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Introduction
The Nubian Sandstone Aquifer System (NSAS) is considered one 
of the most important groundwater basins in North Africa and 
the Arab Region. Its large areal extent across the borders of four 
African Countries; Egypt, Sudan, Libya, and Chad, along with the 
huge groundwater reserves contained in its various water bearing 
formations, imply serious consideration, towards optimizing the 
utilization of this most vital natural water resource. Whereas, The 
North-West Sahara Aquifer System(NWSAS) often referred to as 
the Système Aquifère du Sahara Septentrional (SASS) is one of 
major North African transboundary groundwater basins in Africa. 
The huge groundwater reservoir of the North-West Sahara Aquifer 
System (NWSAS) is being shared by three North African countries 
of Algeria, Tunisia and Libya. Both aquifers constitute the major 
groundwater resources in the forgoing countries.

Methodology and techniques
Palaeo climatic condition were assessed from the isotopic 
composition of groundwater samples taken from the foregoing 

water bearing formations using stable isotopes of O-18, H-2, 
and radioactive isotopes of H-3 and C-14. Altitude effect as well 
as effect of depth on isotopic composition of both aquifers were 
quantified. A statistical package “SSC-Stat v2. nn” developed 
by Statistical Center of Reading University as well as isotope 
hydrology program ‘Diagram” were acknowledge ably used for 
the analysis of isotopic data.

Review of the present Case studies
Nubian Sandstone Aquifer System (NSAS) in Sinai Peninsula
The Nubian Sandstone  Aquifer   System (NSAS) in Sinai 
Peninsula; exposed at the foothills of the Precambrian basement 
outcrops in Sinai and in the Negev desert and underlies large 
segments of the central Sinai Peninsula and the southern part of 
the Negev desert  (Figure.1) [1,2]. The NSAS is composed of 
thick (up to 3 km in basin center) sequences of unfossiliferous 
continental sandstone with intercalated shale of shallow marine 
and deltaic origin, unconformably overlying basement rocks [3-5].
The NSAS is composed of unfossiliferous continental sandstone 
of Lower Cretaceous age intercalated with shale of shallow marine 
and deltaic origin of the Malha Formation in central and southern 
Sinai and marine limestone of the Risan Aneiza Formation in 
northern Sinai [6,7]. The Malha and the Risan Aneiza Formations 
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ABSTRACT
A comprehensive understanding of the groundwater dynamics of a transboundary aquifer system is highly needed for any successful transboundary 
cooperation policy. The present paper addresses the necessity of identifying specific cooperation problems which evolve out due to the improper handling 
and treatment of isotopic data of these hydro geological attributes and prevalent use patterns.

The main reasons that render the use of the treated isotopic data illegal, incomparable and have thus lost some of its power as an effective tool  is  the 
ignorance of both time and space variations in treating isotopic data of two major aquifer systems in Africa namely; Nubian Sandstones Aquifer System 
(NSAS) as well as North-Western Sahara Aquifer System (NWSAS).

For any quantitative application of the stable isotopes labeling of waters a geo-hydrological tool, it is necessary to establish how well the isotopic composition 
of a groundwater source is defined in a supposedly homogenous geographic setting. Both time and space variations were not considered in all isotopic data 
of both aquifer systems; NSAS and NWSAS, where some of the sample were taken in 1968,1971,1972 other in 1982,1995 and 2000,2006,2010 and were all in 
some cases combined together in one diagram regardless the significant difference in time or lag-time i.e. not one month lag ,but years. This situation would 
therefore be misleading and represents one of the most obvious inaccuracies as well. On the contrary, one might also argue this inaccuracy to be negligible 
or at least of little importance, due to spatial and temporal reasons. In either case it seems to be sensible to at least address the respective mismatches.
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are part of the Nubian Sandstone group that rests unconformably on the basement rock units and is overlain by calcareous sequences 
of Cenomanian to Upper Eocene age (Figure 1) [1,4]. There is a general consensus that the There is a general consensus that the 
paleoclimatic regimes of the North African Sahara Desert alternated between dry and wet periods throughout the Pleistocene Epoch 
and that it was during these wet periods that the NSAS was recharged. However, the nature of these wet periods remains a subject of 
debate. Two main hypotheses have been advocated to address the origin of the fossil water of the NSAS: (1) intensification of paleo 
westerlies during glacial periods or (2) intensifi-cation of paleo monsoons during interglacial periods [8-23]. 

Figure 1: Location map for groundwater samples and south–North cross section [18]. Groundwater samples collected for isotopic 
analysis by A. Abouelmagd et al., were conducted in January and June of 2010  from 12 drilled wells and from the Ayun Musa spring, 
which taps the NSAS and from three open wells in the fractured base-ment as shown in Figure 2 .The inspection of Figures 1 and 2 
reveals that samples are widely distributed and represent totally different elevation as far as altitude of recharge areas is concerned 
and totally different depth as far as groundwater depth is concerned (cross section A-A of Figure 1).
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Figure 2: A base map false-color Landsat TM image showing (1) our groundwater sample locations from wells and a spring tapping 
the NSAS (blue triangles) and from wells tapping the fractured basement aquifer (red triangles); (2) groundwater sample locations 
for open wells tapping the NSAS in the recharge areas (green triangles); (3) groundwater levels (dashed lines) and flow directions 
(black arrows); and (4) δ2H value (yellow box: upper), adjusted 14C model age (yellow box: lower) [24,25]. Also shown is a graphical 
representation for polygons (outlined by red lines) defined by the Thiessen method that was applied to interpolate present-day mean 
weighted annual temperature from meteorological stations (purple cross) to the surrounding areas including the Nubian Sandstone 
Aquifer outcrops.

Table 1: Sample locations, well information, O and H isotopic compositions, and tritium activities for groundwater samples 
from wells tapping the NSAS and the fractured basement in Sinai [18].
ID Name Latitude

N
Longitude

E
Aquifer/

Well
TDa

(m)
DWLa

(m)
TDSb

(mg/L)
δ2Hc

(‰)
δ18Oc

(‰)
3Hc

TU
     

Group

SN4-1 Arif El Naqa 2 30°18.21′ 34°26.30′ NSS/D 870 271 3810 −49.3 −7.62 – I
SN4-2 El Themed 2 29°40.80′ 34°18.20′ NSS/D 747 376.8 1830 −52.3 −7.7 – I
SN4-3 El Hasana 3 30°26.99′ 33°51.06′ NSS/D 1200 200 3260 −51.6 −7.19 – I
SN4-4 Sudr El Hetan 3 29°58.70′ 33°16.95′ NSS/D 1040 270 1740 −53 −7.85 – I
SN4-5 El Rueikna 3 29°08.06′ 33°25.35′ NSS/D – 55.6 480 −33.3 −5.89 – II
SN4-7 El Kuntella 3 30°00.38′ 34°42.04′ NSS/D 1121 353.4 1827 −63.1 −8.85 – I
SN4-8 Nekhel 5 29°57.27′ 33°46.08′ NSS/D 1200 200.6 1622 −61.2 −8.81 – I
SN3-3 Mekatab 3 28°47.71′ 33°26.89′ NSS/D 366 49.7 953 −24.1 −4.84 b1.0 II
SN3-4 Nadya El Soda 28°46.55′ 33°31.35′ NSS/D 63 – 934 −24.8 −4.93 2.78 ± 0.29 II
SN3-5 Haroun 28°50.37′ 33°42.41′ FB/O 31 29.7 827 −21.3 −4.13 2.42 ± 0.27 II
SN3-6 Halwagy 28°38.33′ 33°59.62′ FB/O – 30 868 −18.7 −3.36 2.55 ± 0.30 II
SN3-7 Dir El Banat 28°42.00′ 33°38.80′ FB/O – – 675 −22.7 −4.54 3.04 ± 0.28 II
SN3-8 Regwa 12 28°26.05′ 33°29.59′ NSS/D – 18.4 622 −34.5 −5.72 b1.0 II
SN3-9 Ayun Musa 29°52.28′ 32°38.03′ NSS/S n/a n/a 2778 −42.9 −6.53 b1.0 I
SN3-10 El Berouk 4 30°11.60′ 33°42.58′ NSS/D 955 137 2682 −72.9 −9.59 b1.0 I
SN3-11 Erirah El Far 4 30°02.35′ 33°20.15′ NSS/D 1250 – 2215 −55.6 −8 b1.0 I

Abbreviations: NSS: Nubian Sandstone; FB: fractured basement; D: drilled well; O: open well; S: spring; TU: tritium unit.
a	 Data collected from field work and from JICA (1999).
b	 Western Michigan University geochemical labs.
c	 Analyzed at Isotech Laboratories, Champaign, Illinois.
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North-Western Sahara Aquifer System (NWSAS)
The North-Western Sahara Aquifer System (NWSAS) often 
referred to as the Système Aquifère du Sahara Septentrional 
(SASS) is one of major North African transboundary groundwater 
basins in Africa. The huge groundwater reservoir of the North-
West Sahara Aquifer System (NWSAS) is being shared by three 
North African countries of Algeria, Tunisia and Libya (Figure 
1).The NWSAS covers an approximately half the size of the 
Nubian Sandstone Aquifer System, shared by Egypt, Sudan, 
Libya and Chad and it is predicted to cover around 1 million km2 
and reaching a scale of 1,800 km from east to west and 900 km 
from north to south. The NWSAS can be categorized as a multi-
layered system of aquifers which embodies a huge stock of non-
renewable, fossil water. It displays a mostly porous and fissured 
/ fractured structure. The geological structure determines the 
aquifer’s recharge infiltration rate and the velocity of groundwater 
flows in time and space. Among its different layers, two have to be 
distinguished as being of major size and importance. The so called 
Continental Intercalaire (CI) is located on the lower level (Figure 
2). It has a thickness of many hundreds of meters and is found in 
depths ranging from around 400 up to 2,000 meters below ground. 
According to Besbes et al. the CI contains a set of layers with very 
differing lithology, comprising mainly continental sandstone in 
alternation with marine limestones and clay formations (Figure 
2). NWSAS being identified as type “F” according to Eckstein 
and Eckstein, and was thus considered as unrelated to any surface 
body of water, disconnected from the hydrological cycle, and 
devoid of any meaningful recharge. However the present study 
was designed to reveals the real situation of NWSAS and whether 
it is a renewable or non-renewable water resource

Figure 3: Location map and areal extent of  North-Western Sahra 
Aquifer System (NWSAS)

Figure 4: East-West lithostratigraphic cross section along the 
three countries (OSS internal report)

Table 2: Isotopic data of North Western Sahara Aquifer System (NWSAS)(OSS Int. Report)
Code Name of water point Date Aquifer 18O 2H 14C % 13C%.
15.0.16 Hassi Maroket 66 L 8 27/11/69 ind (Sa) 1.0 ±0.7 -5.6
15.0.17 Hassi Maroket 66 L 9 01/12/70 ind (Sa) -5.7 1.0±0.1
14.14.16 Hassi Enfil P n°5 27/03/69 ind (Sa) -6.0 -58 59.6 ±4.4 -5.1
13.0.0 Fogg. Amghaier 

(Timimoun)
26/03/69 ind (Sa) -7.9 -64

CF Terr. Aviation 
(Timimoun)

01/12/70 ind (Sa) -8.3 30.9 ±0.5 -6.5

8.0.0 Foggara Adrar 24/03/69 ind (Sa) -7.0 6 60
9.0.0 Ferme expale Adrar 25/03/69 ind (Sa) -6.1 -52
CF Shell - Sonatrach-Adrar 27/04/69 ind (Sa) -7.1 -54
CF Adrar 01/12/70 ind (Sa) -6.5 24.4 ± 0.5 -8.7
CF Adrar 04/04/68 ind (Sa) -6.8
CF Adrar 28/04/68 ind (Sa) -6.7
CF Adrar 23/04/68 ind (Sa) -7.1 -61
CF Bou Ali 01/12/70 ind (Sa) -8.7 22.3 ± 0.4 -8.8
CF Bou Ali 28/04/68 ind (Sa) -7.7
CF Bou Ali 28/04/68 ind (Sa) -7.9
CF C.A.S ( Reggane) 01/12/70 ind (Sa) 33.2 ±2.5
CF Reggane 14/04/68 ind (Sa) -7.9
CF Reggane 01/11/71 ind (Sa) 33.5 ±2.5
CF OCI, Reggane 14/04/68 ind (Sa) -7.4
CF Fogg. Beb Drao, Aoulef 

El Arab
14/04/68 ind (Sa) -7.4 -58

CF Fogg. Beb Drao, Aoulef 
El Arab

01/12/70 ind (Sa) -7.4
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51.0.0 Tit 101 01/14/71 ind (Sa) -8.0 -60
51.0.1 Tit 102 01/11/71 ind (Sa) 36.0 ±0.6
CF Hydraulique In Salah 01/12/70 ind (Sa) -8.4 21.2 ±1.0 -10.2
CF In Salah 14/04/68 ind (Sa) -8.3 -64
CF Foggara Ez Zoua 13/04/68 ind (Sa) -9.6
CF Foggara Gentour 

(Timimoun)
26/03/69 ind (Sa)+ CT (SC) -6.6 -57

Findings and discussion
Nubian Sandstones Aquifer System (NSAS)
The range of stable isotopes contents(Table 1) is interrupted with 
2H ranging from -18 (‰) to -72 (‰) and O-18 from -3 (‰) 
to -9.59 (‰) as a result of  ignoring altitude effect defined by 
Gat, J.R. (1980) as ” On the windward side of a mountain, the 
d18O and dD values of precipitation decrease with increasing 
altitude”. Typical gradients are -0.15 to -0.5 ‰ per 100m for 
18O, and -1.5 to -4 ‰ per 100m for D was totally ignored in 
the foregoing study. Accordingly, the NSAS exhibits an altitude 
effect by which, mixing also occurred between waters precipitated 
at different altitudes, this could also account for the observed 
difference in stable isotopes and confirms that the aquifer receive 
a considerable fraction of modern water recharging the aquifer 
under consideration (Figure 5). A solid criterion indicating 
altitude effect was established using the same data of Table 1 
as shown in Figure.5. A further scrutiny to Table 1  taking into 
consideration column of latitudes versus isotopic composition, 
it can be concluded that also “latitude effect (in which The d18O 
and dD values decrease with increasing latitude because of the 
increasing degree of “rain-out”)  was not taken into consideration 
and represent mismatches.  On the contrary, one might also argue 
this inaccuracy to be negligible or at least of little importance, 
due to spatial and temporal reasons. In either case it seems to be 
sensible to at least address the respective mismatches.

North-Western Sahara Aquifer System (NWSAS)
For any quantitative application of the stable isotopes labelling of 
waters a a geo-hydrological tool, it is necessary to establish how 
well the isotopic composition of a groundwater source is defined in 
a supposedly homogenous geographic setting. We have to consider 
both time and space variations [26].The inspection of Table 2 
reveals that  some of the sample were taken in 1968,1971,1972 
other in 1982,1995 and were all in some cases combined together 
in one diagram regardless the significant difference in time or 
lag-time i.e. not one-month lag, but years.

Figure 5: Altitude effect expressed as cross plot of O-18 versus 
elevation for NSAS  in Sinai (Originated from the present author) 

Furthermore, In a given region, the δ-values of precipitation 
at higher altitudes generally will be more negative in what is 
known as “Altitude effect”. So combining data from Algeria and 
Tunisia with no differentian will lead to a total ignorance of one 
of the major effect on isotopic data ..the same fact remains true 
for variation in depth of water sample (Figure 6).The inspection 

of Figure 4 of litho-stratigraphic sequence indicates that a 
considerable portion of aquifer is confined with mean groundwater 
velocity of 6m/year,i.e.2cm/day which represents some sort of 
stagnancy as represented by slow velocity aided by elevated 
groundwater temperature will enforce water to have–rock–water 
interaction phenomenon which will change isotopic composition. 
This approach was not also considered.

Last but not least Spatial scatter within an aquifer is found in 
most cases to be more significant than variation in time. One 
must realize that no area is really uniform from topographical, 
morphological and ecological point of view. Accordingly, for 
transboundary aquifer shared by Algeria,Tunisia and Libyia, 
different recharge relation may apply at each point,(Figure 7) [26].

(a)

(b)

Figure 6: Cross plot of depth to water level, versus δ 18O‰ for 
C.I. aquifer in Libya (a) and in Tunisia (b)

Figure 7:  Relationship between δ18O and d-excess for Algerian 
C.I. with low d-excess  values indicating  the present-day recharge 
water (Filled Red squares). Originate from the present author

Conclusions
A comprehensive understanding is highly needed for any successful 
transboundary cooperation policy. Isotopic data interpreted in 
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conjunction with conventional hydrologic data has confirmed the 
fact that NWSAS as well as NSAS    are receiving a considerable 
fraction of modern water recharging both aquifers. This was 
clearly indicated by the frequent occurrences of significant amount 
14C >2 % pmc, H-3 ≥5 T.U. and  the abnormally low values 
of d-excess(-1‰).Isotopic data related to both aquifers ara not 
comparable as per the significant difference in time and space 
variation [27-76].
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