
Open Access

Journal of Mathematical &
Computer Applications

ISSN: 2754-6705

J Mathe & Comp Appli, 2025 Volume 4(1): 1-6

Review Article

Impact of Automation in Software Testing on Defect Discovery
Rates
Mohnish Neelapu

*Corresponding author
Mohnish Neelapu, USA.

Received: February 04, 2025; Accepted: February 11, 2025, Published: February 18, 2025

Keywords: Software Testing, Defect Discovery Rate, AI and Deep
Learning Driven Automation Techniques and Test Automation

Introduction
Software testing stands as a vital Software Development Life
Cycle (SDLC) process which verifies application fulfillment
of necessary functional and non-functional specifications
prior to system release. The detection of defects together with
identification of vulnerabilities through early development aids
quality enhancement and reliability and performance improvement
in software development. Since its inception traditional manual
testing employed people to check software capabilities while
conducting tests and validating results for many years. Manual
testing proves difficult to maintain pace with contemporary
software development speed because it consumes a lot of resources
and makes frequent mistakes in addition to being unable to match
fast development practices of agile and DevOps approaches.
Modern software development demands an improved testing
solution because of its elevated complexity together with system
convergence along with skyrocketing requirements for acceleration
releases. The evolution of test automation provides an advanced
solution which resolves the testing problems through its ability
to conduct scalable and repeatable high-speed test executions.
The use of automated testing helps lower human manual effort
while it helps identify more defects and maintains stable testing
coverage across the entire software.

The combination of automated scripts together with frameworks
and AI methods allows Software Testing to conduct precision-
based automated tests which evaluate results and detect errors. The
lack of human operators allows automated tests to conduct multiple
execution cycles which leads to an increased testing speed. CI/
CD pipelines become possible through automation which allows
organizations to deliver both speed and maintain quality standards
during rapid software updates. Scientists have extensively studied
automation's effects on defect discovery rates where automation
proves effective at both early-stage defect identification and error
prevention and an accelerated development lifecycle. The research
investigates linkage dynamics between automated testing and the
identification of defects through analysis of modern automation
tools with frameworks as well as AI-based testing systems. The
paper includes study of a real-life implementation which highlights
automation benefits for defect recognition alongside time-efficient
testing and advanced software quality management protocols.
Empirical research reveals how script maintenance stands as a
main challenge of automation adoption along with high initial
costs and selecting suitable tools while future lines include AI-
controlled testing and automatic testing with codeless capabilities
and self-healing automated systems.

Literature Review
Test automation framework development has changed dramatically
through time because scientists evolved the field from basic manual
techniques to contemporary AI-based systems. Software quality

ABSTRACT
Software Development Life Cycle processes depend heavily on software testing activities to verify essential software elements like reliability and quality and
performance outcomes. Manual testing approaches consume too much time and produce numerous errors due to their insufficient capability in handling
complex modern applications. Software automation represents a revolutionized testing technique which develops efficiency alongside better scalability
alongside higher defect discovery frequency. The investigation explores how automation techniques improve software testing by boosting defect discovery
but simultaneously reducing the entire testing duration and financial requirements. The investigation utilizes research from numerous studies together
with experimental results to study present-day automation frameworks and machine learning-based testing methods for continuous testing methods. Test
defect identification performs better through automated testing because software testing covers more targets in less time while reducing operator mistakes.
The implementation of automation in a live software development project delivered three major advantages: the detection of defects rose by 50% and
testing duration decreased by 60% and testing spread to new software elements. Switching to automated testing leads to installation expenses while also
requiring ongoing script updates and potential problems with updated software systems. The paper examines new test automation trends through research
of AI-based systems alongside codeless testing frameworks alongside shift-left testing approaches to maximize defect identification outcomes. According
to this research automation functions as an essential condition which drives reliable and efficient software testing operations. Organizations benefit most
from automation when they use strategic planning to deploy automation while handling related difficulties. Marketing research should focus on AI-based
deep learning automation because it will help improve both defect discovery and predictive analytic functions within the software testing framework.

USA

Citation: Mohnish Neelapu (2025) Impact of Automation in Software Testing on Defect Discovery Rates. Journal of Mathematical & Computer Applications.
SRC/JMCA-236. DOI: doi.org/10.47363/JMCA/2025(4)203

J Mathe & Comp Appli, 2025 Volume 4(1): 2-6

enhancement relies heavily on automation capabilities because this
technology improves defect discovery and test execution efficiency
and merges development processes. The following subsection
delivers an extensive review of recent research spanning test
automation and defect discovery evaluations as well as automation
tool surveys and industry obstacles based on leading academic
papers.

Evolution of Test Automation
Test automation has developed because organizations seek
faster testing solutions that provide high reliability together with
scalability capability. Software testing operated using manual
methods at first point by employing human testers to execute
test cases alongside monitoring system actions and recording
defect occurrences. This testing method worked properly for
small programs yet proved hard to apply to extensive and complex
software systems.

Test automation entered the world through the development
of record-and-playback tools. Software testing tools provided
testers with a feature to trace their operations and replay them for
automated execution. The tools remained inflexible and needed
regular changes to operate with dynamic applications properly. The
introduction of script-based automation improved test execution
control through frameworks that included Selenium and J Unit
which provided structure for scripting and regression testing
operations according to Sharma and Gupta [1]. Test automation
now incorporates AI and machine learning-based frameworks that
assist in automated test case creation and repair broken scripts and
forecast system errors. The research paper by Lin et al. explains
how ML algorithms examine test record history to create smart test
execution strategies that find software's most dangerous areas [2].
Through recent technological progress defect detection capabilities
have risen while the number of incorrect positives decreased
simultaneously leading to superior software quality.

Defect Discovery Rates and Automation
Testing strategies depend largely on the way their defect detection
process performs because defect discovery functions as one of
the essential goals of software testing. The traditional approach to
manual testing exhibits ineffectiveness in discovering all essential
bugs because testers make mistakes while covering limited areas at
a slow rate. Test defects become more efficient through automation
because automated testing delivers quicker testing alongside
repeated executions and extensive test coverage. Park reports
that automated testing through an agile environment examination
proved more effective than manual testing at finding defects by
45% [3]. CI/CD pipelines enable the execution of automated test
cases which helps identify bugs when still in early development
stages to avoid later development expenses. This approach delivers
maximum value to agile and DevOps systems because they need
fast feedback loops for their rapid iterative nature. Wu and Wang
conducted research on DevOps continuous testing which showed
that this practice improves early bug detection to solve problems
swiftly and stabilize the software system [4]. The execution of
automated testing suites that follows project development stages
helps developers find and fix defects as early as possible. Staying
below the detection and correction timeline for defects allows
automation to boost software reliability and reduce post-launch
problems while strengthening customer happiness.

Comparative Analysis of Automation Tools
Every software testing process depends on selecting appropriate
test automation tools for maximum efficiency. Multiple automated

testing frameworks exist to fulfill requirements for functional
testing and unit testing together with user interface testing and
performance testing needs. Research by Smith et al. demonstrated
that popular testing tools such as Selenium, J Unit, and Test
Complete detected the maximum number of defects in enterprise
systems [5]. Multiple businesses choose these tools due to their
complete features along with broad application support and a large
developer base. The open-source tool Selenium serves as one of the
principal choices for web application testing due to its extensive
utilization. The tool supports multiple programming languages
and functions efficiently with several testing frameworks. J
Unit functions as an essential Java testing framework because
it implements test-driven development (TDD) and quick test
execution for code-level testing through Java code. Scriptless
automation from Test Complete provides beneficial features for
testers whose programming skills are basic. The tool enables UI
testing and cross-browser automation thus it improves visibility of
defects in web and desktop applications. The article by Patel and
Kumar highlights how essential it is to utilize UI test automation
tools for boosting defect detection capabilities [6]. The use of
automated UI testing leads to uniform user experiences through
various devices while spotting missing defects from manual
inspection of the user interface.

Challenges in Test Automation
Test automation encounters multiple barriers that make its
implementation problematic and affect its performance level.
The expensive costs associated with selecting automation tools
together with setup work and developing scripts represent the
major hurdle for process implementation. A major obstacle people
face when working with test scripts is maintaining their overall
stability. Regular updates become crucial for test scripts because
software applications go through changes in UI elements as well
as functional capabilities and operational procedures. Liu and
Chen discussed the issue of test script brittleness because constant
updates result in higher maintenance requirements and broken test
executions. Rejection of this situation led researchers to establish
self-healing automation frameworks that automatically generate
updated test scripts in response to application modifications
[7]. Several organizations need support in finding appropriate
automation strategies. Automation testing only suits certain cases
since dynamic testing environments together with exploratory and
user experience evaluation require human rather than automated
intervention. The implementation of automation testing faces
challenges because of inadequate resource professional skills in
this field. Cloud-based security issues emerge from automated
testing because these systems allow sensitive test data to face
vulnerabilities in the environment. The challenges of automation
can be addressed by organizations through proper implementation
of best practices and training initiatives supported by AI-driven
test management solutions.

EFuture Trends in Test Automation
The testing field advances constantly because emerging
technologies transform the practices of methodology adoption.
AI along with machine learning go hand in hand to bring the
next-generation test automation through their intelligence for
detecting defects along with automated test creation and self-
repair functions. Nelson explains that AI-based automation
systems create better prediction capabilities which enable teams
to arrange their test cases through historical defect data [8]. The
implementation of NLP through AI technology provides testers
who lack programming skills with tools to create test cases through
codeless automation. One current testing development enables

Citation: Mohnish Neelapu (2025) Impact of Automation in Software Testing on Defect Discovery Rates. Journal of Mathematical & Computer Applications.
SRC/JMCA-236. DOI: doi.org/10.47363/JMCA/2025(4)203

J Mathe & Comp Appli, 2025 Volume 4(1): 3-6

users without programming experience to create automated test
cases through codeless testing methods. Programming by design
allows testers to develop test automation through visual coding
systems combined with automated interface drops along with
artificial intelligence-based assistance that steers user actions. The
method decreases the need for technical experts while speeding up
test building processes. The adoption of shift-left testing presents
a new trend because it requires testing to begin earlier within the
SDLC to detect errors earlier. This approach prevents defects from
rising to late-stage development phases thus decreasing technical
errors while improving total software quality. The introduction
of self-healing test automation frameworks improves automation
reliability by bringing new capabilities to the framework. The
test framework employs artificial intelligence which detects UI
modifications while it automatically updates test script codes
and executes the tests autonomously. Computer programming
will advance through the combination of AI technology with
cloud automation and DevOps continuous testing to create better
automation of tests and faster defect identification and ensure
higher software quality levels in assurance practices.

Methodology
The research combines qualitative and quantitative methodologies
to measure test automation effects on discovered defect rates
accurately. The research incorporates laboratory tests together
with field experiments to offer theoretical conclusions and actual
application results. The foundation of this research relies on an
extensive literature review that merges findings from studies
regarding test automation trends together with efficiency of
defect detection and new emerging technologies. The review
facilitates understanding of applicable background information
while identifying critical research deficiencies and verifying utility
in modern industry innovations. A study examines manual and
automated test methods through multiple software project defect
discovery rate analysis for empirical data research. Researchers
examine three essential metrics to calculate automation effects
on testing performance: defect detection efficiency as well as
test execution time and test coverage improvement. The analysis
uses defect reports and test execution logs together with industry
benchmarks to establish its findings through data. The paper
includes a practical real-world case analysis to show how businesses
implement automation systems in their operations. The research
investigates how a project infrastructure with mid-range software
development transitioned from traditional testing to automated
procedures. The research investigates both selection of tools as well
as execution strategies and the resulting improvements in defect
detection together with identified challenges. The research provides
useful observations about how automation methods boost software
quality performance in practical scenarios. This research merges
quantitative and qualitative approaches to create a comprehensive
study on defect detection through automation testing which helps
both researchers and practitioners of the software sector enhance
their testing procedures.

Empirical Analysis of Automation's Impact
The evaluation of test automation impact on defect discovery rates
depended on an analysis of test execution logs from five software
projects between manual and automated testing approaches using
defect detection efficiency and test execution time along with defect
severity level metrics. Test automation brought a 50% increase
in the rate at which defects could be detected during the testing
process. Due to automated testing utilities testers could achieve a
wider spectrum of test scenarios during reduced testing periods. The
automated testing system enabled teams to discover product defects

at an early stage so defects did not emerge in later development
stages thereby enhancing software product quality and reliability.

During the testing process automation both detected more defects
and provided continuous testing support for Agile and DevOps
frameworks thus speeding up issue resolution. Through its
automated execution process the framework delivered consistent
test runs that were repeatable and highly reliable to eliminate human
errors which occur in manual testing. By accelerating test cycles
and improving defect detection accuracy, automation played a vital
role in optimizing the overall software testing process.

Defect Discovery Trends
The following table presents the dataset used to graphically represent
defect discovery trends before and after automation. It highlights the
number of defects detected in both manual and automated testing
approaches, along with the efficiency increase in defect detection.

Project ID Manual Testing:
Defects Detected

Automated
Testing: Defects
Detected

Efficiency
Increase
(%)

Project A 120 180 50%
Project B 95 145 52.6%
Project C 110 165 50%
Project D 85 130 52.9%
Project E 100 150 50%

Figure 1: Defect Discovery Rates Before and After Automation

The efficiency increase percentage is calculated using the equation,

 (1)
This equation quantifies the improvement in defect detection
capabilities achieved through automated testing compared to
manual testing.

Case Study: Implementing Test Automation in a Software
Project
Project Overview
A mid-sized software development company specializing in
web-based applications faced challenges in maintaining software
quality due to inconsistent defect detection rates. Manual testing
was time-consuming, prone to human errors, and led to delays in
software releases. To enhance efficiency, the company decided to
transition to an automated testing framework, aiming to improve
defect discovery rates, reduce testing time, and increase test
coverage.

Citation: Mohnish Neelapu (2025) Impact of Automation in Software Testing on Defect Discovery Rates. Journal of Mathematical & Computer Applications.
SRC/JMCA-236. DOI: doi.org/10.47363/JMCA/2025(4)203

J Mathe & Comp Appli, 2025 Volume 4(1): 4-6

Implementation Strategy
The company implemented Selenium for functional testing and JMeter
for performance testing, integrating both tools into a CI/CD pipeline
to ensure continuous and automated test execution. The automation
framework was designed to enhance efficiency and reliability by
incorporating key components. Test script development focused on
creating reusable scripts for regression testing, reducing manual effort
and ensuring consistency. CI/CD integration enabled seamless test
execution using Jenkins and GitHub Actions, automating the testing
process after each code commit. Additionally, parallel execution
allowed multiple test cases to run simultaneously, significantly
reducing execution time and expediting the software release cycle.

Key Outcomes
The transition to test automation brought significant improvements to
various aspects of the software testing process. The defect discovery
rate increased by 40%, enabling early detection and resolution of
critical software issues, which in turn enhanced overall software
quality and stability. Additionally, testing time was reduced by
60%, as automated test execution replaced time-consuming manual
efforts, leading to faster test cycles and accelerated software releases.
Furthermore, test coverage expanded from 50% to 85%, allowing
for a more comprehensive validation of application functionalities
and minimizing the risk of undetected defects. These improvements
collectively enhanced efficiency, reliability, and the overall
effectiveness of the software testing process, solidifying automation
as a crucial component in modern software development.

Figure 2 illustrates the automated testing process through a structured
flowchart. The process begins with test initialization, where test scripts,
required libraries, and configurations are loaded into the automation
framework. The next step is test execution, where automated scripts
are executed to validate various functional and non-functional aspects
of the software. The test outcomes are then analyzed, comparing
actual results against expected outputs to determine whether each
test case has passed or failed. If discrepancies are identified, they are
logged as defects in a defect tracking system for further investigation.
Once defects are resolved, the tests are re-executed to ensure issue
resolution. Finally, a detailed test report is generated, summarizing the
execution status, detected defects, and recommendations for further
improvements. This structured workflow enhances consistency,
repeatability, and accuracy in software testing, ensuring optimized
defect detection while minimizing manual intervention.

 Figure 2: Flowchart of automated testing process

Automated Test Case Execution
Test automation follows a structured process to execute predefined
test cases, validate expected outcomes, and log defects for
further resolution. It streamlines the testing workflow, enhancing
efficiency and accuracy. The process begins with test initialization,
where the automation framework loads the necessary libraries,
configurations, and test scripts required for execution. Once the
setup is complete, the test execution phase begins, running the
predefined scripts on the target application to cover various test
scenarios. During this phase, the system compares the expected
and actual results to determine any discrepancies. If the actual
outcome deviates from the expected result, the automation
framework proceeds to the defect logging stage, where any
identified defects are recorded in a defect tracking system, often
accompanied by screenshots or error logs for better analysis.
Finally, the test completion phase ensures that a detailed test report
is generated, summarizing the execution status, defect details,
and overall testing outcomes. This structured approach improves
test efficiency, ensures comprehensive validation, and facilitates
faster defect resolution. The table 1 denotes the pseudocode for
automated test case execution

Table 1: Pseudocode for Automated Test Case Execution
Pseudocode for automated test case execution
defexecute_test_cases(test_cases)
for test in test_cases:
result=run_test(test)
if result==’fail’:
log_defect(test)
return “Testing Complete”

Comparative Analysis of Test Automation Tools
In the realm of software testing, selecting the right automation tool
is crucial for optimizing efficiency and effectiveness. Selenium,
known for its functional testing capabilities, is an open-source
tool that provides cross-browser support, making it highly flexible
and popular among developers; however, it requires a solid
understanding of coding, which can be a barrier for some users.
JUnit is a Java-based unit testing framework that facilitates Test-
Driven Development (TDD) and offers fast execution; however,
its use is limited to Java applications, which may restrict its
applicability. For performance testing, JMeter stands out with
its ability to conduct load tests and accommodate scalability;
conversely, it can pose a challenge with its complex scripting
requirements. Lastly, TestComplete excels in UI testing with its
scriptless automation feature, making it user-friendly and accessible
for non-programmers, although it comes with a high licensing
cost, which can be a consideration for budget-conscious teams.
Each tool has its unique strengths and weaknesses, necessitating
careful evaluation based on project needs and team expertise.
Table 2 illustrates comparative analysis of test automation tools.

Citation: Mohnish Neelapu (2025) Impact of Automation in Software Testing on Defect Discovery Rates. Journal of Mathematical & Computer Applications.
SRC/JMCA-236. DOI: doi.org/10.47363/JMCA/2025(4)203

J Mathe & Comp Appli, 2025 Volume 4(1): 5-6

Table 2: Comparative Analysis of Test Automation Tools
Tool Type Features Pros Cons
Selenium Functional Open-source, cross-

browser support
Flexible, widely used Requires coding

knowledge
JUnit Unit Java-based, TDD support Fast execution Java-specific
JMeter Performance Load testing Scalable Complex scripting
TestComplete UI Scriptless automation Easy to use High licensing cost

Challenges and Future Directions
Current Challenges
Despite the numerous advantages of test automation, organizations
encounter several challenges in its implementation, maintenance,
and scalability. These challenges can impact the effectiveness
and long-term viability of automation frameworks, necessitating
strategic planning and continuous optimization.

High Initial Investment
Implementing test automation requires a substantial upfront
investment in terms of tools, infrastructure, and skilled personnel.
Organizations must allocate significant resources for procuring
automation tools, setting up robust testing environments, and
integrating automation frameworks into existing workflows.
While open-source tools like Selenium and JMeter provide cost-
effective alternatives, they still demand expertise in scripting,
test framework development, and continuous maintenance.
Additionally, commercial tools often come with high licensing
costs, which can be a barrier for small and medium-sized
enterprises. The return on investment (ROI) in test automation is
realized over time, but the initial cost and learning curve can pose
challenges for businesses looking to adopt automation at scale.

Script Maintenance
One of the primary challenges of test automation is its dependency
on application changes. As software evolves, UI modifications,
feature updates, and workflow adjustments require frequent
updates to automated test scripts. Without proper maintenance,
scripts may become obsolete, leading to test failures and
unreliable results. The effort required to maintain and update
automation scripts can sometimes outweigh the benefits, especially
in fast-paced development environments such as Agile and
DevOps. Liu and Chen highlighted this issue and proposed
optimization techniques to reduce script redundancy and improve
maintainability. Organizations are increasingly adopting self-
healing test automation and AI-driven script generation to address
this challenge, ensuring that test scripts automatically adapt to
minor UI and functionality changes without requiring manual
intervention [7].

Future Trends
The future of test automation is evolving rapidly with advancements
in artificial intelligence (AI), codeless automation, and shift-left
testing approaches.

AI-Based Testing
AI-driven test automation is transforming defect detection by
enabling predictive analytics. AI and machine learning models
analyze historical test data to predict potential failures, optimize
test case selection, and improve test coverage. Sharma and Gupta
highlighted AI’s ability to enhance defect detection by identifying
patterns in previous defects, reducing redundant test cases, and
ensuring better software reliability [1].

Codeless Automation
Traditional test automation requires scripting knowledge, limiting
its accessibility to non-technical testers. Codeless automation
tools, powered by AI and natural language processing (NLP), allow
testers to create automated scripts using visual workflows and
drag-and-drop functionalities. Lin et al. emphasized that codeless
automation enhances efficiency by reducing script creation time
and enabling broader team collaboration [2].

Shift Left Testing
Shift-left testing is gaining traction as organizations aim to
detect defects earlier in the software development lifecycle. This
approach integrates testing in the early stages of development
rather than waiting until later phases. Park explained that shift-left
testing ensures early bug detection, reducing the cost and time
needed for issue resolution [3].

As automation continues to evolve, embracing these trends will
help organizations enhance software quality, improve defect
discovery rates, and optimize testing efficiency.

Conclusion
This paper examined the impact of test automation on defect
discovery rates, highlighting its role in improving software
quality and testing efficiency. Through empirical analysis and
case studies, the study demonstrated that automation significantly
enhances defect detection efficiency, enabling early identification
and resolution of software issues. The findings revealed that
automation reduces test execution time, accelerates release cycles,
and expands test coverage, ensuring comprehensive validation of
software applications. Despite these advantages, challenges such
as high initial investment, script maintenance, and tool limitations
persist. Automated testing requires skilled professionals and
frequent updates to test scripts to align with evolving software
applications. Additionally, maintaining automation frameworks
demands continuous refinement, which can be resource-
intensive. However, advancements in AI-driven automation,
codeless testing, and shift-left methodologies present promising
solutions to overcome these challenges. AI-based automation
enhances predictive defect analysis, reducing reliance on manual
intervention, while codeless automation simplifies test script
creation, making automation more accessible. Shift-left testing
promotes early defect detection, integrating testing seamlessly
into the software development lifecycle. Overall, test automation
continues to evolve as a crucial strategy for improving software
reliability and efficiency. By addressing existing challenges and
adopting emerging technologies, organizations can further enhance
defect discovery rates and optimize the software testing process.
Future research should explore AI-driven adaptive automation
frameworks that minimize maintenance efforts and improve
scalability, ensuring sustainable and efficient software testing
methodologies [10-15].

Citation: Mohnish Neelapu (2025) Impact of Automation in Software Testing on Defect Discovery Rates. Journal of Mathematical & Computer Applications.
SRC/JMCA-236. DOI: doi.org/10.47363/JMCA/2025(4)203

J Mathe & Comp Appli, 2025 Volume 4(1): 6-6

References
1. R Sharma, A Gupta (2023) Advancements in AI-Driven Test

Automation. International Journal of Software Testing 41: 1.
2. T Lin (2024) Machine Learning for Automated Testing. IEEE

Software 39: 2.
3. S Park (2023) Impact of Automation in Agile Testing. Journal

of Agile Software Engineering 22: 3.
4. J Wu, P Wang (2024) Continuous Testing in DevOps. ACM

Transactions on Software Testing 18: 4.
5. K Smith (2023) A Comparative Study of Test Automation

Tools. IEEE Transactions on Software Testing 33: 1.
6. R Patel, V Kumar (2023) UI Test Automation Techniques.

Software Engineering Journal 28: 3.
7. M Liu, H Chen (2024) Optimization in Test Automation.

Software Testing and Quality Assurance 15: 2.
8. D Nelson (2023) AI in Test Automation: Trends and Future

Directions. Software Testing Innovations 19: 1.
9. J Williams, M Brown (2023) AI-Driven Testing Strategies.

ACM Transactions on Software Engineering 35: 2.
10. S Zhang, L Li Codeless Automation and Its Impact on Testing.

IEEE Transactions on Software Engineering 30: 4.
11. K Singh (2023) Shift-Left Testing: Benefits and Challenges.

Software Testing Journal 28: 3.
12. T Dias, Arthur Batista, Eva Maia, Isabel Praça (2023) Test

Lab: An Intelligent Automated Software Testing Framework.
arXiv preprint https://arxiv.org/abs/2306.03602 .

13. T Cody, B Li, P A Beling (2024) On Extending the Automatic
Test Markup Language (ATML) for Machine Learning. arXiv
preprint https://arxiv.org/abs/2404.03769 .

14. Y Yao, Jun Wang, Yabai Hu, Lifeng Wang, Yi Zhou et al. Bug
Blitz-AI: An Intelligent QA Assistant. arXiv preprint https://
arxiv.org/pdf/2406.04356 .

15. R Karanjai, Aftab Hussain, Rafiqul Islam Rabin, Lei Xu,
Weidong Shi et al. (2024) Harnessing the Power of LLMs:
Automating Unit Test Generation for High-Performance
Computing. arXiv preprint https://arxiv.org/pdf/2407.05202 .

Copyright: ©2025 Mohnish Neelapu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

