
Volume 1(4): 1-3J Arti Inte & Cloud Comp, 2022

Open Access

Journal of Artificial Intelligence &
Cloud Computing

ISSN: 2754-6659

Review Article

Informatica Intellegent Cloud Services Code Deployment with
Azure DevOps

10494 Red Stone Dr, Collierville, Tennessee, USA

Naveen Muppa

*Corresponding author
Naveen Muppa, 10494 Red Stone Dr, Collierville, Tennessee, USA.

Received: October 12, 2022; Accepted: October 16, 2022; Published: October 22, 2022

Keywords: Continuous Delivery and Deployment: Implementing
CD pipelines to automate the deployment of data integration
workflows from development through to production environments,
reducing manual effort and minimizing the risk of errors

Introduction
Azure DevOps is a solution provided by Microsoft that includes
Version Control, Reporting, Requirements Management,
automated builds, testing, and release management features. The
goal provided by the solution is to cover the full product lifecycle
and provide Dev Ops practices to an organization. On the version
control side, both Git and Team Foundation Version Control
(TFVC) could be deployed.

Setup and Configure Azure DevOps with IICS
To utilize DevOps for IICS, a project should be set up and it should
include a git-based repository as seen in the following screenshot.

Figure 1: Repository

Additionally, after a repository has been created, setting up
user accounts with the correct permissions on the repository is
important. By default, DevOps has premade groups to help manage
permissions. Permissions could be managed on a branch level of

a repository if that level of control is needed. The menu could
be found by navigating to the settings for the project and picking
the Repositories option.

An example of this menu is as follows:

Figure 2: Repository

IICS Configuration and Setup
After the project and repository are set up, the setup in IICS is
very similar to within GitHub as follows:

• In the Administrator Panel, navigate to settings and if you are
licensed for version control, see the following:

Edit icon is on the top right side. One can see the option Allow
Push to GIT. Enable this only in development org and make sure
to disable this option from nondevelopment orgs.

ABSTRACT
Continuous Integration/Continuous Delivery (CI/CD) has become a cornerstone of modern software development, enabling teams to deliver high-quality
applications at speed and scale. Informatica Intelligent Cloud Services (IICS) provides a robust platform for data integration and management in the cloud.
This abstract explores the implementation of CI/CD practices within IICS, focusing on streamlining the development, testing, and deployment of data
integration.

Citation: Naveen Muppa (2022) Informatica Intellegent Cloud Services Code Deployment with Azure DevOps. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-295. DOI: doi.org/10.47363/JAICC/2022(1)278

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 2-3

Figure 3: Setup

• Select Enable Source Control and Allow Push to Git Repository
if you want to check-in and check-out.

Figure 4: Source Control

• If you want the users to use the OAuth feature over a generated
token, make sure to select the Allow OAuth Access to Git option.

• Then, select your platform, copy the desired Git repository URL
(navigate to your DevOps project and select the repository and
use that URL), and the branch name.

Figure 5: Git

•	 Save the settings and then navigate to your user profile
dropdown menu and select Settings.

•	 If you want to use the OAuth Access, select that option, and
click the OAuth Authentication, and follow the popup to
completion.

•	 If you are using the Personal Access Token, navigate back to
the DevOps Project, and click the Clone option.

Figure 6: Clone

• Then, after getting the above menu, click Generate Git
Credentials where you have a username and password listed.
Copy the password given into IICS as your Personal Access Token.

Branching Strategies
Given the limitations of the Informatica CLI, we’ve decided to
diverge from conventional branching strategies. Our approach
involves managing two separate repositories:

1. IICS and 2. IICS Artifacts. Within the IICS repository, we
maintain a sole Master branch, integrated into the Informatica
Cloud development environment for streamlined check-in and
check-out operations.

Note: The limitations, we can’t store both source code and artifacts
in the same repository. For that we introduced separate IICS
Artifacts Repository, which houses Delta versions of our export
code.

Interactions with IICS DevOps
After getting the IICS setup to utilize the DevOps repository, you
would be able to check-in and check-out like you would with a
GitHub source control setup. You would also see the usual ability
to Pull from Git. From an IICS standpoint, it would work similarly
to how it would within GitHub.

On the DevOps side, it would use the Informatica username for the
commits and recreate the IICS folder structure. In the following
image, you see the folder structure setup and a list of objects that
make up the metadata of the objects in the IICS Repository.

Figure 7: Metadata

CI/CD Overview
CI/CD, or continuous integration and continuous delivery, is a
practice that automates the integration and delivery operations in
a CI/CD pipeline. You can automate each integration and delivery
operation using the Data Integration Service REST API or the
infacmd command line programs.

A CI/CD pipeline includes the integration operations that
developers use to design objects and the delivery operations that
deliver the objects to the production environment. You can use
the REST API or infacmd to automate integration and delivery
in the following ways:

Deploy and test every change that a developer makes to an object.
Developers receive instant feedback about whether objects pass
or fail testing and the types of changes that objects require.

Deliver objects that pass testing to the production environment.
Based on organizational requirements, you can deliver objects to

Citation: Naveen Muppa (2022) Informatica Intellegent Cloud Services Code Deployment with Azure DevOps. Journal of Artificial Intelligence & Cloud Computing.
SRC/JAICC-295. DOI: doi.org/10.47363/JAICC/2022(1)278

J Arti Inte & Cloud Comp, 2022 Volume 1(4): 3-3

additional requirements, such as QA and UAT, before delivering
the objects to the production environment.

Continuous integration and continuous delivery are fully logged
and visible to the entire team so that team members can allocate
time away from manual tasks.

Figure 8: IICS Build Pipelines

Unlike any programming language, compilation of code is not
required here.

Developer will commit the IICS code from Dev environment to
Azure repo (Master branch) in IICS.
As we cannot use this committed code for packaging due to IICS
CLI limitation, a build is setup to maintain the exported format
of IICS code in another repo.

Figure 9: IICS Repo Structure

•	 This build will be triggered for each developer commit and
it will perform below actions.

•	 Get the assets which are part of the commit.
•	 Export these assets from Dev org using IICS cli.
•	 Extract the exported zip file using IICS cli.
•	 Commit the extracted files into another repository (IICS

Artifacts)
•	 Whenever a story or task is completed and the assets are ready

to move to QA, couple of manual tasks needs to be done.
•	 Tag the assets as “promote_to_qa”.

Release Pipilines
Once these dependent objects are in place in target environment,
we can use release pipeline for deploying the assets. The release
pipeline consists of the steps below.
•	 The build artifact is extracted using iics extract command

of CLI.
•	 Bash script is used to update environment specific

configurations for assets like service connectors and app
connectors.

•	 The configuration variables are maintained in Azure Library
which is linked to release stage.

•	 Secrets are downloaded from Azure key vault.
•	 Package the assets as zip using iics package command of CLI.
•	 Import the assets from zip created in target environment using

iics import command of CLI
•	 Publish the assets in target environment using iics publish

command of CLI in order i.e., the dependent assets like
service connectors and app connections followed by processes
and task flows

•	 Un-tag the assets in dev environment after successful
deployment

•	 Also check-in the changes to ‘qa’ branch of IICS Artifacts
repository.

•	 For any new configuration change, we must add the variables
in Library and update the script in the release pipeline to
include them during deployment. Need to escape special
characters if they are present in variable values (like ‘/’ with
‘\/’) and also xml compatible characters for some special
characters (like ‘$’ to ‘$’)

 •	 F o r e x a m p l e , v a r i a b l e v a l u e a s
[value=”Admin&2&”] will correspond to [value=\”Adm
in\\&\\$2\\$\\&\”]

 •	 If the xml values are not proper, then import will fail

Conclusion
In conclusion, adopting CI/CD for Informatica Intelligent Cloud
Services empowers organizations to accelerate the delivery of data
integration solutions, improve collaboration among development
teams, and enhance the overall efficiency and reliability of data
pipelines. By following best practices and continuously refining
CI/CD processes, organizations can maximize the value derived
from their investment in IICS [1-5].

References
1.	 (2022) Progressive experimentation with feature flags - Azure

DevOps. Microsoft Learn https://learn.microsoft.com/en-us/
devops/operate/progressive-experimentation-feature-flags.

2.	 (2023) Set up staging environments - Azure App Service.
Microsoft Learn https://learn.microsoft.com/en-us/azure/
app-service/deploy-staging-slots?tabs=portal.

3.	 (2022) How Microsoft plans with DevOps - Azure DevOps.
Microsoft Learn https://learn.microsoft.com/en-us/devops/
plan/how-microsoft-plans-devops.

4.	 (2022) Automated Deployment of IICS Assets- CI/CD using
Informatica API’s. Informatica https://knowledge.informatica.
com/s/article/Automated-Deployment-of-IICS-Assets-CI-
CD-using-Informatica-API-s?language=en_US.

5.	 (2023) Developer Tool Guide. Informatica https://docs.
informatica.com/data-quality-and-governance/informatica-
data-quality/10-5-1/developer-tool-guide/continuous-
integration-and-continuous-delivery--ci-cd-/continuous-
integration/deploy-objects.html.

Copyright: ©2022 Naveen Muppa. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

