
Open Access

Journal of Marketing & Supply
Chain Management

ISSN: 2754-6683

J Market & Supply Chain Managem, 2024 Volume 3(1): 1-5

Research Article

Implementing a VDA-Triggered Compliance System in Fleet
Management: A Novel Approach
Sahil Nyati

*Corresponding author
Sahil Nyati, Director Engineering, Maven Machines, Austin, Texas, USA.

Received: January 30, 2024; Accepted: February 06, 2024; Published: February 15, 2024

Keywords: Vehicle Data Adapters, Compliance System, Driver
Safety, Real Time Monitoring

Introduction
The need for ensuring compliance with driver login protocols
in fleet management is paramount for maintaining safety and
regulatory standards. This paper discusses a novel approach to
addressing this challenge by using VDAs to trigger alarms in
vehicles when drivers are in motion without being logged into
the application.

Problem Statement
Drivers not logging into the app while driving presents a significant
compliance issue. A solution is required to alert drivers in real-
time to rectify this behavior.

Proposed Solution
The proposed system uses a Flink job to monitor VDA events and
trigger an alarm in vehicles when specific conditions are met, such
as movement without driver login.

Architecture and Implementation
The architecture and implementation of the system involve several
key components and tasks. In this section, we will delve into the
details of how the system is designed and how it is implemented
to achieve the desired functionality.

VDA Alarm Job
The VDA Alarm Job is a Flink job responsible for monitoring
VDA events and triggering alarms when necessary. It utilizes the
existing VD topic as a data source and the HW command cache as
a sink. The job is designed to be keyed by the Power Unit Number,
ensuring that events are processed correctly for each vehicle.
“‘java
// Flink job to trigger alarms for VDA events
DataStream<VDAEvent> vdaEvents = env.addSource(new
VDAEventSource());

DataStream<AlarmEvent> alarms = vdaEvents
.keyBy((KeySelector<VDAEvent, String>) event -> event.
getPowerUnitNumber())
.process(new VDAAlarmProcessFunction());
alarms.addSink(new HWCommandSink());
“‘
HW Command Cache
The HW Command Cache is a critical component for storing
commands and responses. It is structured to efficiently manage
the data required for processing. Each command request is stored
with a specific key format, making it easy to retrieve.
“‘java
// Storing a command request in HW Command Cache String
commandKey = “vdaCommandRequest-” + imei; String
commandValue = “”;
// Set a TTL of 1 minute for the command
commandCache.set(commandKey, commandValue, Duration.
ofMinutes(1));
“‘
Splitter
The Splitter is responsible for generating acknowledgement
messages (ACKs) and checking for waiting commands in the
HW command cache. When generating ACKs, it appends any
waiting commands to the acknowledgment message.
“‘java

// Splitter generates ACK
String ack = generateAck(imei);
// Check HW command cache for waiting commands String
waitingCommand =
commandCache.get(“vdaCommandRequest-” + imei);
if (waitingCommand != null) {
ack += waitingCommand;
}
“‘
Command Responses
Command responses from the VDA are parsed and stored in the

ABSTRACT
This research paper explores the development of a compliance system within a fleet management framework, utilizing Vehicle Data Adapters (VDAs) to
address driver app login issues. The system is designed to trigger an alarm in cases where the driver is moving without being logged into the application.
This innovative approach aims to enhance compliance and safety in fleet operations.

Director Engineering, Maven Machines, Austin, Texas, USA

Citation: Sahil Nyati (2024) Implementing a VDA-Triggered Compliance System in Fleet Management: A Novel Approach. Journal of Marketing & Supply Chain
Management. SRC/JMSCM-137. DOI: doi.org/10.47363/JMSCM/2024(3)121

J Market & Supply Chain Managem, 2024 Volume 3(1): 2-5

VDA command cache using a response schema. This allows for
easy retrieval and processing of responses.
“‘java
// Parsing and storing command responses
String response = parseResponse(responseMessage);
String imei = extractIMEI(responseMessage);
String commandResponseKey = “vdaCommandResponse-”
+ imei;

Figure 1
CommandResponse commandResponse = new
CommandResponse(response, timestamp); commandCache.
set(commandResponseKey, comman- dResponse);
“‘

HW Service
The HW Service plays a crucial role in passing cellular strength
information into the data queue. It accepts the cellular strength as
part of the schema, ensuring that this data is included in subsequent
processing steps.
“‘java
// HW Service accepting cellular strength
public void queueData(String data, int cellularStrength) {
// Include cellular strength in data queue
DataQueue.push(data + “ Cellular Strength: “ + cellularStrength);
}
“‘

SLA
The SLA component accepts cellular strength information as part
of its schema. This ensures that the IMEI is passed to Kafka along
with the cellular strength data.
“‘java
// SLA component accepting cellular strength in the schema public
void processData(String data, int cellularStrength,
String imei) {
// Process data and include cellular strength and IMEI
DataProcessor.process(data, cellularStrength, imei);
}
 “‘

User Interface and Functionality
In this section, we will explore the user interface and functionality
of the system, focusing on how users interact with the application
and the features they can access. We’ll provide a detailed overview
of the user interface components and include code snippets to
illustrate the functionality.

User Roles and Permissions
The system supports multiple user roles, each with specific
permissions. These roles include:

Admin: Administrators Have Full Access to All System Features
and Can Manage user Accounts

VDA Mobile Admin: VDA Mobile Admins can create and manage
the relationship between VDAs and vehicles from their mobile
devices.

Driver: Drivers have limited access and can log in and use the
app for compliance purposes.

VDA Mobile Admin Dashboard
The VDA Mobile Admin dashboard is the main interface for
VDA Mobile Admins. It allows them to perform various actions
related to VDA and vehicle associations. Here’s an overview of
the dashboard’s functionality:
“‘javascript
// Sample code for VDA Mobile Admin dashboard functionality
const vdaMobileAdminDashboard = {
// Display the list of VDAs assigned to the company displayVDAs:
function () {
const vdalist = VDASystem.getAssignedVDAs(company);
UI.renderVDAs(vdalist);
},
// Populate the dropdown with unassigned vehicles for each VDA
populateDropdowns: function () {
const vdalist = VDASystem.getAssignedVDAs(company);
const unassignedVehicles = VehicleSys-
tem.getUnassignedVehicles(company);
for (const vda of vdalist) {
const dropdown = UI.createDropdown(vda, unassigned- Vehicles);
UI.appendToDashboard(dropdown);
}
},
// Create an association between VDA and a single Vehicle
createAssociation: function (vda, vehicle) {
VDASystem.createAssociation(vda, vehicle); UI.displaySucces
sMessage(“Association created success-
fully”);
},
// Search for a specific VDA by number
searchVDA: function (vdaNumber) {
const vda = VDASystem.searchVDA(vdaNumber);

Figure 2

UI.displayVDAInfo(vda);
},
};
“‘
Driver App Interface
While drivers have limited access to the system, they play a crucial
role in compliance. The driver app interface is designed for ease of
use and includes features such as logging in, selecting a vehicle,
and receiving notifications.
“‘java
// Sample code for driver app interface
public class DriverApp {
public static void main(String[] args) {
// Driver logs in
Driver driver = new Driver(); driver.login(username, password);

Citation: Sahil Nyati (2024) Implementing a VDA-Triggered Compliance System in Fleet Management: A Novel Approach. Journal of Marketing & Supply Chain
Management. SRC/JMSCM-137. DOI: doi.org/10.47363/JMSCM/2024(3)121

J Market & Supply Chain Managem, 2024 Volume 3(1): 3-5

// Driver selects a vehicle
Vehicle selectedVehicle = driver.selectVehicle();
// Driver receives notifications
NotificationService notificationService = new NotificationService();
notificationService.sendNotification(selectedVehicle, “Please log
in to the app.”);
}
}
 “‘

Notification System
The system includes a notification system to alert drivers when
they are moving without being logged into the app. Here’s an
example of how notifications are sent:
“‘java
// Sample code for sending notifications to drivers
public class NotificationService {
public void sendNotification(Vehicle vehicle, String message) {
// Check if the driver is logged in
if (vehicle.getDriver().isLoggedIn()) {
// Send notification to the driver’s app
 AppNotification.sendNotification(vehicle.getDriver().
getAppToken(), message);
}
}
}
“‘

Data Processing and Real-Time Monitoring
This section focuses on the data processing and real-time
monitoring aspects of the system. We will explore how data is
processed, monitored, and how real-time alerts are generated.
Detailed code snippets will be provided to illustrate the key
components of this functionality.

Data Processing Architecture
The data processing architecture of the system is built on Apache
Flink, a stream processing framework. It processes data from
VDAs in real-time and triggers alerts when necessary.
“‘java
// Sample Flink job for data processing and monitoring public
class VDAMonitoringJob {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEn
vironment.getExecutionEnvironment();// Define the source: VD
topic

Figure 3

DataStream<VDAEvent> vdaEvents = env.addSource(new
VDASource());
// Key the data by Power Unit Number KeyedStream<VDAEvent,
String> keyedVDAs =
vdaEvents.keyBy(VDAEvent:getPowerUnitNumber);
// Process the data and check for compliance DataStream<Alert>
alerts = keyedVDAs
.process(new ComplianceCheckFunction())
.filter(alert -> alert.getType() == Alert-
Type.COMPLIANCE);
// Sink the alerts to a notification service alerts.addSink(new
NotificationSink()); env.execute(“VDAMonitoringJob”);
}
}
“‘

Compliance Check Function
The ‘ComplianceCheckFunction‘ is responsible for processing
VDA events, checking compliance, and generating alerts when
necessary.
“‘java
// Sample code for ComplianceCheckFunction
public class ComplianceCheckFunction extends KeyedPro-
cessFunction<String, VDAEvent, Alert> {
@Override
public void processElement(VDAEvent event, Context ctx,
Collector<Alert> out) {
// Check if the event meets compliance criteria
if (event.isComplianceViolation()) {
// Generate a compliance alert
Alert = new Alert(event.getPowerUnitNumber(), AlertType.
COMPLIANCE, “Driver not logged in.”);
out.collect(alert);
}
}
}
“‘

Real-Time Alerts
The system generates real-time alerts when a compliance violation
is detected. These alerts can be sent to various channels, including
email, SMS, or an internal dashboard. Here’s an example of
sending alerts to an internal dashboard:
“‘java
// Sample code for sending alerts to an internal dashboard
public class InternalDashboardAlertSink implements Sink-
Function<Alert> {
@Override
public void invokes(Alert alert, Context context) {
// Send the alert to the internal dashboard InternalDashboard.
sendAlert(alert);
}
}
“‘
Monitoring Dashboard
A monitoring dashboard provides real-time visibility into
compliance status. Here’s an example of a simplified monitoring
dashboard:
“‘javascript
// Sample code for a simplified monitoring dashboard
const monitoringDashboard = {
// Display real-time compliance alerts
displayAlerts: function (alerts) {
UI.renderAlerts(alerts);
},

Citation: Sahil Nyati (2024) Implementing a VDA-Triggered Compliance System in Fleet Management: A Novel Approach. Journal of Marketing & Supply Chain
Management. SRC/JMSCM-137. DOI: doi.org/10.47363/JMSCM/2024(3)121

J Market & Supply Chain Managem, 2024 Volume 3(1): 4-5

// Filter alerts by type filterAlertsByType: function (type) {
const filteredAlerts = M o n i t o r i n g S y s t e m .
filterAlertsByType(type);
UI.renderAlerts(filteredAlerts);
},
};
“‘

Testing and Deployment
In this section, we will discuss the testing and deployment
strategies for the system. Ensuring the reliability and correctness
of the system is crucial. We will also provide code examples for
testing and deploying components of the system.

Automated Testing
Automated testing is an essential part of the development process
to verify that individual components and modules function
correctly. The system employs unit testing, integration testing,
and end-to-end testing to ensure its robustness.

Unit Testing (Example)
“‘java
// Sample unit test for the ComplianceCheckFunction public class
ComplianceCheckFunctionTest {
@Test
public void testComplianceViolationAlert() throws Exception {
ComplianceCheckFunction function = new Compli-
anceCheckFunction();
// Create a test context
TestKeyedProcessFunction<String, VDAEvent, Alert>
testContext = TestKeyedProcessFunction
.newKeyedProcessFunctionTest()
.key(“12345”)
.processElement(new VDAEvent(“12345”, false, 60, 0.9))
.assertOutput(new Alert(“12345”, Alert-
Type.COMPLIANCE, “Driver not logged in.”));
// Run the test testContext.executeTest();
}
}
“‘

Integration Testing (Example)
“‘java
// Sample integration test for the VDAMonitoringJob public class
VDAMonitoringJobIntegrationTest {
@Test
public void testVDAMonitoringJob() throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.
getExecutionEnvironment();
// Create a test source with simulated VDA events
DataStream<VDAEvent> vdaEvents =
env.fromCollection(Arrays.asList(

Figure 4

new VDAEvent(“12345”, false, 60, 0.9),
new VDAEvent(“67890”, true, 70, 0.8)
));
// Define the test job
vdaEvents.keyBy(VDAEvent:getPowerUnitNumber)
.process(new ComplianceCheckFunction())

.filter(alert -> alert.getType() == Alert-
Type.COMPLIANCE)
.addSink(new TestSink<>());
// Execute the test
env.execute(“VDAMonitoringJobIntegrationTest”);
// Verify the output using assertions
Assert.assertEquals(1, TestSink.collected.size());
Alert alert = TestSink.collected.get(0);
Assert.assertEquals(“12345”,
alert.getPowerUnitNumber());
Assert.assertEquals(AlertType.COMPLIANCE, alert.getType());
}
}
 “‘

Deployment Strategies
Deployment of the system is a critical phase to make it available
for production use. The deployment process includes configuring
and launching various components.
Docker Containerization (Example)
“‘Dockerfile
Dockerfile for containerizing the VDA Monitoring Job
FROM openjdk:11-jre-slim
WORKDIR /app
COPY target/vda-monitoring-job.jar /app/vda-monitoring job.jar
CMD [“java”, “-jar”, “vda-monitoring-job.jar”]
“‘

Kubernetes Deployment (Example)
“‘yaml
Kubernetes Deployment YAML for scaling the VDA Monitoring
Job
apiVersion: apps/v1
kind: Deployment
metadata:
name: vda-monitoring-job spec:
replicas: 3
selector:
matchLabels:
app: vda-monitoring-job template:
metadata:
labels:
app: vda-monitoring-job spec:
containers:
- name: vda-monitoring-job
image: your-registry/vda-monitoring-job:latest ports:
- containerPort: 8080
“‘

Continuous Integration and Continuous Deployment (CI/CD)
CI/CD pipelines automate the testing and deployment process.
Here’s a simplified example of a CI/CD configuration:
“‘yaml
Sample CI/CD pipeline using Jenkinsfile
pipeline {
agent any stages {
stage(’Build’) {
steps {
sh ’mvn clean package’
}
}
stage(’Test’) { steps {
sh ’mvn test’
}
}

Citation: Sahil Nyati (2024) Implementing a VDA-Triggered Compliance System in Fleet Management: A Novel Approach. Journal of Marketing & Supply Chain
Management. SRC/JMSCM-137. DOI: doi.org/10.47363/JMSCM/2024(3)121

J Market & Supply Chain Managem, 2024 Volume 3(1): 5-5

Copyright: ©2024 Sahil Nyati. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

stage(’Deploy’) {
steps {
deployToKubernetes()
}
}
}
}
 “‘

Results and Discussion
In this section, we present the results obtained from the
implementation of the VDA Compliance Monitoring System
and discuss the implications of these results [1].

Results
The implementation of the VDA Compliance Monitoring System
has shown promising results in enhancing compliance with driver
log-in procedures and ensuring the safety and accountability
of drivers while operating vehicles. The system has effectively
addressed the compliance issue of drivers not logging into the
app while driving. Here are some key results:

Real-time Alerts: The system successfully triggers real- time
alerts when a driver is detected to be moving without being logged
into the app or the vehicle’s systems.

Driver Awareness: The audible alerts from the VDA’s buzzer
have proven to be effective in making drivers aware of their non-
compliance. This has led to a significant increase in driver log-ins
during vehicle operation.

Cellular Strength Consideration: The system’s intelligent design
considers cellular strength to prevent false alarms in areas with
poor connectivity. It ensures that alerts are only triggered when
necessary.

Event Handling: The system efficiently handles various scenarios,
including drivers entering yards, temporary loss of cell reception,
and delayed log-ins, without unnecessary beeping or false alerts.

Event Timestamping: All events and alerts are time stamped
accurately, allowing for precise tracking and auditing of driver
activities.

Discussion
The implementation of the VDA Compliance Monitoring System
represents a significant step towards improving compliance and
safety in the context of driver log-ins. The following points provide
a discussion of the results and their implications:

Improved Compliance: The system’s ability to alert drivers in
real-time has resulted in a substantial improvement in compliance
with log-in procedures. This is critical for regulatory compliance
and ensuring accurate tracking of driver hours.

Enhanced Safety: By alerting drivers who are not logged in,
the system contributes to safer driving practices. It discourages
unauthorized individuals from operating vehicles and encourages
responsible behavior.

Reduced False Alarms: The consideration of cellular strength
and event recency has helped reduce false alarms. Drivers are
only alerted when there is a genuine compliance issue, minimizing
distractions and improving the user experience.

Data Auditing: The timestamped event data provides a valuable
resource for auditing and analyzing driver activities. It enables
companies to review events and take corrective actions when
necessary.

Scalability and Control: The system’s architecture allows for
scalability and control. It can be easily extended
to accommodate more vehicles and VDAs while maintaining
efficient event processing.

Compliance Tracking: The system’s capability to store and
process compliance-related data allows for long-term tracking and
reporting. Companies can use this data to demonstrate compliance
with regulatory requirements.

Continuous Improvement: Ongoing monitoring and analysis
of system performance will enable continuous improvement.
Fine-tuning parameters such as the duration of alerts and cellular
strength thresholds can further optimize the system.

Conclusion
In conclusion, the VDA Compliance Monitoring System represents
a significant advancement in ensuring compliance and safety
within the transportation industry. This system addresses the
critical issue of drivers not logging into the app while operating
vehicles, which has compliance and safety implications.

Through the implementation of real-time alerts triggered by VDAs,
the system has effectively alerted drivers to log in, when necessary,
thereby enhancing compliance. It has also contributed to improved
safety practices by discouraging unauthorized vehicle operation.

The consideration of factors such as cellular strength and event
recency has reduced false alarms, ensuring that alerts are only
generated when a genuine compliance issue arises. This has led
to a better user experience and minimized distractions for drivers.
The system’s ability to timestamp events and store compliance-
related data provides a valuable resource for auditing and
tracking driver activities. It enables companies to demonstrate
compliance with regulatory requirements and maintain a high
level of accountability.

As the system evolves and undergoes continuously improvement,
it has the potential to become a standard solution for addressing
compliance and safety challenges in the transportation industry.
With scalability and control in mind, it can accommodate growing
fleets and adapt to changing needs.

In summary, the VDA Compliance Monitoring System represents
a promising solution to enhance compliance and safety, ultimately
benefiting both companies and drivers in the transportation sector.

Reference
1. M Lewis (2020) Telematics and Fleet Management:

A Comprehensive Guide https://www.everand.com/
book/429704039/Fleet-Management-A-Complete-Guide-
2020-Edition.

