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ABSTRACT
This paper presents a hierarchical flight control system for tilt-rotor drones. The offered approach performs high-level mission goals by gradually confirming 
them into machine-level instructions. The learned data from numerous sensors is spread backside to the greater levels for sensitive decision making. 
Each vertical take-off and landing drone is linked through regular wireless communication rules for accessible multi-agent facility. The proposed flight 
control system has been effectively employed on several small tilt-rotor drones and validated in some applications. Solutions from waypoint navigation, 
a probabilistic chase-evasion competition and vision-based object chasing show the capability of the recommended method for intelligent flying drones.

Keywords: Tilt-Rotor Drone (TRD), Vertical Take-off and 
Landing (VTOL), Control, Vehicle Control Language (VCL), 
Vision, Strategy, Inertial Navigation System (INS), Global 
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Introduction
Implementation of smart drones has been done potential because of 
hi-tech innovations in different areas such as artificial intelligence, 
flying robotics, wireless communication, and control systems. 
There is small skepticism that intelligent drones will be employed 
to autonomously run missions, or embedded in numerous 
structures, and spread our abilities to identify, mind and action, 
or replace human attempts in applications where individual action 
is threatening, unproductive and/or even impossible. Supporting 
to this impression, proposed study objects to establish numerous 
autonomous negotiators into integrated and intelligent structures 
with condensed reasoning and control intricacy, open-mindedness, 
adaptivity to variations in mission and situation, modularity, and 
scalability to achieve intricate assignments competently.

Tilt-Rotor vertical take-off and landing (VTOL) or tilt-rotor 
drones (TRDs) have got distinctive flying abilities such as hover, 
vertical take-off/landing, and sideslip, which cannot be attained 
by traditional fixed-wing airplanes [1,2]. These multipurpose 
mission modes are effective for numerous circumstances as well 
as reconnaissance, ground target tracking, and tasks with restricted 
launching space such as a ship deck or in situations that need 
repeated landings and take-offs (Figure 1) [3]. These types of 
drones integrating are helicopter technology as fixed-wing aircraft 
technology.

Figure 1: Tilt-Rotor Bayraktar DİHA Unmanned Aerial Platform 
(Turkey) [3]

The last time has seen astonishing advancement in TRD study 
including design and modeling, modern control theory, and avionics 
[4-11]. But the recent level still drops quickly by applying results 
to most actual applications and utilizing the detailed abilities of 
the rotorcraft. Our research has been focused on enhancing the 
performance of TRDs as participants of a networked intelligent 
group containing numerous heterogeneous drones. To reach this 
goal, it is important that every mission control system be able 
with well-capable autonomy, i.e., abilities to independent sense, 
mind, plan, and act in expertise with other drones or ground/ 
water-based robots or environments. This article shows the 
combination of a hierarchical flight management system (FMS) 
for TRDs that offers autonomy as permitting management among 
all team participants. The proposed paper presents three control 
approaches: 1) TRD cascade PID control strategy; 2) the dynamic 
control allocation strategy (from Ref. [7]), so it adapts to a potential 
drone configuration change; 3) multi-functional hierarchical FMS 
strategy [12].
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Figure 2: TRD Cascade PID Control Strategy [6]

Figure 3: TRD Control Strategy with Dynamic Control Allocation 
[6]

After determining the TRD dynamic model and calibration of 
the appropriate aerodynamic coefficients, for the TRD control, 
the state variables are operated by a PID controller, and Figure 
2 appears the block diagram of the control strategy. Forces and 
moments due to rotors and wind aerodynamics are computed 
independently.

The general control structure contains two cascade PID controllers, 
which accept errors from speed and attitude and provide consistent 
control amounts [5]. The control of TRD is reached by applying 
the negative feedback [13].

Additionally, the current drone controller offers the off-the-shelf 
controller for namely this type of drone, it normally needs to load 
up the appropriate files to represent the required control pull to 
every single actuator input, which can only carry the drone with a 
fixed structure. In its place, we employed a possible drone structure 
change (such as an actuator failure). Consequently, the control 
diagram becomes like on Ref. [7] (Figure 3).

So, we use up a multi-differential controller as a non-linear model 
predictive tracking controller (Figure 4).

The former has been successfully validated in various scenarios, as 
mentioned on Ref. [7]. The last is especially efficient in focusing 
on nonlinearity, coupling, input, and state saturations.

Figure 4: Multi-Functional Hierarchical FMS for TRD: W – 
Waypoints, C – Conflicts

The low-level drone stabilization strategy is linked to the higher-
level strategy planner using vehicle control language (VCL), 
interface for autonomous agents, human being pilots to control 
the host drone [12,14]. Every autonomous agent is a piece of a 
wireless communication network, by which complex assignments 
could be accomplished in a coordinated way [13,15].

As target problems, the following situations are waypoint navigation, 
pursuit-evasion, ground target tracking, and vision-based landing 
[12]. These strategies represent one or more functionalities of 
the hierarchical multi-agent system. In waypoint navigation, the 
functionality of the guidance strategy using the VCL structure 
is underlined. The pursuit-evasion refers to probabilistic logic 
for strategy switcher, multiagent synchronization on a wireless 
network, dynamic VCL process, and vision-based detection. The 
ground target chasing and vision-based landing tests high-speed 
position tracing control, target detection and identification, and 
chasing processes of the onboard vision handling unit as strategy 
planning and switcher [15].

Problem Statement
An intelligent agent functions: 1) constantly identifies dynamically 
varying environments; 2) to explain apparent data, to resolve tasks 
and to define suitable reaction; and 3) shows suitably to impact 
terms in its environment [12]. Built on these properties, we could 
depict each strategy in the hierarchical FMS shown in Figure 4.

Vigorously altering environments in the world and drone states 
are seen by different onboard sensors. Motion-related data, which 
is crucial for UAS control and high-level process, is measured by 
the onboard navigation sensors such as inertial navigation system 
(INS) and global positioning system (GPS) [12,13].

Extra sensors such as ultrasonic sensors and laser rangefinders 
are employed to obtain the environment particular data as well 
as relative distance from the ground surface, or to identify the 
other drones in the vicinity of the host drone. A computer vision 
structure is applied to identify objects of concern based on their 
colour or form [15].
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Figure 4 reveals three types of strategy planners to be applied for 
every test. The suitable strategy planner for a particular mission 
is chosen by a strategy switcher.

While the recent status of the world is not totally significant, the 
world is modelled as a partly detectable Markov decision method. 
The strategy planner also renews every agent’s information, or 
probability distribution throughout the state space of the world, 
provided measurement and activity stories, and creates a plan, 
like a mapping from the agent’s principle state to its act set [12]. 
Pursuit of the optimal strategy is computationally problematic in 
many challenges, therefore normally optimal strategies are applied 
in Ref. [12], or the group of rules to seek over is restricted as in 
Ref. [13]. Processes are usually operated on real-time functioning 
structures to fulfil fast real-time restrictions.

The strategy planner as well operates communication networks 
too. Developed from an easy telemetry for data up and down 
link, the communication performs a crucial function in the real-
time management of numerous drones in dynamic environment 
as a closely coordinated, distributed interacted intelligence. 
Furthermore, it is necessary to get the care of a high-ranking 
quality-of-service wireless communication system with negligible 

expectancy, in the spirit of ambient noise or signal blocking for 
secure action.

Ultimately, the drone is ordered to go to the planned spots that 
are processed by the decision-making procedure. In acting so, the 
UAS ought to be capable to independently drive itself beyond the 
reference routes or waypoints. Each drone platform is supplied 
with alleviating controllers. Special action-detection management 
appears at an extremely rapid level in charge to survive with 
possibilities, such as revealing and prevention of collisions [15].
  
Methodology
Tilt-Rotor Drone Onboard Platform
Modern UAS is firmly integrated by mechanical and electronic 
modules, involving an airframe, navigation sensors, processors, 
batteries, and extra onboard sensors, targeted at implementing 
autonomous responsibilities thru nominal interference by a remote 
human operative. Bayraktar DİHA TRD is made on off-the-shelf 
remote-controlled drones of numerous ranges and loads. The 
onboard modules are classified into the pursuits: 1) flight control 
onboard computer; 2) navigational sensors; 3) communication 
unit, and 4) onboard power structure (Figure 5) [3,12, 15].

Figure 5: Bayraktar DİHA TRD Platform Architecture

The onboard flight computer is fundamental to the guidance, navigation, and control of the host drone. It is in concern of real-time 
UAS control, sensor integration, and inter-agent communication. The flight management software system is executed in the real-time 
operating system. The input to the servo control system is processed at 50 Hz using the flight control algorithms [12].

The navigation system is made over INS and GPS. INS delivers position, velocity, attitude angles and levels at an arbitrarily high 
rate. A weakness of INS is the boundless fault developing quickly over time. This can be successfully adjusted by an outward locate 
sensor such as GPS. Due to the matching features of INS and GPS, a grouping of these sensors has enhanced a universal arrangement 
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for UAS. To obtain the setting-specific info such as the relative 
distance from the ground or nearby objects, laser range detectors, 
ultrasonic sensors, and vision sensors are treated as well [14].

Bayraktar DİHA TRDs are furnished with an onboard vision 
handling unit (VHU) and a camera boarded on a tilt platform. The 
VHU paths indicators of specific model and approximate the virtual 
flow amongst the camera and the object. For independent take-off 
and landing, a vision-created sensing estimates the comparative 
space and slope angles to the indicator on the landing site. The 
VHU approximate is adapted with navigation data commencing 
the onboard computer through a sequential tie [15].

Wireless network is employed to realise the remote availability 
and connectivity amongst numerous agents. The communication 
stream on the communication connection is labelled in a regulated 
communication arrangement, which allows the interoperability of 
airborne and ground-created agents [12].

Tilt-Rotor Drone Dynamics
A TRD is a kindly nonlinear multi-input multi-output (MIMO) 
system, which is revealed to critical disorder such as its peculiar 
rotor wake and wind gusts. The modelling of the UAS merits 
a dedicated exposure and the complete details of the active 
simulations, beginning which the suggested control rules are 
constructed, is observed in Ref. [15].

The total dynamics of a TRD are modelled as a set of nonlinear 
differential equations, which is split into the kinematics (1st two 
equations) and the system dynamics (the last one) [12]:

                                                                                          (1)

                                                                                          (2)

                                                                                          (3)

where

At this point S and B indicates 3-D and body coordinates. 

and         u,v and w correspondingly, will be treated for notational 
ease) designate velocity regarding the body-coordinate framework.
ϕ, θ, and ψ mean roll, pitch, and yaw, and p,q and r are their rates, 
correspondingly [15].

The factors als  and bls are longitudinal and lateral flap angles, and 
rfb  is the feedback gyro system state [6]. The dynamic model, 
as in Eq. (3) has four enters.         and        control lateral and 
longitudinal repeated pitch, correspondingly. The cyclic pitch 
changes the original pitch of every rotor blade throughout a cycle 
to vary the trend of the thrust vector.          is the servosystem 

response for the main rotor cooperative pitch. The cooperative 
control changes the pitch of all blades and thus variations the 
magnitude of the thrust direction.        controls the amount and 
direction of the rear rotor thrust, which counters the anti-torque of 
the front rotor and thus controls the heading angle. Anticipated to 
the intricacy and the ambiguity essential to aerodynamic orders, 
the dynamic simulation was recognized by using a parametric 
recognition procedure to a set of test flight statistics. A test data 
put on frequency curving signals to the instrumented TRD in 
longitudinal, lateral, pitch and yaw paths in turn, whilst providing 
the drone’s general stability. The UAV reaction is determined by 
the navigation sensors and transferred to the base station through 
a wireless link. The verified extent is prepared and then treated by 
forecast error technique, a time-domain parametric identification 
approach [11]. The followed model for the last equation (Eq. (3) 
is a lined time-invariant structure with conditions and responses 
described beyond. Figure 6 matches the state variables expected 
by the recognized model, which confirms an adequate match with 
the real mission data [15].

Figure 6: Identification Simulation:  Data (Solid) vs. Prediction 
by the Identified Model (Dotted) during 20 s Experiments

Tilt-Rotor Drone Stabilization and Tracking
In the primary approximate, multiple single-input, single-
output (SISO) control loops are aimed across the four inputs of 
longitudinal / lateral cyclical pitches and main / tail cooperative 
pitches [12]. This consider has evident benefits in conditions of 
an easier configuration, basic design practice, and low processing 
capacity. On the other hand, it acts not present a methodical 
approach to describe for improbability, disturbance, and dispersion. 
Furthermore, it has extremely restricted implies to alleviate the 
coupling among passages.

The suggested controller contains of three loops [14]: 1) deepest 
attitude controller, 2) mid-loop linear velocity controller, and 3) 
outer loop attitude controller (Figure 7).
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Figure 7: Multi-Loop Controller Architecture [12]

The attitude controller supplies reverse only the difference of the 
roll and pitch angles from the reduce situation (nonzero angle 
wanted to conserve a stability), not the noisy angular rates p 
and q measured by rate gyros. This methodology produces a 
controller that is easier and further tough to mechanical vibration. 
The suitable angular feedback gains for roll and pitch channels 
are established to take appropriate reaction speed and damping 
ratio [12].

The translational velocity dynamics of little TRDs are unstable 
through the attitude response only. They must be become stable 
using velocity response, which is established by a arrangement 
of root position and step response procedures [12].

For hover control, the position control circles in all 3 (x-, y-, and 
z) axis are included on important of the linear velocity and attitude 
response. The position control includes domestic coordinate 
conversion to reward the heading adjustment. The position gains 
are located by using the related techniques explained over to the 
extended TRD dynamics using velocity and attitude response. 
Lastly, whole acts are combined to remove steady-state faults 
and cut disparity [12].

Results and Discussion
The vertical and heading dynamics are naturally steady exactly to 
the interface amongst the inflow and the induced lift. The vertical 
reaction is advanced by synthetic dampening via destructive 
velocity reaction. For yaw tracing, the route fault and its integral 
are consumed back on top of the integral gyro system.

Briefly, the multi-loop PID control law is assumed as the 
subsequent regular equation [12]:

                                                                                           (4)

where  ex, s, ey , s and ezs  indicate the position error, and eψ  
indicates the leading error.

Figure 8: Experiment Result of Autonomous Hover

Figure 8 shows the experiment result of hovering controller 
tested on Tilt-Rotor Bayraktar DİHA Unmanned Aerial Platform 
(Turkey) [3]. The RUAV proven a steady and precise control reply 
through (±0.2; ±0.3; ±0.2 m; ±1.10) correctness in (x; y; z; ψ)-axis. 
Roll, pitch, translational velocity in x and y paths are controlled 
very well completely.
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Earlier, we have shown that the conventional multi-loop control 
makes rationally fit. In order to advance the following presentation 
for composite routes by taking into account of nonlinear features, 
link between modes, and input/state capacity, we similarly reflect 
a nonlinear model prognostic controller as a chasing deposit.

To each model time, a nonlinear predictive controller calculates 
a determinate control arrangement, which reduces a cost 
function, naturally a weighted quadratic sum of positions and 
inputs completed a finite distance. We used a discretized core 
model gained from a partly nonlinear continuous time model 
(with nonlinear force footings and complete nonlinear kinematic 
equations) [12].

As in Ref. [12] for the inner model, Eq. (2) is discretized to

                                                                                    (5)

where Ts is the sample time. For chasing, we describe a cost 
function as in Ref. [12]:

                                                                                     
(6)

                                                                                     (7) 

                                                                                     (8)

where                                  yd is the wanted trajectory, and S is 

offered to confident the state variables that do not conventional 
seem in y. By offering an order of Lagrange multiplier vectors                                          

                      as like in Ref. [12]:

                                                                                              (9) 

By defining the Hamiltonian function as

                                                                                             (10) 

In this case Eq. (6) can be represented as in [12] too:

                                                                                             (11)  

Meanwhile we need to selected             that reduces J, we take a 

look at the expression for as in Ref. [12]:

Picking

                                                                                         (12)

                                                                                         (13)

yields

 
                                                                                         (14)

and

                                                                                         (15)
  

With an primary rate of the input arrangement

gained by means of a nonlinear predictive controller and an 

assumed                    are first calculated using Eq. (5). Then, for

k = N,...,1, λk  are calculated recursively using Eq. (12)-(13), and for 

                                      are calculated using Eq. (15) and used for 

the gradient descent. By setting uk  at the opening of the optimization 
at the iteration count decreases meaningfully [12].

Through an original amount of the input series                                          

acquired via a nonlinear predictive controller and a known

                   are initially calculated applying expression (5). But 

then, for                             are computed recursively using 

expressions (12) and (13), and for                                                              

are calculated with expression (15) and employed for the gradient 
incline. Via setting uk  at the beginning of the optimization at every 
time step with the uk of the previous time trial, the iteration count 
decreases substantially.

Conclusion and Future Work
This article performed a hierarchical TRD flying control system. 
The UAS dynamics are labelled as a linear model from the test 
mission data. The tracing control cover is proposed managing 
the next two procedures: multi-loop PID control and nonlinear 
model analytical control. The performance of PID controller has 
been justified in tests that involve a tracing route of reasonable 
complexity. The nonlinear model predictive control has proved 
a remarkable tracing presentation in the presence of deep 
combination and control input capacity at the cost of deeper 
addition capacity. 
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and inputs completed a finite distance. We used a discretized core model gained from a partly 
nonlinear continuous time model (with nonlinear force footings and complete nonlinear 
kinematic equations) [12]. 

As in Ref. [12] for the inner model, Eq. (2) is discretized to 
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𝑑𝑑𝑢𝑢𝑘𝑘]

𝑁𝑁−1

𝑘𝑘=1
 

Picking 
          λ𝑁𝑁

𝑇𝑇 = 𝜕𝜕ϕ
𝜕𝜕𝑥𝑥𝑁𝑁

− �̃�𝑦𝑁𝑁
𝑇𝑇𝑃𝑃0𝐶𝐶,                                                                                                 (12) 

λ𝑘𝑘
𝑇𝑇 = + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= x𝑘𝑘
𝑇𝑇𝑆𝑆 + λ𝑘𝑘+1

𝑇𝑇 𝜕𝜕𝑓𝑓𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

− �̃�𝑦𝑇𝑇𝑄𝑄𝐶𝐶                                                                               (13) 

yields 
∑ 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝑥𝑥𝑘𝑘
𝑁𝑁−1
𝑘𝑘=1 𝑑𝑑𝑢𝑢𝑘𝑘 + λ0

𝑇𝑇𝑑𝑑𝑥𝑥0                                                                                                    (14) 

and 
𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= u𝑘𝑘
𝑇𝑇𝑅𝑅 + λ𝑘𝑘+1

𝑇𝑇 𝜕𝜕𝑓𝑓𝑘𝑘
𝜕𝜕𝑢𝑢𝑘𝑘

.                                                                                                                                  (15) 

With an primary rate of the input arrangement {𝑢𝑢𝑘𝑘}0
𝑁𝑁−1 gained by means of a nonlinear 

predictive controller and an assumed 𝑥𝑥0, {𝑥𝑥𝑘𝑘}1
𝑁𝑁 are first calculated using Eq. (5). Then, for 𝑘𝑘 =

𝑁𝑁, … ,1, λ𝑘𝑘 are calculated recursively using Eq. (12)-(13), and for 𝑘𝑘 = 𝑁𝑁, … ,1, λ𝑘𝑘, 𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑢𝑢𝑘𝑘

 are 

calculated using Eq. (15) and used for the gradient descent. By setting 𝑢𝑢𝑘𝑘 at the opening of the 
optimization at the iteration count decreases meaningfully [12]. 

Through an original amount of the input series  {𝑢𝑢𝑘𝑘  
(0)}

0

𝑁𝑁−1
 acquired via a nonlinear 

predictive controller and a known 𝑥𝑥0, {𝑥𝑥𝑘𝑘}1
𝑁𝑁 are initially calculated applying expression (5). 

and inputs completed a finite distance. We used a discretized core model gained from a partly 
nonlinear continuous time model (with nonlinear force footings and complete nonlinear 
kinematic equations) [12]. 

As in Ref. [12] for the inner model, Eq. (2) is discretized to 
𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) ≜ 𝑓𝑓𝑑𝑑(𝑥𝑥𝑘𝑘) + 𝐵𝐵𝑑𝑑𝑢𝑢𝑘𝑘,   
𝑓𝑓𝑑𝑑(𝑥𝑥𝑘𝑘) ≜ 𝑥𝑥𝑘𝑘 + 𝑇𝑇𝑠𝑠𝑓𝑓𝑐𝑐(𝑥𝑥𝑘𝑘), 
𝐵𝐵𝑑𝑑 ≜ 𝑇𝑇𝑠𝑠𝐵𝐵𝑐𝑐,                                                                                                                       (5) 

where 𝑇𝑇𝑠𝑠 is the sample time. For chasing, we describe a cost function as in Ref. [12]: 
𝐽𝐽 = 𝜙𝜙(�̃�𝑦𝑁𝑁) + ∑ 𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘),𝑁𝑁−1

𝑘𝑘=0                                                                                      (6) 
𝜙𝜙(�̃�𝑦𝑁𝑁) ≜ 1

2 �̃�𝑦𝑁𝑁
𝑇𝑇𝑃𝑃0�̃�𝑦𝑁𝑁,                                                                                                          (7) 

𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘) ≜ 1
2 �̃�𝑦𝐾𝐾

𝑇𝑇𝑄𝑄�̃�𝑦𝑘𝑘 + 1
2 𝑥𝑥𝑘𝑘

𝑇𝑇𝑆𝑆𝑥𝑥𝑘𝑘 + 1
2 𝑢𝑢𝑘𝑘

𝑇𝑇𝑅𝑅𝑢𝑢𝑘𝑘,                                                             (8) 
where  �̃�𝑦 ≜ 𝑦𝑦𝑑𝑑 − 𝑦𝑦, 𝑦𝑦 = 𝐶𝐶𝑥𝑥 + 𝑅𝑅𝑛𝑛𝑦𝑦,  𝑦𝑦𝑑𝑑  is the wanted trajectory, and S is offered to confident 
the state variables that do not conventional seem in y. By offering an order of Lagrange 
multiplier vectors  {λ𝑘𝑘 ∈ 𝑅𝑅𝑛𝑛𝑥𝑥}𝑘𝑘=1

𝑁𝑁 , as like in Ref. [12]: 
𝐽𝐽 = 𝜙𝜙(�̃�𝑦𝑁𝑁) + ∑ 𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘),𝑁𝑁−1

𝑘𝑘=0 + λ𝑘𝑘+1
𝑇𝑇 [𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) − 𝑥𝑥𝑘𝑘+1].                                                   (9) 

By defining the Hamiltonian function as  
𝐻𝐻𝑘𝑘 = 𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘) + λ𝑘𝑘+1

𝑇𝑇 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘).                                                                             (10) 
In this case Eq. (6) can be represented as in [12] too: 
𝐽𝐽 = 𝜙𝜙(𝑥𝑥𝑁𝑁) − λ𝑁𝑁

𝑇𝑇 𝑥𝑥𝑁𝑁 + ∑ [𝐻𝐻𝑘𝑘 − λ𝑁𝑁
𝑇𝑇 𝑥𝑥𝑁𝑁𝑘𝑘] + 𝐻𝐻0

𝑁𝑁−1
𝑘𝑘=1 .                                                           (11) 

Meanwhile we need to selected {𝑢𝑢𝑘𝑘}0
𝑁𝑁−1 that reduces 𝐽𝐽, we take a look at the expression 

for as in Ref. [12]: 

          𝐽𝐽 = [ 𝜕𝜕ϕ
𝜕𝜕𝑥𝑥𝑁𝑁

− λ𝑁𝑁
𝑇𝑇

𝑘𝑘
] 𝑑𝑑𝑥𝑥𝑁𝑁 + 𝜕𝜕𝐻𝐻0

𝜕𝜕𝑥𝑥0
𝑑𝑑𝑥𝑥0 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕�̃�𝑦0
𝑑𝑑�̃�𝑦0 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝑢𝑢0
𝑑𝑑𝑢𝑢0 + 

           + ∑ [{𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

− λ𝑘𝑘
𝑇𝑇} 𝑑𝑑𝑥𝑥𝑘𝑘 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘
𝑑𝑑�̃�𝑦𝑘𝑘 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝑢𝑢𝑘𝑘
𝑑𝑑𝑢𝑢𝑘𝑘]

𝑁𝑁−1

𝑘𝑘=1
 

Picking 
          λ𝑁𝑁

𝑇𝑇 = 𝜕𝜕ϕ
𝜕𝜕𝑥𝑥𝑁𝑁

− �̃�𝑦𝑁𝑁
𝑇𝑇𝑃𝑃0𝐶𝐶,                                                                                                 (12) 

λ𝑘𝑘
𝑇𝑇 = + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= x𝑘𝑘
𝑇𝑇𝑆𝑆 + λ𝑘𝑘+1

𝑇𝑇 𝜕𝜕𝑓𝑓𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

− �̃�𝑦𝑇𝑇𝑄𝑄𝐶𝐶                                                                               (13) 

yields 
∑ 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝑥𝑥𝑘𝑘
𝑁𝑁−1
𝑘𝑘=1 𝑑𝑑𝑢𝑢𝑘𝑘 + λ0

𝑇𝑇𝑑𝑑𝑥𝑥0                                                                                                    (14) 

and 
𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= u𝑘𝑘
𝑇𝑇𝑅𝑅 + λ𝑘𝑘+1

𝑇𝑇 𝜕𝜕𝑓𝑓𝑘𝑘
𝜕𝜕𝑢𝑢𝑘𝑘

.                                                                                                                                  (15) 

With an primary rate of the input arrangement {𝑢𝑢𝑘𝑘}0
𝑁𝑁−1 gained by means of a nonlinear 

predictive controller and an assumed 𝑥𝑥0, {𝑥𝑥𝑘𝑘}1
𝑁𝑁 are first calculated using Eq. (5). Then, for 𝑘𝑘 =

𝑁𝑁, … ,1, λ𝑘𝑘 are calculated recursively using Eq. (12)-(13), and for 𝑘𝑘 = 𝑁𝑁, … ,1, λ𝑘𝑘, 𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑢𝑢𝑘𝑘

 are 

calculated using Eq. (15) and used for the gradient descent. By setting 𝑢𝑢𝑘𝑘 at the opening of the 
optimization at the iteration count decreases meaningfully [12]. 

Through an original amount of the input series  {𝑢𝑢𝑘𝑘  
(0)}

0

𝑁𝑁−1
 acquired via a nonlinear 

predictive controller and a known 𝑥𝑥0, {𝑥𝑥𝑘𝑘}1
𝑁𝑁 are initially calculated applying expression (5). 

and inputs completed a finite distance. We used a discretized core model gained from a partly 
nonlinear continuous time model (with nonlinear force footings and complete nonlinear 
kinematic equations) [12]. 

As in Ref. [12] for the inner model, Eq. (2) is discretized to 
𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) ≜ 𝑓𝑓𝑑𝑑(𝑥𝑥𝑘𝑘) + 𝐵𝐵𝑑𝑑𝑢𝑢𝑘𝑘,   
𝑓𝑓𝑑𝑑(𝑥𝑥𝑘𝑘) ≜ 𝑥𝑥𝑘𝑘 + 𝑇𝑇𝑠𝑠𝑓𝑓𝑐𝑐(𝑥𝑥𝑘𝑘), 
𝐵𝐵𝑑𝑑 ≜ 𝑇𝑇𝑠𝑠𝐵𝐵𝑐𝑐,                                                                                                                       (5) 

where 𝑇𝑇𝑠𝑠 is the sample time. For chasing, we describe a cost function as in Ref. [12]: 
𝐽𝐽 = 𝜙𝜙(�̃�𝑦𝑁𝑁) + ∑ 𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘),𝑁𝑁−1

𝑘𝑘=0                                                                                      (6) 
𝜙𝜙(�̃�𝑦𝑁𝑁) ≜ 1

2 �̃�𝑦𝑁𝑁
𝑇𝑇𝑃𝑃0�̃�𝑦𝑁𝑁,                                                                                                          (7) 

𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘) ≜ 1
2 �̃�𝑦𝐾𝐾

𝑇𝑇𝑄𝑄�̃�𝑦𝑘𝑘 + 1
2 𝑥𝑥𝑘𝑘

𝑇𝑇𝑆𝑆𝑥𝑥𝑘𝑘 + 1
2 𝑢𝑢𝑘𝑘

𝑇𝑇𝑅𝑅𝑢𝑢𝑘𝑘,                                                             (8) 
where  �̃�𝑦 ≜ 𝑦𝑦𝑑𝑑 − 𝑦𝑦, 𝑦𝑦 = 𝐶𝐶𝑥𝑥 + 𝑅𝑅𝑛𝑛𝑦𝑦,  𝑦𝑦𝑑𝑑  is the wanted trajectory, and S is offered to confident 
the state variables that do not conventional seem in y. By offering an order of Lagrange 
multiplier vectors  {λ𝑘𝑘 ∈ 𝑅𝑅𝑛𝑛𝑥𝑥}𝑘𝑘=1

𝑁𝑁 , as like in Ref. [12]: 
𝐽𝐽 = 𝜙𝜙(�̃�𝑦𝑁𝑁) + ∑ 𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘),𝑁𝑁−1

𝑘𝑘=0 + λ𝑘𝑘+1
𝑇𝑇 [𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) − 𝑥𝑥𝑘𝑘+1].                                                   (9) 

By defining the Hamiltonian function as  
𝐻𝐻𝑘𝑘 = 𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘) + λ𝑘𝑘+1

𝑇𝑇 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘).                                                                             (10) 
In this case Eq. (6) can be represented as in [12] too: 
𝐽𝐽 = 𝜙𝜙(𝑥𝑥𝑁𝑁) − λ𝑁𝑁

𝑇𝑇 𝑥𝑥𝑁𝑁 + ∑ [𝐻𝐻𝑘𝑘 − λ𝑁𝑁
𝑇𝑇 𝑥𝑥𝑁𝑁𝑘𝑘] + 𝐻𝐻0

𝑁𝑁−1
𝑘𝑘=1 .                                                           (11) 

Meanwhile we need to selected {𝑢𝑢𝑘𝑘}0
𝑁𝑁−1 that reduces 𝐽𝐽, we take a look at the expression 

for as in Ref. [12]: 

          𝐽𝐽 = [ 𝜕𝜕ϕ
𝜕𝜕𝑥𝑥𝑁𝑁

− λ𝑁𝑁
𝑇𝑇

𝑘𝑘
] 𝑑𝑑𝑥𝑥𝑁𝑁 + 𝜕𝜕𝐻𝐻0

𝜕𝜕𝑥𝑥0
𝑑𝑑𝑥𝑥0 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕�̃�𝑦0
𝑑𝑑�̃�𝑦0 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝑢𝑢0
𝑑𝑑𝑢𝑢0 + 

           + ∑ [{𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

− λ𝑘𝑘
𝑇𝑇} 𝑑𝑑𝑥𝑥𝑘𝑘 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘
𝑑𝑑�̃�𝑦𝑘𝑘 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝑢𝑢𝑘𝑘
𝑑𝑑𝑢𝑢𝑘𝑘]

𝑁𝑁−1

𝑘𝑘=1
 

Picking 
          λ𝑁𝑁

𝑇𝑇 = 𝜕𝜕ϕ
𝜕𝜕𝑥𝑥𝑁𝑁

− �̃�𝑦𝑁𝑁
𝑇𝑇𝑃𝑃0𝐶𝐶,                                                                                                 (12) 

λ𝑘𝑘
𝑇𝑇 = + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= x𝑘𝑘
𝑇𝑇𝑆𝑆 + λ𝑘𝑘+1

𝑇𝑇 𝜕𝜕𝑓𝑓𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

− �̃�𝑦𝑇𝑇𝑄𝑄𝐶𝐶                                                                               (13) 

yields 
∑ 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝑥𝑥𝑘𝑘
𝑁𝑁−1
𝑘𝑘=1 𝑑𝑑𝑢𝑢𝑘𝑘 + λ0

𝑇𝑇𝑑𝑑𝑥𝑥0                                                                                                    (14) 

and 
𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= u𝑘𝑘
𝑇𝑇𝑅𝑅 + λ𝑘𝑘+1

𝑇𝑇 𝜕𝜕𝑓𝑓𝑘𝑘
𝜕𝜕𝑢𝑢𝑘𝑘

.                                                                                                                                  (15) 

With an primary rate of the input arrangement {𝑢𝑢𝑘𝑘}0
𝑁𝑁−1 gained by means of a nonlinear 

predictive controller and an assumed 𝑥𝑥0, {𝑥𝑥𝑘𝑘}1
𝑁𝑁 are first calculated using Eq. (5). Then, for 𝑘𝑘 =

𝑁𝑁, … ,1, λ𝑘𝑘 are calculated recursively using Eq. (12)-(13), and for 𝑘𝑘 = 𝑁𝑁, … ,1, λ𝑘𝑘, 𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑢𝑢𝑘𝑘

 are 

calculated using Eq. (15) and used for the gradient descent. By setting 𝑢𝑢𝑘𝑘 at the opening of the 
optimization at the iteration count decreases meaningfully [12]. 

Through an original amount of the input series  {𝑢𝑢𝑘𝑘  
(0)}

0

𝑁𝑁−1
 acquired via a nonlinear 

predictive controller and a known 𝑥𝑥0, {𝑥𝑥𝑘𝑘}1
𝑁𝑁 are initially calculated applying expression (5). 

and inputs completed a finite distance. We used a discretized core model gained from a partly 
nonlinear continuous time model (with nonlinear force footings and complete nonlinear 
kinematic equations) [12]. 

As in Ref. [12] for the inner model, Eq. (2) is discretized to 
𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) ≜ 𝑓𝑓𝑑𝑑(𝑥𝑥𝑘𝑘) + 𝐵𝐵𝑑𝑑𝑢𝑢𝑘𝑘,   
𝑓𝑓𝑑𝑑(𝑥𝑥𝑘𝑘) ≜ 𝑥𝑥𝑘𝑘 + 𝑇𝑇𝑠𝑠𝑓𝑓𝑐𝑐(𝑥𝑥𝑘𝑘), 
𝐵𝐵𝑑𝑑 ≜ 𝑇𝑇𝑠𝑠𝐵𝐵𝑐𝑐,                                                                                                                       (5) 

where 𝑇𝑇𝑠𝑠 is the sample time. For chasing, we describe a cost function as in Ref. [12]: 
𝐽𝐽 = 𝜙𝜙(�̃�𝑦𝑁𝑁) + ∑ 𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘),𝑁𝑁−1

𝑘𝑘=0                                                                                      (6) 
𝜙𝜙(�̃�𝑦𝑁𝑁) ≜ 1

2 �̃�𝑦𝑁𝑁
𝑇𝑇𝑃𝑃0�̃�𝑦𝑁𝑁,                                                                                                          (7) 

𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘) ≜ 1
2 �̃�𝑦𝐾𝐾

𝑇𝑇𝑄𝑄�̃�𝑦𝑘𝑘 + 1
2 𝑥𝑥𝑘𝑘

𝑇𝑇𝑆𝑆𝑥𝑥𝑘𝑘 + 1
2 𝑢𝑢𝑘𝑘

𝑇𝑇𝑅𝑅𝑢𝑢𝑘𝑘,                                                             (8) 
where  �̃�𝑦 ≜ 𝑦𝑦𝑑𝑑 − 𝑦𝑦, 𝑦𝑦 = 𝐶𝐶𝑥𝑥 + 𝑅𝑅𝑛𝑛𝑦𝑦,  𝑦𝑦𝑑𝑑  is the wanted trajectory, and S is offered to confident 
the state variables that do not conventional seem in y. By offering an order of Lagrange 
multiplier vectors  {λ𝑘𝑘 ∈ 𝑅𝑅𝑛𝑛𝑥𝑥}𝑘𝑘=1

𝑁𝑁 , as like in Ref. [12]: 
𝐽𝐽 = 𝜙𝜙(�̃�𝑦𝑁𝑁) + ∑ 𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘),𝑁𝑁−1

𝑘𝑘=0 + λ𝑘𝑘+1
𝑇𝑇 [𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘) − 𝑥𝑥𝑘𝑘+1].                                                   (9) 

By defining the Hamiltonian function as  
𝐻𝐻𝑘𝑘 = 𝐿𝐿(𝑥𝑥𝑘𝑘, �̃�𝑦𝑘𝑘, 𝑢𝑢𝑘𝑘) + λ𝑘𝑘+1

𝑇𝑇 𝑓𝑓(𝑥𝑥𝑘𝑘, 𝑢𝑢𝑘𝑘).                                                                             (10) 
In this case Eq. (6) can be represented as in [12] too: 
𝐽𝐽 = 𝜙𝜙(𝑥𝑥𝑁𝑁) − λ𝑁𝑁

𝑇𝑇 𝑥𝑥𝑁𝑁 + ∑ [𝐻𝐻𝑘𝑘 − λ𝑁𝑁
𝑇𝑇 𝑥𝑥𝑁𝑁𝑘𝑘] + 𝐻𝐻0

𝑁𝑁−1
𝑘𝑘=1 .                                                           (11) 

Meanwhile we need to selected {𝑢𝑢𝑘𝑘}0
𝑁𝑁−1 that reduces 𝐽𝐽, we take a look at the expression 

for as in Ref. [12]: 

          𝐽𝐽 = [ 𝜕𝜕ϕ
𝜕𝜕𝑥𝑥𝑁𝑁

− λ𝑁𝑁
𝑇𝑇

𝑘𝑘
] 𝑑𝑑𝑥𝑥𝑁𝑁 + 𝜕𝜕𝐻𝐻0

𝜕𝜕𝑥𝑥0
𝑑𝑑𝑥𝑥0 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕�̃�𝑦0
𝑑𝑑�̃�𝑦0 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝑢𝑢0
𝑑𝑑𝑢𝑢0 + 

           + ∑ [{𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

− λ𝑘𝑘
𝑇𝑇} 𝑑𝑑𝑥𝑥𝑘𝑘 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘
𝑑𝑑�̃�𝑦𝑘𝑘 + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝑢𝑢𝑘𝑘
𝑑𝑑𝑢𝑢𝑘𝑘]

𝑁𝑁−1

𝑘𝑘=1
 

Picking 
          λ𝑁𝑁

𝑇𝑇 = 𝜕𝜕ϕ
𝜕𝜕𝑥𝑥𝑁𝑁

− �̃�𝑦𝑁𝑁
𝑇𝑇𝑃𝑃0𝐶𝐶,                                                                                                 (12) 

λ𝑘𝑘
𝑇𝑇 = + 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘

𝜕𝜕�̃�𝑦𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= x𝑘𝑘
𝑇𝑇𝑆𝑆 + λ𝑘𝑘+1

𝑇𝑇 𝜕𝜕𝑓𝑓𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

− �̃�𝑦𝑇𝑇𝑄𝑄𝐶𝐶                                                                               (13) 

yields 
∑ 𝜕𝜕𝐻𝐻𝑘𝑘

𝜕𝜕𝑥𝑥𝑘𝑘
𝑁𝑁−1
𝑘𝑘=1 𝑑𝑑𝑢𝑢𝑘𝑘 + λ0

𝑇𝑇𝑑𝑑𝑥𝑥0                                                                                                    (14) 

and 
𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= u𝑘𝑘
𝑇𝑇𝑅𝑅 + λ𝑘𝑘+1

𝑇𝑇 𝜕𝜕𝑓𝑓𝑘𝑘
𝜕𝜕𝑢𝑢𝑘𝑘

.                                                                                                                                  (15) 

With an primary rate of the input arrangement {𝑢𝑢𝑘𝑘}0
𝑁𝑁−1 gained by means of a nonlinear 

predictive controller and an assumed 𝑥𝑥0, {𝑥𝑥𝑘𝑘}1
𝑁𝑁 are first calculated using Eq. (5). Then, for 𝑘𝑘 =

𝑁𝑁, … ,1, λ𝑘𝑘 are calculated recursively using Eq. (12)-(13), and for 𝑘𝑘 = 𝑁𝑁, … ,1, λ𝑘𝑘, 𝜕𝜕𝐻𝐻𝑘𝑘
𝜕𝜕𝑢𝑢𝑘𝑘

 are 

calculated using Eq. (15) and used for the gradient descent. By setting 𝑢𝑢𝑘𝑘 at the opening of the 
optimization at the iteration count decreases meaningfully [12]. 

Through an original amount of the input series  {𝑢𝑢𝑘𝑘  
(0)}

0

𝑁𝑁−1
 acquired via a nonlinear 

predictive controller and a known 𝑥𝑥0, {𝑥𝑥𝑘𝑘}1
𝑁𝑁 are initially calculated applying expression (5). 
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The proposed multi-functional flight management system was 
confirmed in the tracking patterns: waypoint navigation, chasing 
of a moving objects and autonomous landing. Additional study 
exertion will be made to enlarge the capability of the flight 
management system with rich approach planning senses, enlarged 
robustness, and the broader flight envelope, therefore contraction 
down the break among existing TRDs and extremely manoeuvrable 
intelligent drones. 
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