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Introduction
Financial-economic crises occur when various industries encounter 
significant issues, often stemming from market changes, sector-
specific problems, or unexpected external shocks. These crises 
entail a notable decline in economic activities, widespread turmoil 
in money markets, and extensive financial instability [1]. Excessive 
indebtedness, speculative investments, banking failures, and 
unforeseen external disturbances are among the factors contributing 
to their genesis [2,3]. Understanding these crises requires grasping 
economic, financial, and psychological elements, including risk-
taking tendencies, regulatory deficiencies, and global economic 
imbalances [4]. Models are developed to help anticipate and 
potentially prevent these crises by identifying precursory signals, 
enabling preemptive measures, and mitigating risks. Swift action 
is crucial for restoring financial systems, protecting investors, and 
minimizing the profound impact of such crises on economies and 
communities.

As technological advancements continue to reshape various sectors, 
artificial intelligence (AI) applications, particularly those employing 
machine learning techniques, are gaining prominence in economics. 
This trend extends to the development of early warning models for 
financial crises, where machine learning algorithms offer promising 
avenues for improved predictive accuracy. Traditionally, early 
warning models relied heavily on signaling approaches and discrete 
statistical methods such as logistic regression [5,6]. However, recent 
years have witnessed a notable shift towards integrating machine 
learning techniques into this domain, with scholars advocating 
for their efficacy in enhancing predictive precision [7,8]. Notably, 
random forests have emerged as a particularly promising tool, 
surpassing the effectiveness of conventional models [9].

In our approach, we adopt a hybrid methodology that combines 
traditional statistical methods with advanced machine learning 
algorithms.  This includes logistic regression as a foundational 
analysis, supplemented by regularization techniques such as L1 
or L2 regularization for enhanced model robustness. Additionally, 
we explore the efficacy of diverse machine learning algorithms, 
ranging from K-Nearest Neighbors and Support Vector Machines to 
Decision Trees and ensemble methods like AdaBoost and Gradient 
Boosting. Moreover, we incorporate state-of-the-art algorithms 
like XGBoost, LightGBM, and CatBoost. Our study utilizes an 
extensive panel dataset spanning 13 countries over 49 years, 
focusing on 10 main variables crucial for understanding economic 
dynamics. To deepen our analysis, we derive an additional set 
of 10 variables from the main ones, providing a comprehensive 
view of the economic landscape. By employing both traditional 
statistical methods and cutting-edge machine learning approaches 
on a rich dataset, we aim to contribute to the advancement of early 
warning models in predicting and addressing economic crises.

Furthermore, we acknowledge the critical role of policymakers in 
shaping the effective- ness of early warning models. Policymakers 
must determine thresholds (τ) for signaling poten- tial crises and 
assign importance (µ) to model-generated alarms based on their 
understanding of the economic context and risk appetite. These 
decisions significantly influence the relevance and impact of early 
warning models in guiding policy responses to financial-economic 
crises, a topic we will explore in detail in subsequent chapters. In 
this introductory chapter, we provide an overview of the study’s 
background, objectives, and significance. The subsequent chapters 
are structured to offer a comprehensive exploration of the research 
topic.

Literature Review
Recent strides have ushered in a paradigm shift in the realm of 
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ABSTRACT
This study explores the integration of machine learning (ML) techniques in early warning models (EWMs) for financial crises, emphasizing decision-making 
in policy contexts. By com paring traditional statistical models such as logistic regression and advanced ML techniques, including boosting methods such 
as AdaBoost, Gradient Boosting, XGBoost, LightGBM, and CatBoost, the research evaluates predictive accuracy and decision-making efficiency. Utilizing 
a dataset spanning 13 countries over 49 years, this paper highlights key economic indicators such as Account-to-GDP, Inflation, and Housing Price Cycles 
as critical predictors. The findings underscore the superior performance of boosting models and provide actionable insights for policymakers on optimizing 
thresholds (τ) and balancing predictive error through relative preference (μ). Specifically, the analysis demonstrates how varying τ and μ influences model 
effectiveness, highlighting the trade-offs between Type I and Type II errors. This research contributes to enhancing financial stability through informed 
crisis anticipation and proactive policy interventions.
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early warning models, propelled by the integration of machine 
learning techniques as an innovative alternative to conventional 
methods.  While historically dominated by venerable signaling 
approaches and discrete statistical (probit or logit) innovation has 
been driven by scholars such [10].

They advocate for enhancing early warning predictive precision 
using random forest, surpassing the power of conventional 
logit models and the signaling approach have provided further 
momentum for the transformation of data analytics by identifying 
an array of machine learning techniques, including artificial neural 
networks, support vector machines, k-nearest-neighbors, and 
decision trees, and highlighting their new applications in early 
warning models. By acknowledging these unique perspectives, we 
can better understand the evolving landscape of data analytics [11]. 
In addition to model considerations, leading indicators represent 
another crucial aspect in creating early warning models. Finding 
an appropriate leading indicator may not be as straightforward as 
it might seem, due to the multitude of endogenous and exogenous 
variables that can trigger crises, with variations in each crisis. 
Notably, the paper employed the Bayesian averaging method, 
contributing to the identification of leading indicators, such as 
Money market interest rate, Commodity prices, Current account 
(GDP), Government debt (GDP), Stock market index, Global 
inflation, etc., for crisis incidence [12]. Having an evaluation 
framework that aligns seamlessly with policymakers’ decision-
making context is of paramount importance. Specifically, the 
framework must navigate a policymaker’s preferences concerning 
the balance between committing type I and type II errors, while 
also considering the practical utility of employing a model 
compared to its non-utilization. This approach stems from the loss- 
function concept initially introduced in, which has since undergone 
further development and expansion [13,14]. The exploration of 
methodologies for early warning mechanisms in financial crises 
has garnered significant attention in economic research. The paper 
delves into the application of Gradient Boosting [15].

Decision Trees (GBDT) to classify financial markets into normal 
and crisis regimes. Notably, their work demonstrates GBDT’s 
prowess in learning from historical data and outperforming other 
machine learning methods. The study’s predictive strength is 
underscored by its timely forecasts of the Covid crisis, presenting 
a promising tool for early detection of potential future crises. 
In a separate investigation, proposes an early warning system 
based on signal extraction, aiming to predict the likelihood of 
financial stress events [16]. Their approach involves constructing 
three composite indicators and evaluating their in-sample and 
out-of-sample performance. The authors find that the weighted 
composite indicator excels in predicting financial stress events, 
suggesting potential avenues for refining dynamic components 
and considering economic status effects in future research. 
Moving to a different facet of predictive modeling, evaluates the 
performance of Long Short-Term Memory Networks (LSTMs) 
in economic nowcasting, comparing them to the dynamic factor 
model [17]. Hopp’s study reveals the superior predictive results 
of LSTMs in global merchandise trade exports and services 
exports. Despite acknowledging drawbacks such as stochastic 
nature and interpretability challenges, the author advocates for 
heightened consideration of LSTMs in economic nowcasting, 
emphasizing their potential for facilitating future research. Taking 
a broader perspective on early-warning models, presents robust 
models by comparing conventional statistical methods with more 
recent machine learning approaches. Their exploration includes 
ensemble approaches to aggregate information and methods 

for estimating model uncertainty. The study underscores the 
significance of structured modeling, ensemble methods, and 
acknowledging uncertainty in early-warning exercises, particularly 
in predicting the ongoing financial crisis in Europe. Shifting 
the focus to banking distress prediction, proposes a conceptual 
framework for deriving early- warning models [18]. Their flexible 
modeling solution combines the loss function approach with 
regularized logistic regression and cross-validation. The authors 
illustrate the application of this framework to a dataset of EU 
banks, offering valuable insights for both micro- and macro- 
prudential policy analysis. In addressing the question of machine 
learning’s superiority in financial crisis prediction, provides a 
critical evaluation [19]. Their study, based on the most recent 
European crises database, challenges the notion that machine 
learning methods outperform conventional models. The authors 
caution against overconfidence in machine learning’s predictive 
performance, stressing the need for further improvements before 
these models can be reliably applied in policy-making. They 
identify key early warning indicators, including expansions in 
credit and investment, asset price booms, and external imbalances.

However, it’s worth noting that none of the reviewed studies tested 
the models we use in our research. Our work aims to fill this gap 
by conducting a thorough evaluation of these models.

Data
In the field of economic research, the significance of data cannot 
be overstated. The quality, accuracy, and relevance of the data 
employed in a study play a pivotal role in shaping the outcomes 
and conclusions drawn. The choice of data sources, the precision 
in data collection methods, and the comprehensive coverage 
of relevant variables collectively influence the robustness and 
reliability of the research findings. Data serves as the backbone 
of any empirical investigation, providing the raw material upon 
which analytical methodologies and models are applied. The 
selection of appropriate data sources ensures that the research 
captures a faithful representation of the economic phenomena 
under scrutiny. Inaccurate or incomplete data can introduce bias, 
distort patterns, and compromise the validity of research outcomes. 
Moreover, the dynamism of economic systems demands a keen 
awareness of temporal and spatial variations in data. Economic 
conditions, regulatory landscapes, and market dynamics are 
subject to continuous evolution, requiring researchers to maintain 
an acute awareness of the timeliness and relevance of their 
datasets. The authors acknowledge that the outcomes of studies 
can be sensitive to the specifics of the data used. Therefore, a 
rigorous and transparent approach to data selection, validation, 
and preprocessing is essential. This ensures that the findings 
derived from the research are not only academically robust but 
also applicable and insightful for policymakers, practitioners, 
and stakeholders. As we delve into the data section of this study, 
it is imperative to recognize the critical role that data quality and 
appropriateness play in the subsequent analyses. The datasets 
chosen for this research undergo scrutiny and validation, aligning 
to produce meaningful insights into the dynamics of financial-
economic crises.

The dataset employed in this study encompasses a diverse set of 
13 countries, each characterized by its unique economic landscape 
and corresponding financial indicators. Table 3.1 provides a 
comprehensive overview of these countries and their associated 
crises. The temporal scope of our data analysis spans from the 
first quarter of 1970 (Q1 1970) to the first quarter of 2019 (Q1 
2019). It is important to note that we intentionally concluded our 
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data analysis before the onset of the COVID-19 crisis, as this event introduces unprecedented and stochastic elements that may not 
align with the predictive nature of our modeling.

Data Frequency
The inclination towards utilizing quarterly data in early warning models for economic crisis prediction is driven by the need to find 
a balance between capturing meaningful trends and

Table 3.1: Country Crisis Dates
Country Start crisis End crisis Start crisis End crisis Start crisis End crisis
DE 1974 Q2 1974 Q4 2001 Q1 2003 Q4 2007 Q3 2013 Q2
DK 1987 Q1 1995 Q1 2008 Q1 2013 Q4
FI 1991 Q3 1996 Q4 - - - -
FR 1991 Q2 1995 Q1 2008 Q2 2009 Q4
GB 1973 Q4 1975 Q4 1991 Q3 1994 Q2 2007 Q3 2010 Q1
IT 1991 Q3 1997 Q4 2011 Q3 2013 Q4
JP 1997 Q4 2001 Q4 - - - -
NL 2008 Q1 2013 Q1 - - - -
NO 1988 Q3 1992 Q4 2008 Q3 2009 Q3 - -
PT 2008 Q4 2015 Q4 - - - -
SE 1991 Q1 1997 Q2 2008 Q3 2010 Q4 - -
US 2007 Q4 2010 Q4 - - - -
CA 1985 Q2 1987 Q4 2008 Q4 2009 Q4 - -

Source: MacroHistory Database

mitigating the inherent noise associated with high-frequency data or 
infrequent observations. By employing quarterly data, the volatility 
and noise present in economic markets are smoothed out, allowing 
a more focused examination of significant underlying patterns. This 
choice is particularly advantageous as key macroeconomic indicators 
relevant to crisis prediction, such as GDP growth and unemployment 
rates, are commonly reported quarterly, ensuring consistency and 
compatibility. The medium-term nature of economic crises aligns 
well with the quarterly data frequency, effectively capturing dynamic 
trends without being overly influenced by short- term fluctuations. 
Additionally, the broader availability of quarterly data across countries 
and its reduced data collection burden contribute to its practicality for 
model building. The stability of quarterly data further enhances its 
suitability for predictive modeling. Finally, the alignment of quarterly 
data with policy cycles is noteworthy, facilitating synchronization 
with key policy decisions made every quarter.

Feature Engineering
Missing Data Replacement
For variables exhibiting NaN values at the commencement of the 
data, a twofold strategy was implemented for both tranquil and crisis 
periods. In tranquil periods, if NaN values were identified during 
tranquil periods, the missing data points were replaced with the 
average values observed in the subsequent tranquil period where data 
was available. Conversely, in the case of NaN values during crisis 
periods, the missing data points were imputed using the average 
values from the subsequent crisis period where data was present. 
This imputation strategy was applied individually for each country in 
the dataset, ensuring a tailored and consistent approach throughout. 
The utilization of averages from adjacent periods helped maintain 
accuracy while addressing missing values, contributing to the overall 
reliability and completeness of the dataset for subsequent analysis.

Mathematical Transformation of Variables
In total, our dataset comprises 10 main variables, each representing 
a key aspect of the economic and financial landscape. Additionally, 

we have created 10 variables derived from these main indicators, 
introducing further dimensions to our analysis. The details of these 
variables and their definitions are outlined in Table 3.2, providing a 
comprehensive guide to the components shaping our research. The 
meticulous selection, validation, and construction of these variables 
contribute to the robustness of our dataset and, consequently, the 
reliability of our analyses. It’s worth mentioning that we initially 
included share price and housing price in growth variables and dummy 
variables. However, for the sake of model simplicity and a more 
focused analysis on primary economic indicators, we decided to 
exclude them from subsequent analyses. Consequently, we narrowed 
down our variables to a final set of 18 for in-depth examination.

One of the crucial parts of feature engineering part is a scaling is a 
crucial preprocessing step in machine learning, playing a vital role 
in ensuring that different features of a dataset are on a comparable 
scale. The significance of scaling lies in its ability to prevent certain 
features from disproportionately influencing the learning algorithm, 
particularly those that have larger magnitudes or variances. Without 
scaling, models that rely on distance metrics, such as k-nearest 
neighbors or support vector machines, may be biased towards features 
with larger numerical ranges. Additionally, scaling aids gradient-
based optimization algorithms, like those used in neural networks, in 
converging faster and more efficiently. When dealing with numerical 
variables in diverse ranges, applying an appropriate scaler becomes 
imperative. In cases where the dataset includes outliers, opting 
for RobustScaler over StandardScaler becomes advantageous as 
it ensures a more robust and accurate representation of the data’s 
underlying patterns, thereby enhancing the overall performance of 
machine learning models.

In Appendix 1, we present supplementary visualizations aimed at 
enhancing our under- standing of the variables employed in our 
models. These figures depict the correlations among all variables 
utilized in our models. In contrast to the comprehensive overview in 
the first figure, the second figure specifically highlights variable pairs 
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with an absolute correlation exceeding 0.5. This selective focus provides a nuanced exploration of inter-variable relationships, emphasizing 
pairs with stronger correlations for a more targeted analysis.

Table 3.2: A List of Indicators
Variable name Definition Transformation and 

additional information
GDP growth Real gross domestic product 1-year growth rate
House price growth Real residential property price index 1-year growth rate
Inflation Real consumer price index 1-year growth rate
Unemployment people of working age who are without work, are available for 

work, and have taken specific steps to find work
1-year growth rate

Share price growth Real stock price index 1-year growth rate
Account to GDP Nominal current account bal- ance and nominal GDP Ratio
Credit to GDP Nominal total credit to the private non-financial sector and 

nominal GDP
Ratio

Gross fixed capital formation to GDP Formerly gross domestic invest- ment to GDP Ratio
10Y government bond rate Real  long-term  government bond rate Level
3M money market rate Short-term borrowing rate Level
Credit to GDP and 3MMMR dummy higher than mean = 1 otherwise = 0 Dummy
Inflation and 10YGB higher than mean = 1 otherwise = 0 Dummy
GDP and Unemployment higher than mean = 1 otherwise = 0 Dummy
Credit to GDP and Unemployment  higher than mean = 1 otherwise = 0 Dummy

GDP and Share price higher than mean = 1 otherwise = 0 Dummy
Credit to GDP cycle Nominal bank credit to the private non-financial sector and 

nominal GDP
Absolute deviation from trend, 

λ = 1, 600
Housing price cycle Deviation from trend of the real residential property price index Absolute deviation from trend, 

λ = 1, 600
Share price cycle Deviation from trend of the real residential property price index Absolute deviation from trend, 

λ = 1, 600

Sources: OECD, World Bank, and own calculations

Dummy Dummy Dummy Dummy Dummy
Absolute deviation from trend, λ = 1, 600 Absolute deviation from trend, λ = 1, 600 Absolute deviation from trend, λ = 1, 600Methodology

Concept of Early Warning Mechanism and Metrics
Early warning models (EWMs) are designed to address classification 
problems, particularly those associated with events characterized 
by low probabilities but potentially high impacts. In assessing these 
models, it is crucial to establish evaluation criteria that account for the 
unique nature of the underlying concern events. Creating an evaluation 
framework that seamlessly aligns with the decision-making context 
of policymakers is of utmost importance.

This framework should consider policymakers’ preferences 
regarding the trade-off between committing type I and type II errors. 
Simultaneously, it should weigh the practical utility of employing a 
model against not utilizing it.  This approach is rooted in the concept 
of a loss function introduced in (Alessi and Detken) and further 
developed in (Laina` et al.).

Type I error, also known as a false positive, occurs when a test 
incorrectly identifies something as significant when it is not. On 
the other hand, Type II error, or false negative, happens when a 
test incorrectly identifies something as not significant when it is. 
Understanding and addressing these errors are essential in developing 
an evaluation framework that meets the specific needs of policymakers 
in the realm of early warning models.

Model Prediction Ci,t
Table 4.1 Contingency matrix for observed outcome and model 
prediction.

0 1
Actual Outcome Pi,t  0 True Negative (TN) False Positive (FP)
                                   1 False Negative (FN) True Positive (TP)

Table 4.1 shows the Contingency matrix, a table that displays the 
frequency distribution of two categorical variables. It allows one to 
compare the observed distribution of the two variables against the 
expected distribution based on a specific hypothesis. tConsider Ci,t 
as a binary state variable that indicates whether a crisis occurred 
(Ci,t = 1) or did not occur (Ci,t = 0) for a specific entity i at time t. 
Let pi,t denote the estimated likelihood of entity i being in a state 
of vulnerability during period t. This probability is subsequently 
translated into a binary indicator by applying a threshold value 
τ, which falls within the interval of τ ∈ (0, 1):
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The relationship between Ci,t and Pi,t is as follows:
• When Ci,t = 1 (crisis occurred if a crisis occurred at time t for 

entity i), then the corresponding Pi,t value indicates whether the 
model correctly predicted vulnerability (1) or not (0).

• When Ci,t = 0 (no crisis occurred), if there was no crisis at time 
t for entity i, the Pi,t value generated by the model still indicates 
whether the vulnerability was predicted (1) or not (0). In this case, 
a Pi,t = 1 corresponds to a ”false alarm,” implying that the model 
predicted vulnerability even when there was no actual crisis.

In this context, the comparison between the actual crisis occurrences 
Ci,t and the model’s predictions of vulnerability Pi,t allows for 
an assessment of the model’s accuracy in predicting crises. This 
relationship serves as the basis for evaluating the model’s performance 
against historical crisis data. In the realm of predicting economic crises, 
evaluating model performance requires an approach that mirrors the 
real-world decisions of policymakers. This entails considering two 
types of errors: missing pre-crisis periods (type I error) and issuing 
false alarms during tranquil times (type II error):

These errors are weighted based on the policymaker’s preferences 
(µ ∈ (0, 1)) to gauge their impact on decision-making. However, the 
evaluation process extends beyond preferences. It also factors in the 
inherent class imbalances between crisis and non-crisis periods. By 
accounting for the unconditional probabilities of these periods, the 
evaluation becomes more realistic.

                                  P1 = Pr(C(i,t) = 1)
                                             
                                 P2 = Pr(C(i,t) = 0)

For instance, a few false alarms might have a lesser impact when 
they’re a small fraction of numerous non-crisis instances. In essence, 
the evaluation framework combines preferences, class imbalances, 
and the actual distribution of crisis and non-crisis periods. This holistic 
approach ensures that early-warning models align with the nuanced 
decision-making needs of policymakers, making it pivotal in creating 
effective prediction systems. Based on these components, the loss 
function of policymakers can be written as follows:

                  L (µ, τ ) = µP1T1(τ ) + (1 − µ)P2T2(τ )

Depending on this equation, we can go further and describe the 
absolute usefulness (Ua): 

               Ua (µ, τ ) = min(µP1, (1 − µ)P2) − L(µ, τ )

The concept of absolute usefulness” (Ua) for a model can be understood 
by comparing the policymaker’s loss when using the model to the loss 
when the model is not used. It’s like measuring how much benefit 
the model brings in terms of reducing errors. For example, if using 
the model results in fewer missed crises and false alarms compared 
to not using the model, then the model is considered more useful, 
and Ua would be higher. It’s a way to quantify how well the model 
improves decision-making in predicting crises. Switching our focus 
to relative usefulness” (Ur), we delve into a perspective that assesses 
the model’s effectiveness about the maximum potential benefit. Rather 
than isolating the model’s utility, Ur quantifies its performance as a 
portion of the ultimate attainable success:

In addition to the aforementioned metrics, the contingency 
matrix can be leveraged to calculate various other quantitative 
assessments. One such tool is the F1-score, a metric that balances 
precision, the ratio of true positive predictions to the total number 
of positive predictions, and recall, the ratio of true positive 
predictions to the total number of actual positive instances. It 
is used to evaluate the performance of classification models, 
particularly when the classes are imbalanced. The F1-score is 
particularly useful in binary classification tasks, providing a single 
value that combines both false positives and false negatives.

The F1-score ranges between 0 and 1, with higher values indicating 
better performance in achieving a balance between precision 
and recall. It is a valuable measure when the class distribution 
is imbalanced or when both false positives and false negatives 
are of concern.

To ensure that our models accurately capture patterns from the 
data and that their predictions are reliable, we employed a robust 
testing method. After obtaining initial results, we randomly 
altered the dependent variable and retrained all existing models 
using this modified dataset. If, under these conditions, the model 
performance deteriorates significantly, it confirms that the original 
results were indeed reasonable.  This methodology not only 
validates the accuracy of the results but also affirms the relevance 
of the variables identified by the models as the most contributory. 
Thus, we can confidently assert that the model outcomes and the 
selected variables are both valid and significant.

Forecasting Horizon
Early-warning models are designed with the primary objective of 
issuing timely alerts for po- tential distress events. The specific 
timeframe for making these predictions can vary depending on 
the context. Although it is possible to treat the forecast horizon 
as a flexible parameter, argue that it is more beneficial for it to be 
predetermined to align with the specific task rather than optimized 
to fit historical data [20].

Recent contributions in the field of forecasting banking crises 
have adopted various prediction horizons. Studies, such as, have 
utilized longer horizons ranging from 5 to 12 quarters, while 
others, like extended the range to 5 to 16 quarters [21]. This 
suggests that objectives related to macroprudential considerations 
often necessitate extended prediction horizons. However, there 
is a lack of consensus on the ideal timeframe, as evidenced by 
studies commonly testing multiple prediction horizons.

In our work, the modeling window is ranged from 3 to 12 
quarters. This extended timeframe enables the model to discern 
patterns and signals that may precede a crisis, allowing for a more 
comprehensive understanding of the factors at play. The modeling 
process concludes with the introduction of ones for the final 
two quarters within the window. By incorporating information 
from the two quarters immediately before the crisis, the model 
enhances its capability to serve as an early warning system, 
affording decision-makers a valuable lead time of two quarters 
to implement preventive measures and mitigate the potential 
impact of the impending financial-economic crisis.
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Used Models
In our analytical exploration, we strategically employed a diverse 
array of machine learning models, ranging from classic logistic 
regression to its regularized variants with L1 and L2 regularization. 
The objective was twofold: firstly, to draw insightful comparisons 
between traditional approaches and contemporary methodologies, 
and secondly, to delve into the nuances within newer techniques. 
For this purpose, we enlisted k-nearest neighbors (KNN), support 
vector machines (SVM), decision trees (DT), random forests (RF), 
AdaBoost, Gradient Boosting (GB), XG Boost (XGB), Light GBM 
(LXGB), and Cat Boost. By examining the performance of these 
models, we aimed to discern the strengths and weaknesses of each, 
shedding light on the evolution of machine learning techniques 
and offering valuable insights into their practical implications.

Table 4.2: Comparison of Employed Methods: Benefits and 
Drawbacks Method Benefits Drawbacks
Method Benefits Drawbacks
Logit Probabilistic 

foundations, highly 
interpretable

Fixed functional 
form limits 
flexibility

KNN Simple and intuitive 
methodology

Suffers from 
the curse of 

dimensionality
Decision Trees Automatically 

selects important 
variables, intuitive

Prone to instability 
across different 

samples
Random Forest (RF) Enhances stability 

and accuracy over 
decision trees

Risk of overfitting, 
complexity in 
interpretation

Support Vector Efficient for 
nonlinear problems,

Can overfit, 
complex to explain, 

not inherently 
probabilistic

Machine (SVM) computationally 
efficient

Vulnerable to noisy 
data and outliers, 

longer training times
Gradient Boosting High accuracy, 

handles complex 
data interactions well

Can overfit 
if not tuned, 

computationally 
demanding

XGBoost Optimized gradient 
boosting with high 

efficiency

Similar to GB; can 
overfit, requires 
careful tuning

LightGBM Rapid processing,
efficient with large 

data sets

Less interpretable, 
limited support for 

categorical data

CatBoost Excellently manages 
categorical data, 
resists overfitting 

well

Comparatively 
slower with large 
data sets, needs 
extensive tuning

Results
Best Hyperparameters and Key Predictive Variables
To optimize the performance of our predictive models for crisis 
detection, we conducted an extensive hyperparameter tuning process. 
We utilized the Grid Search method to systematically explore 
various combinations of hyperparameters, aiming to maximize 
the F1 score, a critical metric for assessing model performance in 
imbalanced binary classification tasks.

Table 5.1 provides a summary of the hyperparameters used in Grid 
Search and the corre- sponding values chosen for each model. 
These optimized settings represent the configurations that yielded 
the highest F1 scores during the tuning process.

Table 5.1 Best Hyperparameters for F1 Score
Model Hyperparameters Values
Logistic Regression Penalty, C l1, 10
K-Nearest Neighbors n neighbors, weights, 

p
3, distance, 1

Support Vector 
Machine

C, kernel, gamma 10, rbf, 0.1

Decision Tree Criterion, max depth, 
min samples split,
min samples leaf

gini, 30, 5, 1

Random Forest n estimators, 
criterion,
max depth, min 
samples split, min 
samples leaf

100, entropy, 30, 2, 1

AdaBoost n estimators, 
learning rate

150, 0.2

Gradient Boosting n estimators,   
learning rate,
max depth, min 
samples split, min 
samples leaf

150, 0.2, 5, 10, 1

XGBoost n estimators, 
learning rate, max 
depth, min child 
weight, gamma

200, 0.2, 7, 1, 0

LightGBM n estimators, 
learning rate, max 
depth, min child 
samples, subsample

200, 0.2, 5, 30, 0.8

CatBoost iterations, learning 
rate, depth, l2 leaf 
reg

300, 0.2, 7, 1

In predictive modeling, the selection and importance of variables 
are paramount, as they directly influence the model’s ability to 
make accurate forecasts. Variables serve as the foundational 
elements through which models capture the complexities of 
real-world phenomena.  Identifying and understanding the key 
variables is essential for enhancing model robustness, tailoring 
interventions, and ultimately improving decision-making processes. 
Effective models hinge on the precise inclusion of variables that 
are significantly correlated with the outcome of interest, ensuring 
that the predictive insights are both relevant and actionable. The 
significance of these variables is particularly evident in financial 
modeling, where economic indicators can delineate trends and 
potential market shifts. Across the range of models assessed, 
Account to GDP, Inflation, and Housing Price Cycle consistently 
emerge as top-ranking variables out of 18 variables, with at least 
one or a combination of two or even all three being among the 
top three predictors. While they may not always appear together, 
their recurring presence underscores their significant influence 
on predictive outcomes. This consistent pattern highlights their 
fundamental importance across diverse models, reaffirming their 
critical role in shaping predictive accuracy and capturing underlying 
data dynamics.
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The Account to GDP ratio, which measures a country’s 
current account balance relative to its GDP, serves as a critical 
macroeconomic indicator. It reflects the nation’s economic 
engagement with the rest of the world, where a surplus indicates 
net lending and a deficit indicates net borrowing. This metric 
is essential for understanding the impact of trade balances and 
international investment flows on overall economic health. 
Inflation, another key predictor, directly affects purchasing 
power, savings, and investment decisions by altering the value of 
money, influencing both consumer behavior and financial stability. 
Meanwhile, the Housing Price Cycle, by reflecting fluctuations in 
real estate markets, impacts consumer wealth, construction activity, 
and mortgage markets, and can lead to significant economic shifts, 
as demonstrated during the 2008 financial crisis. Together, these 
variables provide a comprehensive view of economic dynamics, 
making them indispensable in enhancing the accuracy of models.

Model Results
As we mentioned in the “Introduction”, there are two components 
of the forecasting process, τ and µ, that need to be decided by 
policymakers. In our case, we use 0.2 and 0.8 respectively. The 
results may change when we change these values, to show how 
the forecast is changing in Appendix 2 for each model we have 2 
graphs, Error Rates vs. Threshold and Loss, Absolute Usefulness, 
and Relative Usefulness vs. Relative Preference. In these graphs 
we show how they change when we change τ and µ, we show 
three error rates (Overall, for Crisis, and non- crisis) and in the 
second graph, we show Loss, Absolute Usefulness, and Relative 
Usefulness. It is important to note that the graphical representation 
illustrating Loss, Absolute Usefulness, and Relative Usefulness 
against Relative Preference is sensitive to variations not only in 
the parameter µ but also in the threshold parameter τ. When the 
threshold τ is adjusted, for instance, transitioning from 0.2 to 0.3, 
while keeping the µ value constant at 0.8, the outcomes displayed 
in the figure will exhibit variations. In other words, altering the 
threshold parameter τ introduces changes in the depicted results, 
highlighting the joint influence of both µ and τ on the observed 
metrics.

In the presented Threshold Analysis Table (Table 5.2), we evaluate 
the performance of models in predicting financial-economic crises. 
The models, including Logit, Lasso, KNN, SVM, DT (Decision 
Tree), RF (Random Forest), AdaB (AdaBoost), GB (Gradient 
Boosting), XGB (Extreme Gradient Boosting), LGBM (Light 
Gradient Boosting Machine), and CatB (CatBoost), are assessed 
based on multiple metrics.

Table 5.2: Threshold Analysis Table Transposed
Model F1-score Loss Absolute 

Usefulness
Relative 

Usefulness
Logistic 
Regression

0.3210 0.0558 0.0104 0.1570

Lasso 
Regression

0.3529 0.1835 -.01173 -0.7733

K-Nearest 
Neighbors

0.7350 0.0119 0.0542 0.8198

Support 
Vector 
Machine

0.7010 0.0215 0.0446 0.6744

Decision 
Tree

0.7126 0.0235 0.0427 0.6453

Random 
Forest

0.8515 0.0058 0.0604 0.9128

AdaBoost 0.6207 0.0250 0.0412 0.6221
Gradient 
Boosting

0.9412 0.0054 0.0608 0.9186

Extreme 
Gradient 
Boosting

0.8667 0.0092 0.0569 0.8605

Light 
Gradient 
Boosting 
Machine

0.9302 0.0058 0.0604 0.9128

CatBoost 0.8736 0.0100 0.0562 0.8488

Notably, GB stands out with the highest F1-score of 0.9412, 
closely followed by LGBM at 0.9302. These results suggest that 
GB and LGBM demonstrate superior performance in terms of 
precision and recall. The Loss metric, representing the logistic 
loss function, emphasizes the accuracy of the models in predicting 
class probabilities. GB again excels with the lowest loss value 
of 0.0054, indicating its robust predictive capabilities. Absolute 
Usefulness and Relative Usefulness metrics gauge the contribution 
of each model to the overall predictive power. Here, the models are 
ranked based on their impact, with GB, LGBM, and RF emerging 
as top performers. These metrics provide insights into each model’s 
practical significance and relative importance in contributing to 
the overall predictive accuracy.

Why Boosting Models Outperform Others?
• Sequential Learning: Boosting models build trees 

sequentially, each one focusing on the mistakes of the 
previous one. This iterative refinement enables the model 
to progressively improve its accuracy. Unlike bagging 
methods like Random Forest, which build trees independently, 
boosting’s sequential approach allows it to zero in on difficult-
to-predict instances, enhancing overall performance.

• Weighted Errors: In each iteration, boosting models 
assign higher weights to the instances that were incorrectly 
predicted. This means that the model pays more attention to 
these challenging cases, continually adjusting to reduce the 
overall error. This adaptive weighting mechanism ensures 
that the model is robust against a variety of data distributions 
and anomalies.

• Regularization Techniques: Boosting models incorporate 
regularization methods to prevent overfitting. Techniques such 
as learning rate adjustment, tree pruning, and subsampling 
help to balance the model’s complexity and its ability to 
generalize. Regularization is particularly important when 
dealing with noisy data or small datasets, as it ensures that 
the model does not become overly complex and tailored to 
the training data.

• Advanced Optimization: Models like XGBoost and 
LightGBM utilize advanced opti- mization techniques, 
including parallel processing and efficient memory usage, 
to handle large datasets more effectively. These models also 
offer flexible hyperparameter tuning options, allowing for 
fine-grained control over the learning process, which enhances 
model performance and efficiency.

Assessing Model Stability with Altered Data
As discussed in the last paragraph of the “Concept of Early Warning 
Mechanism and Metrics” section, we implemented a validation 
process to test the robustness of our models. The analysis of the 
provided Table 5.3 reveals a noteworthy discrepancy between 
the F1-scores and the Absolute and Relative Usefulness metrics. 
Despite the high F1-scores ( but lower compared to the actual 
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results), the Absolute and Relative Usefulness values appear 
disproportionately low, even reaching negative figures. This 
disparity underscores a crucial insight: while F1 metrics offer 
valuable insights, they may not always provide a comprehensive 
understanding of model performance. Therefore, a holistic 
evaluation incorporating Absolute and Relative Usefulness metrics 
is imperative for robust conclusions.

The observed inconsistency between the F1-score and the Absolute 
and Relative Useful- ness metrics in Table 5.3 can be attributed to 
several factors that influence how these metrics evaluate model 
performance. Firstly, the F1-score primarily measures the balance 
between precision and recall, offering a view of model accuracy 
in terms of the harmonic mean of these two metrics. It is highly 
sensitive to class imbalance but does not account for the cost or 
benefit of each type of classification error, which can be critical 
in certain applications.

On the other hand, Absolute and Relative Usefulness metrics are 
designed to assess the practical impact of model predictions in 
real-world scenarios.  These metrics consider the

Table 5.3: Threshold Analysis Table Transposed
Model F1-score Loss Absolute 

Usefulness
Relative 

Usefulness
Logistic 
Regression

0.0465 0.0015 -0.0011 -2.8988

Lasso 
Regression

0.1227 0.0004 0.0000 0.0000

K-Nearest 
Neighbors

0.7342 0.0002 0.0001 0.3788

Support 
Vector 
Machine

0.5778 0.0007 -0.0003 -0.7771

Decision 
Tree

0.7579 0.0003 -0.0004 -0.9405

Random 
Forest

0.7579 0.0003 0.0000 0.1030

AdaBoost 0.3261 0.0009 -0.0005 -1.3238
Gradient 
Boosting

0.7561 0.005 -0.0001 -0.3149

Extreme 
Gradient 
Boosting

0.8276 0.0003 0.0000 0.1199

Light 
Gradient 
Boosting 
Machine

0.7937 0.0004 0.0000 -0.0671

CatBoost 0.6761 0.0005 -0.0001 -0.2032

implications of false positives and false negatives, effectively 
weighing the utility of model outputs in a more contextual manner. 
For example, a model like Decision Tree showing high F1- scores 
suggests good balance in precision and recall, yet its negative 
Usefulness scores indicate that the cost of its errors might outweigh 
the benefits, possibly due to misclassifying critical instances that 
have high consequence in practical applications. This discrepancy 
highlights the limitation of relying solely on traditional accuracy 
measures like F1-scores for evaluating model performance, 
especially in complex scenarios where decision-making costs 
are significant. It underscores the importance of incorporating 
utility-based metrics into model evaluation to capture the broader 

impact of model predictions, ensuring that the models not only 
predict accurately but also contribute positively to the intended 
outcomes.

Consequently, we can confidently assert that the results obtained 
from the original data are indeed reliable. Moreover, the variables 
selected by our most high-performance models are pivotal 
contributors to the overall predictive accuracy. This underscores 
the importance of considering multiple evaluation metrics to 
ensure the integrity and reliability of analytical outcomes [22-33].

Conclusion
In conclusion, the evaluation of models, particularly in contexts 
where decision-making involves policy considerations, it is 
essential to recognize the nuanced dependencies underlying 
performance metrics. While F1 scores are commonly employed 
to assess a model’s precision- recall trade-off, it is crucial to 
acknowledge their sensitivity to threshold adjustments. However, 
when assessing the absolute and relative usefulness of models, 
one must consider not only threshold variations but also the 
preferences of policy makers. The interplay between threshold and 
relative preference introduces an additional layer of complexity 
in decision-making. Consequently, as a robust conclusion, it 
becomes imperative to compare models primarily based on F1 
scores, thereby isolating the effect of models from the relative 
preferences of policy makers and ensuring a more independent 
evaluation of their performance. This approach enables a clearer 
understanding of the models’ intrinsic capabilities without being 
unduly influenced by subjective policy considerations. Based on the 
F1-score results, the remarkable performance of boosting methods, 
attributed to their adept iterative learning process, is prominently 
evident in our evaluation. Boosting almost outperforms all other 
methods, highlighting its effectiveness in capturing intricate 
patterns within the data. As we delve into ensemble method, 
Random Forest emerges as the optimal choice subsequent to the 
success of boosting models. The ensemble approach, harnessing 
the collective intelligence of multiple decision trees, proves highly 
effective in navigating complex relationships within the data. 
The amalgamation of diverse weak learners, each contributing 
to different facets of the data, positions Random Forest as the 
preeminent model in our study, building on the commendable 
performance of boosting methods.

Furthermore, our study emphasizes the crucial significance of 
key variables such as Account to GDP, Inflation, and Housing 
Price Cycle in predicting financial crises, consistently ranking 
high across diverse models. Additionally, while F1 scores provide 
valuable insights, our analysis underscores the necessity of 
incorporating Absolute and Relative Usefulness metrics for a 
more comprehensive evaluation. This highlights the importance 
of a holistic approach to model assessment, particularly in policy 
contexts where decision-making is pivotal.

Moving to the policy decisions, the determination of the threshold 
τ and relative preference µ remains pivotal in the landscape of 
financial crisis prediction. As highlighted throughout our analysis, 
these parameters wield a direct influence on the trade-off between 
Type I and Type II errors. The judicious selection of the threshold 
is instrumental in achieving a delicate balance between accurately 
identifying financial crises and mitigating the risk of false alarms. 
Simultaneously, the relative preference parameter µ contributes to 
the nuanced weighting of costs associated with these errors. The 
tailored choice of τ and µ must align with the specific priorities, 
risk appetite, and objectives of decision-makers. The intricate 
evaluation of the costs and implications of false positives and 
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false negatives serves as a guiding compass for steering predictive 
models toward outcomes that harmonize with stakeholders’ risk 
management goals in the context of financial-economic crisis 
prediction.
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