 
containing chondroitin sulfate, act on arterial permeability, ion 
exchange, transport and deposition of LDL-like plasma material. 
Small extracellular proteoglycans, such as molecules containing 
dermatan sulfate, can regulate collagen fibrinogenesis, and also 
ionically bind to LDL. The amount of heparan sulfate decreases 
or even remains unchanged, while the amount of dermatan 
sulfate increases as the lesion progresses. Increased sulfated 
glycosaminoglycans facilitates LDL retention in the intima. The 
association of LDL and proteoglycans may result in increased LDL 
retention, uptake of LDL by macrophages via the scan receptor, 
or make LDL more susceptible to oxidation [53].

After lipids, collagen is the main component of type V lesions, 
being produced by the SMC of the intima. The main type of 
advanced lesion collagen is type I fibrillar collagen, occurring 
mainly in the fibrous layer and in vascularized regions of advanced 
lesions. Alterations and accumulation of type I and III collagen 
occur primarily after extensive necrosis. Increases in collagen IV 
and V may result from hyperplasia of SMCs in atherosclerotic 
lesions [54,55].

Elastic fibers are fragmented and often appear to be associated 
with lipid and calcium deposits. Lipids bound to elastic fibers can 

modify the elasticity of the tissue, altering the conformation of 
elastin through hydrophobic interactions, in addition to facilitating 
the sensitivity of elastin to proteolytic degradation. Elastolysis 
is increased in aortas with advanced atherosclerotic lesions 
when compared to elastin isolated from uninjured aorta [56]. 
A significant decrease in elastin content is observed only in the 
most advanced lesions.

The transfer of lipoproteins and fibrinogen from plasma to the 
intima is a physiological process, but these proteins are found in 
much higher amounts in advanced lesions than in normal intima 
or early lesions.

The distribution of different molecular forms of fibrinogen in the 
vessel wall indicates that the accumulation of fibrinogen-derived 
proteins in the atherosclerotic vessel is not only related to thrombus 
formation or increased endothelial permeability, but is suggestive 
of an active interaction between macrophages, foam cells, and 
SMCs with fibrinogen.

Numerous in vitro studies have shown that fibrinogen, fibrin, 
and fibrinogen degradation products affect numerous biological 
functions of endothelial cells, SMCs, and macrophages, 
contributing to plaque growth and development [57]. The final 
stage of atherosclerotic lesion development is the conversion 
of the fibrotic lesion to an advanced lesion, a lesion in which a 
thrombus forms as a result of plaque ulceration or intraplaque 
hemorrhage [58,59].

Subsequent to plaque rupture, thrombosis occurs, which involves 
platelet aggregation and adhesion, as well as activation of the 
coagulation cascade. The coagulation cascade is initiated by 
the exposure of collagen from the interior of the plaque and by 
tissue factors produced by endothelial cells and macrophages. 
Tissue factors cause factor VIII to activate factor X, which then 
catalyzes the conversion of prothrombin to thrombin. The latter 
catalyzes the conversion of fibrinogen to monomeric fibrin, which 
subsequently undergoes polymerization to stabilize the thrombus. 
Thrombin also stimulates cell proliferation within the fractured 
lesion, promoting additional platelet deposition and release of 
platelet-derived growth factor by platelets and other cells present 
in the lesion.

Thrombosis can also be potentiated by lipoprotein (a), which 
inhibits thrombolysis, competitively preventing the conversion 
of plasminogen to plasmin [60,61].

All these events culminate in severe, often fatal clinical conditions 
and, therefore, the understanding of all stages of the atherogenic 
process will enable the therapeutic intervention of atherosclerosis, 
either through the modification of lipoprotein levels, the non-
transformation into foam cells, the remodeling of the constituent 
matrix of the vascular wall, or even through the modification 
of immunological reactivity. Intervention in one of these stages 
can delay the progression to more advanced lesions, prolonging 
survival, since atherosclerosis is a disease with a slow and silent 
evolution.
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