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Introductıon
Multiple linear regression, a foundational statistical technique, 
plays a pivotal role in modeling the intricate relationships 
that exist between a dependent variable (response) and one or 
more independent variables (predictors) [1-3]. This method 
involves fitting a linear equation to observed data, enabling us to 
comprehend, quantify, and predict associations among variables. 
Its versatility extends across a multitude of domains, including 
economics, marketing, and scientific research, where it serves as 
an invaluable tool for making predictions and unraveling intricate 
variable connections [4-6].

At its core, multiple linear regression is a supervised learning 
algorithm. It's particularly adept at handling continuous real-
numbered target variables [7-9]. This method establishes 
relationships between the dependent variable, denoted as 'y,' and 
one or more independent variables, collectively represented as 
'x,' through the creation of a best-fit line. This process operates 
under the fundamental principle of ordinary least squares (OLS) 

or mean square error (MSE) [10-12]. OLS serves as a method to 
estimate the unknown parameters of the linear regression function, 
with its primary objective being the minimization of the sum of 
squared differences between the observed dependent variable and 
the values predicted by the linear regression function [10,11].

This paper embarks on an exploration of the intricate world of 
multiple linear regression, aiming to bridge the chasm between 
theoretical understanding and practical application. The 
following sections delve into the mathematical foundations of 
this method, in alignment with the insights presented by Kutner, 
Nachtsheim, Neter, and Li [13]. The discussion extends further, 
encompassing the synergistic relationship between traditional 
statistical approaches and contemporary computational methods. 
Our journey begins with the practical application of multiple 
linear regression to predict wine quality based on physicochemical 
attributes, employing an extensive dataset [14]. Leveraging 
the least squares method, we estimate regression coefficients, 
paving the way for the construction of a predictive model [15]. 
Assumptions, such as homoscedasticity and normality of residuals, 
are rigorously tested. Additionally, we assess autocorrelation, 
ensuring the robustness of our model.
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On the practical implementation of multiple linear regression, 
this paper provides a hands-on demonstration using PyTorch, 
a well-regarded deep learning framework [16-18]. Within this 
context, a linear model is defined, emphasizing the critical role of 
gradient descent in optimizing model parameters [18]. Subsequent 
sections of the paper delve into essential topics such as data 
preprocessing, model evaluation, and insightful approaches for 
interpreting regression results [19].

Furthermore, this study broadens its scope by evaluating the 
performance of linear regression against other contemporary 
machine learning techniques, including decision trees, random 
forests, and support vector regression [17,20,21]. This comparative 
analysis underscores the enduring adaptability of this time-honored 
method within the domain of predictive modeling. By offering 
a comprehensive perspective on multiple linear regression, 
emphasizing its mathematical foundations, practical applications, 
and integration with modern machine learning, this work aims to 
empower researchers and practitioners, equipping them to leverage 
the substantial potential of linear regression across various fields 
[22].

Materıal and Methods
Material
For the purpose of this study, a database from Cortez et al. (2009) 
was utilized [14]. The dataset includes the following attribute 
information:
Input variables (based on physicochemical tests):
 Input variables (based on physicochemical tests) 
 1 - fixed acidity (tartaric acid - g / dm^3)
 2 - volatile acidity (acetic acid - g / dm^3)
 3 - citric acid (g / dm^3)
 4 - residual sugar (g / dm^3)
 5 - chlorides (sodium chloride - g / dm^3
 6 - free sulfur dioxide (mg / dm^3)
 7 - total sulfur dioxide (mg / dm^3)
 8 - density (g / cm^3)
 9 - pH
 10 - sulphates (potassium sulphate - g / dm3)
 11 - alcohol (% by volume)
 Output variable (based on sensory data): 
 12 - quality (score between 0 and 10)

Methods
The Collection of the Data
The data for this study were obtained from the dataset provided 
by Cortez et al. in 2009 [14]. Modeling wine preferences by 
data mining from physicochemical properties. Decision Support 
Systems, 47(4), 547-553]. The dataset contains information on 
physicochemical attributes of wine, making it suitable for the 
analysis and implementation of multiple linear regression. 

Statistical Analysis
The statistical analysis in this study primarily involves the 
implementation of Multiple Linear Regression.

Implementation of Multiple Linear Regression
Objective: The objective of Multiple Linear Regression is to find 
the estimates of the regression coefficients (β0, β1, β2, ..., βp) that 
minimize the sum of the squared differences between the observed 
values (y) and the values predicted by the linear regression model.

Loss Function: Multiple Linear Regression employs a loss 
function that measures the squared differences between the 
observed and predicted values. The ultimate goal is to minimize 
the sum of squared residuals.

Assumptions
Multiple Linear Regression assumes that the errors (residuals) are 
normally distributed with constant variance (homoscedasticity) 
and does not require a specific probabilistic model for the errors.

Linear Regression Model
In simple linear regression, with one independent variable (X) and 
one dependent variable (Y), the model is defined as:
Y = β0 + βiX
For Multiple Linear Regression, where there are multiple 
independent variables (x1, x2, ..., xp), the model is represented as:
Y(yi)=β0+β1x1+β2x2+...+βpxp 
where Y(yi) presents the observed value

İn order to make predictions, the model is expressed as: 
Y` = β0 + β1X1 + β2X2 + ... + βpXp + ε
Y` represents the predicted value of the dependent variable Y for 
a given set of independent variables.
β0 is the y-intercept, representing the expected value of Y when 
all independent variables are 0.
β1, β2, ..., βp are the coefficients (slopes) for the independent 
variables.
ε (Error or Residual) is the difference between the actual observed 
value (Y(yi)) and the predicted value (Y’). Matematically:

ε = yi-ŷi

The primary objective of linear regression is to determine the 
coefficients that minimize the sum of squared errors (SSE) and 
provide an accurate model for predicting the target variable based 
on the input features. This is achieved through methods like the 
least squares approach, optimizing the coefficients to create a 
predictive model.

In the context of machine learning, this approach allows us to find 
the best-fitting linear model that captures the relationship between 
the independent variables and the dependent variable, facilitating 
accurate predictions on new, unseen data.

Results
The dataset comprises m = 1599 examples and n = 11 independent 
variables (Table 1). The target variable, 'quality,' falls within a 
range of 0 to 10, while the remaining eleven variables represent 
various physicochemical attributes. Given the presence of multiple 
independent variables, we are tasked with fitting a multiple linear 
regression model.

The equation for multiple linear regression can be expressed as:

(Y(yi)) = β0 + β1 * fixed acidity + β2 * volatile acidity + β3 * 
citric acid + β4 * residual sugar + β5 * chlorides + β6 * free sulfur 
dioxide + β7 * total sulfur dioxide + β8 * density + β9 * pH + β10 
* sulphates + β11 * alcohol                          (1)
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Table 1: The Dataset of Wine
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 Y(yi)

fixed_
acidity

volatile_ 
acidity

citric_
acid

Residual 
_sugar

chlorides free_
sulfur_
dioxide

total_
sulfur_
dioxide

density pH sulphates alco-hol quality

y0 7.4 0.700 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 5
y1 7.8 0.880 0.00 2.6 0.098 25.0 67.0 0.9968 3.20 0.68 9.8 5
y2 7.8 0.760 0.04 2.3 0.092 15.0 54.0 0.9970 3.26 0.65 9.8 6
… … … … … … … … … … … …
y1599 7.4 0.700 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 6

Before making predictions with linear regression, it's essential to estimate the coefficients β0 and βi from the available data. The 
estimation of βj, representing the coefficients, can be calculated using the following formula:

                                                                                            (2)

Where, xij is the value of the j-th feature for the i-th data point 
(e.g., fixed acidity, volatile acidity, citric acid, etc.).
 x̅j is the mean of the j-th feature across all data points.

Y is the mean of the dependent variable (quality) across all data 
points.

The intercept term (β0) can be computed as:
Intercept 

                                                                                   (3)

Instead of performing complex calculations manually using the 
given formulas to estimate the coefficients, (β0, β1, β2, β3, ..., 
β11) we leveraged machine learning techniques and libraries to 
automate this process. The coefficients were computed using the 
following code:

Table 2: Code for Computed Coefficients
Code
import statsmodels.formula.api as smf
# Update the formula to encompass the relevant variables
formula = "quality ~ fixed_acidity + volatile_acidity + citric_acid 
+ residual_sugar + chlorides + free_sulfur_dioxide + total_sulfur_
dioxide + density + pH + sulphates + alcohol"
# Fit the regression model
est = smf.ols(formula=formula, data=data).fit()
# Display the summary of the regression analysis
print(est.summary())

By utilizing this approach, we achieved a more efficient and 
automated means of estimating the coefficients, allowing us to 
focus on the interpretation and insights drawn from the results

The results of the multiple linear regression analysis are 
summarized in the following table:

Table 3: The Results of The Multiple Linear Regression 
Analysis
Variable Coefficient P-value
Intercept 21.9652 0.300
Fixed Acidity 0.0250 0.336
Volatile Acidity -1.0836 0.000
Citric Acid -0.1826 0.215

Residual Sugar 0.0163 0.276
Chlorides -1.8742 0.000
Free Sulfur Dioxide 0.0044 0.045
Total Sulfur Dioxide -0.0033 0.000
Density -17.8812 0.409
pH -0.4137 0.031
Sulphates 0.9163 0.000
Alcohol 0.2762 0.000

These coefficients represent the estimated associations between 
each independent variable and the dependent variable, quality. For 
instance, the coefficient for volatile acidity (-1.0836) indicates 
that an increase in volatile acidity is correlated with a decrease 
in wine quality. Conversely, the coefficient for alcohol (0.2762) 
suggests that a higher alcohol content tends to be associated with 
higher wine quality. 

This comprehensive analysis contributes valuable insights into 
the collective impact of these physicochemical attributes on wine

The next step is preparing data for a machine-learning model by 
performing:
•	 Separating the features (X) and the target variable (y- quality).
•	 Standardizing the features using `StandardScaler`, by 

performing the following transformations on each feature: 
It calculates the mean (μ) and standard deviation (σ) of each 
feature in the training data.

•	 For each feature, it subtracts the mean (μ) and then divides 
by the standard deviation (σ):

X standardized = (X−μ)/ σ

Where: X is the original feature value, Xstandardized is the standardized 
feature value.
Splitting the data into training and testing sets using train_test_split 
(X, y, random_state = 0, test_size=0.25). 

Once these coefficients have been calculated, they can be used to 
make predictions for new data points by plugging in the values 
of the independent variables into the linear regression equation.

ŷi - Predicted values based on the linear model

  ŷi = β0 + βjX +ei                                (4)    
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The error term (e) is known as a residual, represents the difference 
between the actual observed values (yi) and the predicted values 
(ŷi ) for each data point (i).

Table 4: Code for Calculated Residuals
Code
 residuals = y_train. values-y_pred
mean_residuals = np. mean(residuals)
print ("Mean of Residuals {}”. format(mean_residuals))
Mean of Residuals 1.2741174994864182e-16

Residuals are calculated by subtracting the predicted values (y_
pred) from the actual values (y_train). These residuals represent 
the differences between the observed (actual) values and the 
values predicted by linear regression model for each data point 
in your training dataset.

mean_residuals calculates the mean (average) of the residuals.

The output tha is provided, "Mean of Residuals 
1.2741174994864182e-16," indicates that the mean of the 
residuals is extremely close to zero but not exactly zero. The 
value is approximately, which is a very small number. 

In theory, the mean of residuals should ideally be exactly zero 
for a well-fitted linear regression model. Indicating that the linear 
regression model is reasonably well-calibrated on the training 
data, and, on average, it does not exhibit systematic bias in its 
predictions.

In the context of regression analysis, homoscedasticity,indicates 
that the residuals exhibit consistent or nearly consistent variance 
along the regression line. To assess this, we can create a scatter 
plot of the error terms against the predicted values, ensuring that 
there is no discernible pattern in the residuals.

Figure 1: Presence of Heteroscedasticity in the Regression 
Analysis

The graphical method involves visualizing the relationship 
between the error terms and predicted values to identify any 
patterns that may indicate the presence of heteroscedasticity in 
the regression analysis.

By Using Goldfeld-Quandt test, heteroscedasticity is tested.

Table 5: Code for Testing Heteroscedasticity
Code
 residuals = y_train. values-y_pred
mean_residuals = np. mean(residuals)
print ("Mean of Residuals {}”. format(mean_residuals))
Mean of Residuals 1.2741174994864182e-16

In statistical analysis, the Goldfeld-Quandt test is commonly 
employed to assess homoscedasticity, a concept denoting the 
assumption that the variance of errors (residuals) in a regression 
model remains consistent irrespective of the levels of independent 
variables. Homoscedasticity holds significance in regression 
analysis as it signifies that the model's errors exhibit uniform 
variability, thereby contributing to the reliability of the model's 
performance.

When interpreting the Goldfeld-Quandt test results, the pivotal 
element is the p-value. In the context of the obtained p-value in 
wine analysis (0.9197664304253765), it signifies the following 
hypotheses:

Null Hypothesis (H0): The error terms exhibit homoscedasticity, 
implying they possess a constant variance. 

Alternative Hypothesis (Ha): The error terms display 
heteroscedasticity, indicating varying variance.

In our specific case, the calculated p-value (0.9197664304253765) 
significantly exceeds the conventional significance level of 0.05. 
When the p-value surpasses the significance level, it implies that 
there is insufficient evidence to support the conclusion that the 
error terms exhibit heteroscedasticity. The null hypothesis implies 
that the error terms maintain homoscedasticity.

Homoscedasticity is a fundamental assumption in linear regression 
models. When this assumption is met, it signifies that the errors 
in the model consistently vary across different levels of the 
independent variables. This uniformity ensures that the model's 
predictions maintain reliability across the entire spectrum of 
predictor values. This uniformity facilitates a clearer interpretation 
of the relationship between the dependent and independent 
variables.

Тhe Goldfeld-Quandt test's outcome [('F statistic', 
0.8906577345903255), ('p-value', 0.9197664304253765)] is 
considered favorable as it supports the fundamental assumption 
of homoscedasticity in linear regression. This assumption is crucial 
for ensuring the model's reliability, interpretability, and validity 
of statistical inferences derived from the model. 

Checking for the normality of error terms (residuals) is an important 
step in regression analysis to assess whether the residuals follow 
a normal distribution, which is one of the assumptions of linear 
regression. The normality of residuals implies that the errors are 
normally distributed around zero, indicating that the model is 
appropriate for the data.

Check for Normality of error terms/residuals
p = sns. distplot (residuals, kde=True)
p = plt. title ('Normality of error terms/residuals')
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Figure 2: KDE Histogram of Normality of Error Terms (Residuals)

The unit on the x-axis of the histogram and KDE (Kernel Density 
Estimation) plot for the normality of error terms/residuals depends 
on the values of the residuals themselves. The x-axis represents 
the range of values that the residuals are taken.

In the context of your specific analysis, the x-axis likely 
represents the range of residual values. These residual values are 
the differences between the actual observed values (yi) and the 
predicted values (ŷi) for each data point in your dataset.

For example, our regression problem where the dependent 
variable (quality) has values ranging from 0 to 10, and the model 
predictions (ŷi) also fall within this range, then the residuals on 
the x-axis would typically be centered around zero (representing 
the cases where the model predictions are close to the actual 
values), and the range would extend to both positive and negative 
values, depending on how much the predictions deviate from the 
actual values.

Autocorrelation is another statistical concept used to analyze and 
understand patterns in data. It is a statistical measure that assesses 
the linear relationship between a time series and its lagged values 
(previous observations). It is often used to detect patterns or 
correlations within a time series data. Autocorrelation can help 
identify periodicity, trends, or seasonality in time series data.

Figure 3: Autocorrelation Function

The autocorrelation function (ACF) is used to plot the correlation 
between a time series and its lagged values at various lags.

The Ljung-Box test is a statistical test used to check for the 
presence of autocorrelation in time series data or in the residuals 
of a regression model. It assesses whether the past values of a 
series (lags) are correlated with the current values.

The null hypothesis of the Ljung-Box test is that there is no 
autocorrelation in the data, meaning that the values at different 
lags are not significantly correlated. The alternative hypothesis 
is that there is autocorrelation present, meaning that the values at 
different lags are correlated. 

Minimum lb_stat is value, 2.091432890259537, of the Ljung-Box 
statistic calculated for a specific lag or set of lags. It indicates the 
magnitude of autocorrelation in the residuals at those lags.

 lb_pvalue is greater than chosen significance level, as it is in the 
results (0.07947300165019978 > 0.05), it suggests that the Ljung-
Box statistic is not statistically significant. This means that there 
is no strong evidence to conclude that autocorrelation is present 
in the residuals at the specified lags.

     Figure 4: Autocorrelation         Figure 5: Partial Autocorrelation

Autocorrelation function (ACF) plot and partial autocorrelation 
function (PACF) plot are commonly used in time series analysis 
to understand the autocorrelation structure of a time series or 
the residuals of a time series model. The plots help identify the 
presence of autocorrelation at different lags and can guide the 
selection of appropriate models for time series data.

The observed pattern in the plot indicates the presence of 
autocorrelation because there is a spike that extends beyond the 
red confidence interval region. This suggests that there may be 
underlying dependencies or patterns in the data, possibly related 
to seasonality or other factors. It's important to further investigate 
and consider these autocorrelations when analyzing the time 
series data.

In the domain of linear regression analysis, a paramount component 
is the Loss Function. This integral element plays a pivotal role in 
evaluating the model's performance in terms of its ability to capture 
the underlying relationship between the independent variable 
(often denoted as X) and the dependent variable (Y). 

Тhe Sum of Squared Errors (SSE) is employed as an essential 
indicator of the overall goodness of fit of the linear regression 
model. It quantifies the collective magnitude of squared residuals, 
offering valuable insights into the model's ability to accurately 
represent the observed data.

Least squares method, which minimizes the sum of squared 
differences between the observed Y values and the predicted Ỹ 
values:

The relationship between ε and SSE is expressed by the formula 
for SSE:
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Here's how ε and SSE are related:

                                                                            (5)

And SST is diference differences betweean the observed values    
yi, and y̅ main of tte valye of yi 

                                                                                   (6)

Mean Absolute Error (MAE), measures the average absolute 
difference between the actual (observed) values and the predicted 
values.

                                                                                   (7)
 
The central objective of the Loss Function is to quantify the error 
inherent in the model's predictions. In practice, it measures the 
extent of disparity between the observed values of the dependent 
variable (Y) and the corresponding predicted values (Ŷ) for each 
data point (i). A widely adopted metric within this context is the 
Mean Squared Error (MSE), defined as follows:

                                                                                             (8)

According to multiple linear regression for the given wine dataset 
calculations were made for mean_absolute_error (MAE), mean_
squared_error (MSE) and root_mean_squared_error (RMSE), for 
the model trained set but also for the tested set. The results are 
presented in Table 6

For model evaluation is used R2, statistical measure of how close 
data are to the fitted regression line. 

                                                                                     (9)

Where SSE is Sum of Square Error and SST is Sum of Square Total

Table 6: Multiple Linear Regression Model
Loss Function  Multiple Linear Regression

y_train y_test
МАЕ 0.48949 0.53303
MSE 0.38888 0.490888
RMSE 0.62360 0.700634
R2 0.38123 0.303635
VIF 1.6161 1.43602

A lower MAE, MSE and RMSE, indicates a very good fit of the 
model to the data because it the predicted values are closer to the 
actual values. 

The Variance Inflation Factor (VIF) is a measure that helps us 
understand how much the variance of an estimated regression 

coefficient is inflated due to the presence of multicollinearity in 
the dataset. Multicollinearity occurs when predictor variables in 
a regression model are highly correlated with each other.

                                                                                  (10)

R-squared (R2) values are statistical measures that indicate how 
well the regression model explains the variability in the data. A 
higher R2 value, closer to 1, suggests that the model is better at 
explaining the variability. In the results, R2 values of 0.38123 and 
0.303635. A VIF value greater than 1 and less than 5 indicates 
moderate correlation. These values indicate that the explains some 
of the variability in the data, but there is still a substantial amount 
of unexplained variability.

VIF (Variance Inflation Factor) is a metric used to assess 
multicollinearity in a regression model. Multicollinearity occurs 
when predictor variables in the model are highly correlated with 
each other, which can lead to unstable coefficient estimates. A 
high VIF value (typically greater than 1) suggests that a predictor 
variable is highly correlated with other predictors in the model, 
indicating multicollinearity. In the results, VIF values of 1.6161 and 
1.43602, which are relatively low. Lower VIF values are generally 
better because they indicate lower levels of multicollinearity.

In summary, R2 values suggest that regression models explain 
some but not all of the variability in the data. Additionally, 
your VIF values are relatively low, indicating lower levels 
of multicollinearity, which is generally a positive outcome in 
regression analysis. 

In the realm of machine learning, choosing the right algorithm 
is paramount for achieving accurate and reliable predictions. 
In this analysis, we have evaluated the performance of three 
distinct regression models: the DecisionTreeRegressor, 
RandomForestRegressor, and Support Vector Machine (SVM). 
Each of these models brings its own strengths and characteristics 
to the table.

The DecisionTreeRegressor is known for its ability to capture 
complex relationships within the data, potentially leading to a 
high level of accuracy on the training set. However, it may also 
be prone to overfitting, where it performs exceptionally well on 
the training data but struggles to generalize to new, unseen data.

The Random Forest Regressor, on the other hand, employs an 
ensemble approach, combining multiple decision trees to enhance 
prediction accuracy. This model often strikes a balance between 
complexity and generalization, making it a popular choice for 
various regression tasks.

Lastly, the Support Vector Machine, or SVM, is a powerful 
algorithm that excels in capturing intricate patterns within data. 
While it may exhibit a lower accuracy on the training set compared 
to other models, it can provide robust predictions and is particularly 
adept at handling non-linear relationships.

In this comparative analysis, we present the results of these models 
based on metrics such as accuracy, R-squared, and various error 
measures. By understanding the strengths and limitations of each 
model, we aim to guide the selection process towards the algorithm 
best suited for the specific nuances of our dataset and objectives.
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Table 7: Comparising Linerar Regression Problem Solwing with Diferent Type of Machine Learning Models for Wine Dataset
Model Performance Comparison of Regression Models 

Accuracy R2 MAE MSE RMSE
DecisionTreeRegressor 1.0 1.0 0.000 0.000 0.00
RandomForestRegressor 0.929 0.929 0.158 0.047 0.217
SVM 0.556 0.556 0.380 0.295 0.543

To illustrate the practical implementation of multiple linear 
regression, a demonstration using PyTorch, as a popular deep 
learning framework, is provided in purpose to see the primary 
similarity and differences between traditional linear regression 
analysis and a linear regression model using the PyTorch deep 
learning framework.

Initialization of Variables
Initially, random values are assigned to the coefficients (β0, β1, 
..., β11) that will be learned during training. These coefficients are 
declared as PyTorch tensors with ̀ requires_grad=True` to enable 
gradient computation.

Linear Model Function 
The linear model function `mylnmodel` is defined, which takes 
in the independent variables (e.g., fixed acidity, volatile acidity, 
etc.) as tensors and computes the predicted value for `quality` 
using the learned coefficients. It is a simple linear equation with 
coefficients and variables.

The Mean Squared Error function (MSE) is implemented to 
calculate the loss between the predicted values and the actual 
"quality" values in the dataset.

Gradient Calculation 
After predicting the values and computing the loss, the gradients 
of the loss function with respect to the coefficients are calculated 
using `loss. backward () `. This step enables the model to update 
the coefficients in the direction that minimizes the loss.

Gradient Descent is used for optimization. The code runs for 
5,000 iterations, updating the coefficients with small steps in the 
direction of gradient descent. This process iteratively refines the 
coefficients to improve the model's accuracy.

Dıscussıon and Conclusion
This paper has provided a comprehensive exploration of multiple 
linear regression, shedding light on its foundational principles 
and seamless integration with contemporary machine learning 
techniques. By bridging the theoretical underpinnings with 
practical applications, we have aimed to equip readers with a 
holistic understanding of this versatile statistical method.

Three key outcomes emerge from this study. Firstly, we 
demonstrate the formulation of independent and dependent 
variables in linear regression, providing a structured framework 
for modeling. Secondly, analyze model performance using 
essential metrics such as Mean Absolute Error (MAE), Mean 
Squared Error (MSE), Root Mean Squared Error (RMSE), and the 
Coefficient of Determination (R²). These metrics offer insights into 
model accuracy and its explanatory power. Also validate a linear 
regression model, it is essential to assess several key assumptions 
to ensure the model's reliability and suitability for the data. These 
common assumptions for Linear Regression are as follows:

Normality of Residuals 
The first assumption involves examining whether the residual 
errors follow a normal distribution. 

Mean of Residuals Close to Zero 
The second assumption requires that the mean of the residual 
errors should ideally be close to zero or approach zero. (A non-
zero mean may indicate a systematic bias in the model which is 
not the case in our study).

Multivariate Normality 
Linear regression assumes that all variables are multivariate 
normally distributed. 

Homoscedasticity 
Which means that the variance of the residuals should remain 
constant across the regression line. To assess homoscedasticity, a 
scatter plot of residuals against fitted values can be examined. If the 
plot exhibits a consistent spread of points, homoscedasticity is met; 
otherwise, a funnel-shaped pattern may indicate heteroscedasticity.

Multicollinearity Check 
The last assumption pertains to multicollinearity refers to 
high correlations among independent variables. To detect 
multicollinearity, the Variance Inflation Factor (VIF) is often 
used. VIF measures the correlation and strength of correlation 
between independent variables. A VIF value greater than 1 and 
less than 5 indicates moderate correlation, while a VIF less than 
5 is considered a critical level of multicollinearity.

These assumptions collectively help ensure that a multiple linear 
regression model is appropriate for the given data and that the 
model's predictions are reliable. Violations of these assumptions 
may require further analysis or potential model adjustments.

Lastly, we conduct comparative assessments with alternative 
regression models, including decision trees, random forests, 
and support vector regression. Also illustrate the practical 
implementation of multiple linear regression, a demonstration 
using PyTorch, as a popular deep learning framework

Conflict of Interest
The authors have declared that there is no conflict of interest.

Author Contributions
Research Conceptualization: VAK; Machine Learning Model 
Comparison: VAK, MP. PyTorch Implementation: VAK, MP; 
Results and Discussion: VAK; Manuscript Writing: VAK, MP; 
References and Citations: VAK, MP; Figures and Tables: VAK, 
MP; Proofreading and Finalization: VAK.



Citation: Vesna Knights, Marıja Prchkovska (2024) From Equations to Predictions: Understanding the Mathematics and Machine Learning of Multiple Linear 
Regression. Journal of Mathematical & Computer Applications. SRC/JMCA-168. DOI: doi.org/10.47363/JMCA/2024(3)137

J Mathe & Comp Appli, 2024                   Volume 3(2): 8-8

Copyright: ©2024 Vesna Knights. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

References
1.	 Montgomery DC, Peck EA, Vining GG (2012) Introduction 

to Linear Regression Analysis. John Wiley & Sons 821.
2.	 Wooldridge JM (2019) Introductory Econometrics: A Modern 

Approach. Cengage Learning https://au.cengage.com/c/
isbn/9781337558860/. 

3.	 Fox J (2016) Applied Regression Analysis and Generalized 
Linear Models. SAGE Publications 816.

4.	 Gujarati DN, Porter DC (2009) Basic Econometrics. McGraw-
Hill Education https://www.cbpbu.ac.in/userfiles/file/2020/
STUDY_MAT/ECO/1.pdf. 

5.	 Greene WH (2018) Econometric Analysis. Pearson Education 
https://www.ctanujit.org/uploads/2/5/3/9/25393293/_
econometric_analysis_by_greence.pdf. 

6.	 Sun Y, Wang X, Zhang C, Zuo M (2023) Multiple Regression: 
Methodology and Applications. Highlights in Science, 
Engineering and Technology AMMSAC 49: 542.

7.	 James G, Witten D, Hastie T, Tibshirani R (2013) An 
Introduction to Statistical Learning. Springer https://link.
springer.com/book/10.1007/978-1-4614-7138-7. 

8.	 Hastie T, Tibshirani R, Friedman J (2001) The Elements of 
Statistical Learning: Data Mining, Inference, and Prediction. 
Springer.

9.	 Gelman A, Hill J (2006) Data Analysis Using Regression 
and Multilevel/Hierarchical Models. Cambridge University 
Press https://www.cambridge.org/highereducation/books/
data-analysis-using-regression-and-multilevel-hierarchical-
models/32A29531C7FD730C3A68951A17C9D983#over
view. 

10.	 Hastie T, Tibshirani R, Friedman J (2009) The Elements 
of Statistical Learning. Springer https://link.springer.com/
book/10.1007/978-0-387-84858-7. 

11.	 Murphy KP (2012) Machine Learning: A Probabilistic 
Perspective. MIT Press 1104.

12.	 Iwasaki M (2020) Multiple Regression Analysis from Data 
Science Perspective 131-140. 

13.	 Kutner MH, Nachtsheim CJ, Neter J, Li W (2004) Applied 
Linear Statistical Models. McGraw-Hill Education https://
users.stat.ufl.edu/~winner/sta4211/ALSM_5Ed_Kutner.pdf. 

14.	 Cortez P, Cerdeira A, Almeida F, Matos T, Reis J (2009) 
Modeling wine preferences by data mining from 
physicochemical properties. Decision Support Systems 47: 
547-553.

15.	 Least-Squares Method (2008) In: The Concise Encyclopedia 
of Statistics. Springer, New York, NY 304-306.

16.	 PyTorch (2023) https://pytorch.org./. 
17.	 Bishop CM (2006) Pattern Recognition and Machine Learning. 

Springer https://link.springer.com/book/9780387310732. 
18.	 Chen J, Song L, Wainwright MJ, Jordan MI (2018) Learning 

to explain: An information-theoretic perspective on model 
interpretation. In: Proceedings of the 35th International 
Conference on Machine Learning 80: 883-892.

19.	 Ribeiro MT, Singh S, Guestrin C (2016) Why should I 
trust you? Explaining the predictions of any classifier. 
In: Proceedings of the 22nd ACM SIGKDD international 
conference on knowledge discovery and data mining 1135-
1144.

20.	 Lee H, Wang J, Leblon B (2020) Using Linear Regression, 
Random Forests, and Support Vector Machine with Unmanned 
Aerial Vehicle Multispectral Images to Predict Canopy 
Nitrogen Weight in Corn. Remote Sensing 12: 2071. 

21.	 Jana M (2023) Exploring Machine Learning Models: A 
Comprehensive Comparison of Logistic Regression, Decision 
Trees, SVM, Random Forest, and XGBoost. Medium https://
medium.com/@malli.learnings/exploring-machine-learning-
models-a-comprehensive-comparison-of-logistic-regression-
decision-38cc12287055. 

22.	 Knights V, Kolak M, Markovikj G, Gajdoš Kljusurić J (2023) 
Modeling and Optimization with Artificial Intelligence in 
Nutrition. Applied Sciences 13: 7835. 


