Improved Performance of MoS$_2$ FETs using AlN/Al$_2$O$_3$ dielectric and Plasma Enhanced Atomic Layer Deposition (PEALD)

Tsu-Ting Lee*, Kashi Chiranjeevulu1,2, Chih-Hsuan Hu2,3, Sireesha Pedaballi1,2, Ching-Ting Lee, Chang-Fu Dee4 and Edward Yi Chang1,2,*

1International College of Semiconductor Technology, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (ROC)
2Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (ROC)
3Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan (ROC)
4Institute of Microengineering and Nanoelectronics (IMEN), University of Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia

ABSTRACT

Molybdenum disulfide (MoS$_2$) transistors are emerging as an exciting material system for future electronics due to their unique electrical properties, two-dimensional (2D) nature and atomically thin geometry. This ultra-thin-body (UTB) semiconductor considerably reduces current leakage and enables gate-to-channel control. The homogeneous growth of sub-10 nm dielectrics on 2D materials remains challenging. We demonstrate high-performance MoS$_2$ FETs at low temperature (150°C) using the plasma-enhanced Atomic layer deposition (PEALD) technique. The device exhibits a high on/off current ratio of about 105, the field-effect mobility of 9.5 cm2/Vs, and a subthreshold swing (SS) of 171 mV/dec, which is comparable to the similar structure of the top gate device. In addition, we have demonstrated contact resistance on back-gate MoS$_2$ FETs with and without dielectric capping.

Keywords: 2D Materials, PEALD, TMDCs, MoS$_2$ FET, Resistance, Top-Gate Dielectric.

Introduction

Metal-oxide-semiconductor field-effect transistors (MOSFETs) scale beyond Moore’s Law and offer several advantages like low operating voltages, faster-switching speed and virtually no input current required to control the load current. There is vital need to develop alternative semiconductor materials and technology to overcome short channel effects. As MOSFETs reach sub-10 nanometer channel lengths, an ultra-thin-body (UTB) semiconductor can reduce gate leakage current while providing an effective electrostatic coupling between the gate and semiconducting channel. For effective gate coupling of the device, the semiconductor thickness should not be more than or equally 1/3 of the gate length \[1\]. In sub-5 nm gate lengths, this channel materials with only 1 or 2 atomic layers in thickness. Due to their essential thickness uniformity and ability to become a monolayer, two-dimensional (2D) semiconductors are excellent candidates for the channel material of future single layer-FETs. Exfoliation of graphene has led to the development of two-dimensional (2D) materials. As a promising alternative to silicon, graphene exhibits superior carrier mobility of up to 200000 cm2/Vs, but its lack of bandgap severely limits its use in digital logic. In contrast to zero bandgap graphene, molybdenum disulfide (MoS$_2$) is a semiconducting transition metal dichalcogenide (TMDCs). Having a relatively wide bandgap has shown promise for a variety of applications, including photodetectors \[2\], flexible electronics \[3\], low-voltage field-effect transistors (FETs) \[4\], and monolithic 3D CMOs \[5\], which is potentially applicable to future flexible electronic and nanoscale devices. Crystals of MoS$_2$ are sticking by van der Waals forces. The single-layer MoS$_2$ has a thickness of 6.5Å. As a result of the ultrathin nature of the material, the high contact resistance (R$_c$), which controls drain current, a metal/semiconductor interface will have a high Schottky barrier height \[6\]. Metal contact layers, Fermi de-pinning layers and doping engineering are necessary to obtain low-resistance contacts \[7-12\]. Several research groups have recently demonstrated single or multilayer MoS$_2$ FETs using high-dielectric-constant (high-k) materials as top-gate dielectric layers formed by atomic layer deposition (ALD) \[13-15\]. Despite this, uniformly depositing sub-10nm dielectrics on 2D materials remains challenging since the MoS$_2$ basal plane is free of dangling bonds or functional groups. It is necessary to fabricate large areas of ultra-thin and pinhole-free high-k dielectrics to fabricate MoS$_2$ devices with high performance. Due to the physical adsorbing nature of ALD precursors, Liu et al. claim that Al$_2$O$_3$ can be formed on MoS$_2$ surfaces at temperatures below 200°C compared with chemical adsorption \[25,16\]. The high-k dielectric engineering plays a key role in MoS$_2$ field-effect transistor (FET) \[14-17\] Coulomb scattering in dielectrics with high-k values is inhibited by electric field penetration and by mismatches between dielectric constants of nanoscale semiconducting materials \[18\]. As a result, carrier mobility can be substantially increased. Additionally, the dielectric on MoS$_2$ may reduce hysteresis of FETs by preventing moisture absorption from ambient air and ensuring best performance by integration of high-k gate dielectrics on MoS$_2$ surfaces with atomic layer deposition (ALD) remains a challenge so far \[19-21\]. ALD is a self-limiting reaction that requires the initial precursor to react uniformly with the sample surface \[22\]. Because of the chemically

Corresponding author

Edward Yi Chang, Department of Materials Science and Engineering, International College of Semiconductor Technology, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan (ROC). E-mail: chirukasi1@gmail.com

Received: January 19, 2022; **Accepted:** January 24, 2022; **Published:** January 30, 2022
by using oxidation and diffusion furnaces (SI-CA1200-D4). MoS₂ and other 2D materials can be optimized by an optical microscope observing the SiO₂ thickness. After SiO₂ deposition, a wafer clean is necessary to remove chemical residues. Wafers were immersed in acetone and subjected to ultrasonication for about 5 minutes. After soaking in isopropanol (IPA) for three to five minutes, the residual solvent can be removed with N₂. After that, the device was fabricated using photolithography and AZ5214E photoresist. JBX-6000FS, E-beam lithography system used in the fabrication process. Photoresists such as PMGI and GL2000 works with E-beam (electron beam) lithography for ohmic metal deposition. For determining MoS₂ thickness, we used atomic force microscopy (AFM) (see Supplementary Figure S1) and Raman spectroscopy. A Keithley 4200 was used to measure leakage of the MoS₂ gate. Interface evaluation between ALD Al₂O₃ and MoS₂ crystals, also used for CV measurements. TLM is a technique used to determine the contact resistance between a metal and a semiconductor to study the effects of AlN and Al₂O₃ capping on n-type few-layer MoS₂ transistors.

Supplementary Figure S1: (a) Microscopic (optical) image of multi-layer MoS₂ flake after being transferred to Si substrate capped with SiO₂. (b) AFM image of MoS₂ surface after the direct deposition of 6-nm Al₂O₃ at 150°C at 4 to 11 layers of MoS₂ films on SiO₂/Si from mechanical exfoliation.

AIN was deposited by using trimethylaluminum (TMA) and remote N₂ plasma (with controllable N₂/H₂/Ar composition and adjustable RF coil power) as Al and N sources respectively. During one cycle of AIN growth, 40 ms TMA with carrier gas of 10 sccm Ar is provided for the Al source first, then the chamber is purged by 30 sccm Ar for 3 s. Considering that only 20 ms TMA dosage was used for ALD Al₂O₃, and had already resulted in a growth rate of 1 Å/cycle, 40 ms TMA for ALD AlN can be regarded as over dosed. 60 s and 20 sccm N₂ plasma with an adjustable Ar/H₂ content and remote RF coil power is used as N source.

Supplementary Figure S2: The leakage characteristic comparison of the dielectric grown by 4 kinds of the ALD methods.

The polarization of AlN induced MoS₂ band diagram lowering

Result and Discussion

Here in MoS₂, samples were mechanically exfoliated from bulk MoS₂ and placed on sapphire substrate by thermal tape. MoS₂ flakes were identified under an optical microscope by their color, based on thickness-dependent and optical contrast. The number of MoS₂ layers ranged from 5-15 layers (3.5nm -10nm) [33,34]. (See optical and AFM image Supplementary Figure S1). Fig.1a shows the schematic structure of the MoS₂ sample after the deposition of 1-nm AlN and 6-nm Al₂O₃. The surface morphology was characterized by AFM (Figure S1b) and we observed the resulted a continuous smooth surface. In our experiments, the bare SiO₂/Si wafer usually had smoother surface roughness than after the sample was deposited to the SiO₂/Si wafer. The weak adhesion of the precursors (TMA, H₂O) on the dangling bond-free MoS₂ surface leads to cracked areas in the dielectric film, which agrees with previous reports [35,36] Although organic solvent residues support the deposition of dielectric materials on MoS₂ [22] the failure of direct deposition of Al₂O₃ on the MoS₂ sample also reflects that the MoS₂ has maintained a clean surface during the fabrication process. The successful deposition of AlN/Al₂O₃ on MoS₂ could be the result of the relatively low growth temperature of AlN. However, we found that even when the ALD growth temperature of Al₂O₃ was reduced from 250°C to 150°C, similar poor quality was still observed when Al₂O₃ was directly deposited on MoS₂. Supplementary Figure S2 shows the leakage characteristics of four various ALD methods and the measurement setup for a MoS₂ MOSFET device. Thus, we conclude that the improved surface morphology and quality of AlN/Al₂O₃ dielectric stack on the dangle-bond-free MoS₂ surface is mainly the benefits of the low-power remote nitrogen plasma treatment during the PEALD growth of AlN, which is similar to the O₂ plasma functionalization of the multilayer MoS₂, that was used to promote the ALD deposition of Al₂O₃ [25]. Even though the remote pure N₂ plasma is very mild to single-layer MoS₂, during several hours treatment. However, after fine-tuning ALD, it was still possible to reduce the ALD growth temperature of Al₂O₃ to 150°C at 4 MV/cm, gate leakage drops to 1000 pA/cm² significantly below the acceptable level for Nano-electronic devices and circuits. Surface treatment of MoS₂ allows it to undergo functionalization without oxidation or damage to the crystal lattice [37,38]. Surface pretreatment does not improve the quality of the oxide sufficiently. Plasma exposure conditions are hard to control, and our surface pretreatment process remains unstable. This work involved adding an ultra-thin AlN buffer layer and using low-temperature plasma-enhanced ALD to deposit a dielectric film on the MoS₂ surface that exhibited good electrical properties. AlN is the same as Al₂O₃. We believe that the AlN interfacial layer provides effective sites for nucleation on the MoS₂ surface. Enhance the formal deposition of high-quality Al₂O₃ on MoS₂. Low-temperature plasma-enhanced ALD produces active plasma species that can react with MoS₂ surfaces. Figure 1c shows the transfer curve for the MoS₂ FET transistor under different drain voltage biases, varying from 2V to -2V, with the gate dielectrics of 1 nm AlN and 6-nm Al₂O₃. The gate voltage is swept during the measurements from -2V to 2V and then back to -2V again. Transfer curves for sweeping VG up and VG down are indicated by dashed-black and dashed-red lines, respectively. The transfer curves for all drain voltage biases show slight hysteresis. When the gate voltage of an n-type MOSFET is applied, a clear shift from growth to depletion can occur. In AlN and Al₂O₃ dielectric films with capacitances of 1.5 F/cm², the AlN and Al₂O₃ films are grown by plasma-enhanced ALD at 150°C on MoS₂, indicating good growth.

The on/off ratio is high at 10⁷ is achieved, but the resolution of the equipment limits the off-current. The field-effect mobility can be calculated as 9.5 cm²/Vs using the equation below.

\[\mu = \frac{dI_D}{dV} \times \left[\frac{L}{(WC_{ox}V_D)} \right] \]

(1.1)

where \(L = 2 \mu m \) and \(W = 6.3um \) are the channel length and width, respectively.

We investigated the electrical properties of 6 nm Al₂O₃ and 1 nm AlN ultra-thin dielectrics using low-temperature PEALD. According to Figure 1c, the black and green curves represent the results for stepping V_G up and V_G down, respectively. I_D/V_D characteristics and transfer curves of top-gated MoS₂ FETs shown in Figure 2a. The maximum drain current (I_D,max) is 16 uA/um at V_D=2V. As the output curves are linear, the Ti/Au contacts are ohmic, similar to a small drain voltage range. Figure 2b shows the transfer characteristics measurement (I_D-V_G). Previously in a similar structure of a top gate MoS₂ FET with 1 nm AlN and 5 nm Al₂O₃ gate dielectric [39] Despite this, our device only has a sub-threshold slope of 171mV/dec, which may be due to improved oxide interface quality by a lower temperature ALD process and TMA pretreatment. By physically adsorbing precursors onto MoS₂, the dielectric is deposited at a low temperature, preventing thermal damage to the channel. A few cycles of TMA molecules passing through the carrier gas (Ar) before AlN deposition increases the number of nucleation sites on MoS₂. For gate electric fields as high as 4MV/cm, the top gate leakage current is 10 pA/m² (see Figure 2c). The gate leakage curve was smaller [40] after resolving the equipment. In both cases, the AlN interlayer and the low-

Supplementary Figure S3: The polarization of AlN induced MoS₂ band diagram lowering

Figure 1: (a) Schematic of MoS₂ sample after the deposition of AlN/Al₂O₃. (b) The transfer curve for the MoS₂ FET transistor under different drain voltage biases, the MoS₂ FET device with 1 nm AlN and 6 nm Al₂O₃ gate dielectric.
temperature PEALD approach are highly effective in uniformly growing ultra-thin dielectric on MoS$_2$.

The Transmission line measurements were conducted on n-type few-layer MoS$_2$ transistors with and without dielectric capping to understand the effects of AlN and Al$_2$O$_3$. As shown in Figure 3a, the contact resistance has been significantly reduced from 95 kΩ·μm to 3.6 kΩ·μm after the dielectric capping. Increased resistance (Rc) may be due to the reduction of Schottky barrier height and decreased dielectric capping. The alignment of bands on a semiconducting 2D crystal determines the polarity of a transistor. A dielectric coating was applied to the surface to reduce contact resistance. We expect AlN’s polarizability to attract electrons towards MoS$_2$. As a result of negative charges accumulating, the MoS$_2$ band bend (see supporting information S3). By reducing the effective barrier height for electrons, band bending facilitates the injection of electrons from the metal into the conduction band by thermal tunneling. Along with the reduction of the contact resistance, the sheet resistance has also declined from 1×106 Ω/μm to 1.76×105 Ω/μm. Figure 3b illustrates that the reduced resistance (Rc) enrichments the I$_D$ of 0.2 μA/μm channel length from 0.22 μA/μm to 160 μA/μm at V_D = 2V.

The drain current (I$_D$) increases more than 700 times. As shown in Figure 3b, the reduced resistance (Rc) enrichments the drain current and contact resistance of short channel back-gate MoS$_2$ FETs. However, the contact resistance of 3.6 kΩ·μm is still seven times higher than the best reported value of 0.5 kΩ·μm [12]. We reduced the contact resistance of top gate MoS$_2$ FETs with large contact resistance and low drain current, more device doping studies are required to make even better MoS$_2$ FETs.

Conclusion

Our approach demonstrates a low-temperature plasma-enhanced ALD technique for generating gate dielectric on MoS$_2$ and AlN serves as a buffer layer. We investigated the integration of 1 nm AlN and 6 nm Al$_2$O$_3$ in a top-gate MoS$_2$ FET. Additionally, the dielectric capping improved the contact resistance. The device has an electron mobility of 9.5 106 and an on/off current ratio exceeding 106. A sub-threshold swing (SS) of 171 mV/dec indicates excellent interface quality and scalability. Our measurements of transistors with and without a dielectric cap revealed that the contact resistance and sheet resistance were reduced by AlN polarization technique from 95 kΩ·μm to 3.6 kΩ·μm and 1×106 Ω/μm to 1.76×105 Ω/μm respectively.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgements

This work was financially supported by the “Center for the Semiconductor Technology Research” from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. Also, it is supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST 110-2634-F-009-027, as well as 110-2622-8-009-018-SB and by National Chung-Shan Institute of Science and Technology, Taiwan, under NCSIST-403-V309(110).
References

