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Introduction
Almost 200 years ago, Jacobi investigated some functions known 
today as theta functions: θi(z; q) with (z,q) ∈ C, |q| < 1 (i = 
1,2,3,4) and demonstrated their main properties [1, 2]. In the last 
years, Jacobi theta functions have been used in the context of heat 
conduction theory, for problems related to orthogonalization and 
interpolation, in probability laws, in a class of hypergeometric 
integrals, in the complete elliptic integral of the first kind K(k) 
and in quantum field theory (QFT) at finite temperature with 
boundary conditions [3-10].

Through Schwinger’s proper-time representation for the Feynman 
propagator, it is possible to write the integrals on the proper-time 
s in terms of integrals on the Jacobi theta functions. However, 
these integrals are only tractable from a numerical point of view 
(up to our knowledge). Indeed, the integrals involving the Jacobi 
theta functions that appear in QFT acquire infinite values for the 
argument s → 0, thus requiring a regularization process of these 
integrals, for a later solution numeric [11-13].

The integrals of θi [ f(s); g(s)] with s in the range [0,+∞] which 
we will compute in this note, play an important role in effective 
models of quantum chromodynamics (QCD) (for a review these 
effective models of QCD, see for example the Refs. [14-16]). This 

protagonism arises when we apply the generalized Matsubara 
formalism to the model, which allows us to introduce the spatial 
boundaries, temperature, chemical potential, and magnetic effects 
in the quantum system (the reader can find a review of generalized 
Matsubara formalism in) [17, 18].

In this contribution, we produce a closed form for these integrals, 
in terms of well-behaved Bessel functions of the second type. This 
will be done considering the physical interest of applying our 
results in Quantum Mechanics (QM) with and without magnetic 
effects. For this reason, we will define the functions f(s) and g(s) 
as (≡ abs) and [≡ exp(−a2s)], respectively. This choice allows 
us to include in the systems, thermodynamic variables such as 
temperature and chemical potential by the formalism of imaginary-
time, for boson fields (even frequencies) and for fermion fields 
(odd frequencies).

This approach establishes the QFT in the topology Γ1
D = S1×RD−1, 

where the S1 represents a compact in the imaginary-time direction 
τ and there is no restriction on the remaining spatial coordinates 
(D − 1). From the boundary conditions for the bosonic or fermionic 
fields at coordinate τ, we can demonstrate that S1 defines a circle 
with radius β/2π where β is the inverse of system temperature, that 
is, β = 1/kBT. Therefore, in the imaginary-time formalism, τ ∈ [0,β].

The paper is structured as follows: In Section II, we obtain explicit 
expressions for the integrals of all Jacobi’s theta functions in terms 
of exponentially decaying functions Kν(x). In Section III, we apply 
the results in two different and self-interacting quantum systems: 
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ABSTRACT
We study four expressions involving the integrals of Jacobi’s theta functions. From Poisson’s summation formula, we write the integrals of the functions 
θi, (i = 1,2,3,4) in terms of modified Bessel functions of the second kind. For the integrals of θ1, θ2 and θ3, we get expressions with real arguments, but for 
the integral of θ4, we find an expression with imaginary argument. In addition, we apply our results to the description of two kinds of interacting quantum 
systems: boson gas and fermion gas both under a thermal bath and an external magnetic field.
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the first one formed by a gas of bosons and the other one composed 
by a gas of fermions. We shall define the Hamiltonian density 
for the cited systems and use some QFT results, in particular, 
the expressions for the Feynman propagator when the quantum 
field is under an external magnetic field. In this scenario, the 
so-called Landau levels arise (quantized energy levels in the 
plane orthogonal to the applied external magnetic field). Also, we 
explore the findings in the context of phase transition and broken/
restoration of symmetry. We conclude this work and make some 
considerations about it, in Section IV. At physical applications, 
we considered a four-dimensional Euclidean space and the natural 
unit system such that c = ℏ = kB = 1.

Integrals of Theta Functions
Let us recall the definitions of the four theta functions that can 
be found in Ref [1],
chapter 21, namely

                                                                                              (1)

                                                                                              (2)
 

                                                                                              (3)

                                                                                              (4) 

After the above definitions, we are interested in finding explicit 
expressions for integrals of the kind

                                                                                             (5)

with i = 1,2,3,4.

For convenience, we start by i = 2 in Eq. (5). Using the definition 
as in Eq. (2), we have

                                                                                             (6)

After completing the square in the last expression, we get,

                                                                                             (7)

where

                                                                                            (8)

Using the Poisson summation formula [19]

we have, after the change of variable σ = a2s and taking into 
account Eq. (8),

                                                                                               (9)

Now we can replace the right-hand side of Eq. (9) in Eq. (7):

                                                                                             (10) 

Remembering that the gamma function of argument ν and the 
modified Bessel function of the second kind of order ν, have the 
following representations [20]

  
                                                                                           (11)

                                                                                           (12) 
 
the Eq. (10) reads

                                                                                           (13)

Carrying out steps completely similar to what we did for I2, we 
find the expressions

                                                                                          (14)

For i = 3, we obtain

                                                                                            
(15)
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and finally

                                                                                             (16)
In the next section, we apply I2 and I3 to an interacting quantum 
gas of fermions and bosons, respectively.

Applications
In this Section, we will apply the results found previously to two 
different systems of interacting quantum particles: boson gas and 
fermion gas both defined on four-dimensional Euclidean space 
and under a constant magnetic field.

Quantum Boson Gas
Let us apply our findings to a boson system described by the 
scalar field ϕ under the interaction (λ0/4!)ϕ4 in a four-dimensional 
Euclidean space. The Hamiltonian density is given by

where m0 is the bare-mass parameter and λ0 is the self-coupling 
constant of the model both at zero temperature.

The interaction term                             at zero temperature, has the 
symmetry ϕ → −ϕ. However, as we shall see, at finite temperature 
T (such that T < Tc, where Tc is the critical temperature of the 
boson gas), the system exhibits spontaneous symmetry breaking.
Initially, we considered the interacting system in contact with 
the thermal reservoir, such that the corrections in one loop to the 
mass parameter are the type

                                                                                         (17)

The correction Σ being given by (at zero temperature)

                                                                                         (18) 

with                                         Through imaginary-time 

formalism, we introduce  the thermal effects over the quantum 
system by replaces

                                                                                            (19)

where β−1 = T is the temperature of the system, µ its chemical 
potential and ωnτ = (2nτ)π/β are the Matsubara frequencies of the 
field ϕ. The even numbers in ωnτ come from the Kubo-Martin-
Schwinger (KMS) conditions for bosons [21].

After using the identity

and the substitutions stated in Eq. (19) in Eq. (18) for
                          we obtain      

                                                                                              (20)

After some manipulations and calculating three Gaussian integrals, 
we get

                                                                                             (21)

where we used the Eq. (15) with the identification

                                                                 and d = 3/2.

The free energy of the system is given by

F ≡ −m2(T)ϕ2 + λϕ4,
the minus sign is due to the system being in an ordered phase 
(broken symmetry) at zero temperature. We also define 
λ = λ0/(8π3/2).

Quantum Boson Gas under Magnetics Effects
Again, let us use Eq. (17) to perform the magnetic and thermal 

corrections on the mass parameter         . In this case, the Hamiltonian 

density at zero temperature is given by

where                           is the covariant derivative. We choose 

the Landau gauge:                          This gauge represents a 
constant magnetic field along the z direction.

In virtue of dimensional reduction D → (D − 2) consequence of 
magnetic field applied, we have [22]

                                                                                       (22)

being p2 = p2τ + p2z + ω(2ℓ + 1). Here, ω ≡ eB is the cyclotron 
frequency, and ℓ = 0,1,2, ... labels the Landau levels.

Following analogous steps as done to obtain Eq. (21), the self-
energy including both temperature and magnetic effects read

                                                                                        (23) 

where we used the Eq. (15) with the identification 

a = 2π/β, b = μ, c =                                         and d = 1/2. 

The free energy of the system under magnetic effects is given by

F = −m2(T,ω)ϕ2 + λϕ4.
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We observe that the critical temperature is obtained when the boson system has zero mass parameter, i.e., m(Tc,ω) = 0 (see Ref [23]).

For performing the phase structure analysis of the system we fix mσ = 2m0, being mσ the scalar particle whose value used in this 
paper is mσ = 0.500 GeV [24]. For the graphics, we used λ = 0.17.
In Figure 1, we show the behavior of the mass parameter m as a function of temperature for the boson gas in interaction under several 
values of an external magnetic field.

Fixing the value of the magnetic field, we see that the finite chemical potential tends to decrease the critical temperature of the 
system. That is, higher chemical potential values contribute to the system undergoing a phase transition at lower temperatures than 
in the case of zero chemical potential.

On the other hand, by fixing µ and taking different values of ω, the critical temperature of the system increases, for higher external 
magnetic field strengths. The effect of the external magnetic field on the system is to facilitate the phase transition. This is the 
phenomenon of magnetic catalysis for the charged scalar field.

To complete the analysis of the phase structure of the model, we investigate the free energy of the system in Figures 2 and 3. In Figure 
2, we note that Tc (ω = 0) < Tc (ω = 0.5). In particular, the temperature T = 0.400 GeV at which the system is in the symmetric phase 
for ω = 0 GeV2 becomes a temperature that guarantees symmetry breaking for ω = 0.5 GeV2. The same analysis is valid for Figure 
3, however, the effect of µ = 0.200 GeV is to attenuate the Tc value shown in Figure 2.

Figure 1: Mass parameter m as a function of temperature for zero (left plot) and non-zero (right plot) chemical potential and several 
values of the external magnetic field. We used, in [GeV]2, ω ≡ eB = 1.0; 0.5; 0 for full, dashed and dot-dashed curves, respectively. 
Colors at the online version.

Figure 2: Free energy at zero chemical potential. On the left, we have zero magnetic field and on the right, we have a magnetic 
background. Note the increase of critical temperature, in [GeV], for augmentation magnetic field in [GeV]2: Tc (ω = 0) < Tc (ω = 
0.5), i.e., the magnetic catalysis phenomenon. Colors at the online version.

Quantum Fermion Gas
Another application of our results arises when we consider a four-fermion interacting model type Nambu-Jona-Lasinio describing 
quarks with punctual interaction, whose density Hamiltonian is given by [14-16]

                                                                                                                                                     
                                                                                                                                                 (24)
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Figure 3: Free energy at a finite chemical potential. On the left, we have zero magnetic field and, on the right, we have a magnetic 
background. The present panels show attenuation of critical temperature values concerning Figure 2, due to µ = 0.200 [GeV]. Again, 
we have the magnetic catalysis phenomenon. Colours at the online version.

where m0 is the current mass quark and Gs correspond to self-
coupling in the scalar channel. Using the mean field approximation, 
the gap equation reads

                                                                                          (25)

being M the constituent quark mass (effective quark mass). The 
fermion condensate in the momenta space is

                                                                                          (26)

with SF(p) = (p/−M)/(p2+M2) representing the fermion kernel 

propagator and                            Note that p/ = γαpα, γα being the 

Dirac matrices in the chiral representation. The symbol Tr means 
the trace over Dirac matrices, flavor, and color spaces. Since the 
trace of an odd number of 0 - matrices vanishes, we obtain

                                                                                           (27)

Let us fix the fermion field carrying Nf = 2 flavors with Nc = 3 
colors.

To include thermal effects on the model we use the Matsubara 
prescription for fermions

                                                                                           (28)

Again, β−1 = T is the temperature of the system, µ its chemical 
potential and ωnτ = (2nτ + 1)π/β are the Matsubara frequencies of 
the fermionic field. The odd numbers in ωnτ are due to the KMS 
conditions for fermions.

Then, after analogous steps to those that led to Eq. (21), the chiral 
condensate under chemical potential and temperature effects are 
written as

 
                                                                                               (29)

Through identification a = 2π/β, b = µ, c = (M2 − µ2)1/2 and d = 
3/2, the quark condensate is expressed in terms of I2 given by 
Eq. (13), namely

                                                                                        (30)

Quantum Fermion Gas under Magnetic effects
Under a magnetic field in the z-direction, the Hamiltonian density 
becomes

                                                                                             (31)

again                                    for

moreover, the gauge choice is the same as for the scalar case.

The chiral condensate including magnetic effects can be written as

                                                                                               (32)  

being p2 = p2τ +p2z +ωf (2ℓ+1+σ), such that ωf ≡ |Qf |B is the 
cyclotron frequency, σ = ±1 represents the spin of the fermionic 
field and ℓ = 0,1,2, ..., denotes the Landau levels.

After including thermal effects and following steps similar to 
demonstration Eq. (21), the quark condensate reads

                                                                                           
(33)                         

where I2 is written in the Eq. (13), for a = 2π/β, b = µ, c = [M2 − 
µ2 + ωf(2ℓ + 1 + σ)]1/2 and d = 1/2. Now, we can use Eq. (25) for 
describing the constituent quark mass taking into account thermal 
and magnetic effects.
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Figure 4: Constituent quark mass as a function of temperature for zero (left plot) and finite (right plot) chemical potential and several 
values of an external magnetic field. We have used, in [GeV]2, ω ≡ eB = 0; 0.5; 1.0 for full, dashed (large) and dashed (small) curves, 
respectively. Colors at the online version.

In the Figures. 4 and 5 are analyzed the gap equation and thermal mass gradient of the fermion model. We use the parameters that 
fit the mass and pion decay constant in vacuum, namely mπ = 0.138 GeV and fπ = 0.092 GeV:

In Figure 4 we note that the chemical potential has little influence on the fermionic system. Furthermore, for temperatures close to 
zero, the system does not depend on the chemical potential, since the constituent quark mass presents practically the same values 
for the fixed magnetic field.

In Figure 5 we plot the thermal mass gradient. The peak of the curve indicates the temperature at which the chiral phase transition 
occurs [25]. As in the bosonic case, the finite chemical potential tends to lower the transition temperature of the system. Still in Figure 
5, but considering the dependence on the external field, we can observe that the chiral transition is stimulated by increasing magnetic 
fields. Thus, we have the magnetic catalysis phenomenon again, now for fermions.

Figure 5: The thermal mass gradient versus temperature at zero (left plot) and non-zero (right plot) chemical potential and the same 
values of the external magnetic field showed in Figure 4. We have Tc (ω = 0) < Tc (ω ̸= 0), according with the magnetic catalysis. 
Colors at the online version.

Conclusion
In this paper, we study four integrals of Jacobi’s theta functions. By the Poisson sum formula and the integral representations of 
the modified Bessel function of the second kind and gamma function, we were able to express the solutions of Ii, with i = 1,2,3,4 in 
terms of Kν. We also apply the expressions found in a quantum gas of bosons and in a quantum gas of fermions, both self-interacting 
and under an external magnetic field. Due to KMS conditions, we used periodic boundary conditions in imaginary-time coordinates 
for bosons, which meant θ3 in the heated gas. On the other hand, the KMS conditions applied to the fermions meant antiperiodic 
boundary conditions in the imaginary-time coordinates of this system. In this last case, we express the thermal effects by functions θ2. 

From the phase structure of the systems, we observe the same behaviour of the parameters of mass (bosons) and constituent mass 
of quarks (fermions) for chemical potential zero and different from zero, namely: finite chemical potential makes the transition 
temperatures lower. In contrast, the effect due to the magnetic background is to increase the transition temperatures as the external 
field increases. This is the magnetic catalysis phenomenon.
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Another point to highlight is in relation to the first term of Eqs. 
(13) and (15). These terms have a singularity of the type:

                                     which is divergent for d = 3/2 or d = 1/2 

as used in this note. For this reason, we evaluated it numerically.

Jacobi theta functions are an interesting research topic with 
great potential for application in QM and QFT. We look forward 
to continuing to work on these issues in other models and 
backgrounds.
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