Field Dependant Metric for Gravitational/EM Fields and a NonLinear Transformation for Local to Proper Space-Time World

Chandramohanan MR

Former Professor of Mathematics, Narayanaguru College of Engineering, 41/2674 (1) Sreenilayam, Manacaud P.O., Thiruvananthapuram, Kerala, India

Abstract

In this paper, the introduction of a metric for Gravitational Field is examined based on [4]; this can be extended to EM Fields also by change of the parameters involved $\left(\epsilon_{1}, \mu_{1}\right)$ to $\left(\epsilon_{2}, \mu_{2}\right)$ We know that $E^{2}-c^{2} B^{2}$ or $E^{2}-B^{2}$ with is an invariant quantity for the EM Fields which can be extended to gravitational fields, as done in [1]. We discuss the metric for the gravitational case and extended to the EM fields as well. The discussion of anomalous characteristic of Lorentz Transformation (LT) and the introduction of a non-linear transformation connecting Local Space-time coordinates (ct, x) with proper system (ct, x_{τ}) is continued.

*Corresponding author

Chandramohanan MR, Former Professor of Mathematics, Narayanaguru College of Engineering, 41/2674 (1) Sreenilayam, Manacaud P.O., Thiruvananthapuram, Kerala, India.

Received: December 19, 2023; Accepted: February 23, 2024; Published: March 11, 2024

Keywords: Notations of Classical Dynamics and Electro Dynamics

Field Dependent Metric for Gravitational Field

The matrix of LT for $\left(c t^{\prime}, x^{\prime}, y^{\prime}\right)$ space to $(c t, x, y)$ space is given by

$$
\mathrm{L}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{1-e^{2}}} & \frac{e}{\sqrt{1-e^{2}}} & 0 \\
\frac{e}{\sqrt{1-e^{2}}} & \frac{1}{\sqrt{1-e^{2}}} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where e stands for $\frac{v_{0}}{c}$ and v_{0} is the speed of apparent relative motion of the frames S, S^{\prime} and c is the maximum signal velocity of the gravitational field in the discussion [1]. Similarly, c is signal velocity of the EM field when we consider EM Fields [2-4] . In the general case of $3 \oplus 1$ dimensions, the Lorentz matrix can be given by
$\mathrm{L}=\left[\begin{array}{cccc}\sec \phi & \tan \phi \cos \alpha & \tan \phi \cos \beta & \tan \phi \cos \gamma \\ \tan \phi \cos \alpha & 1+(\sec \phi-1) \cos ^{2} \alpha & (\sec \phi-1) \cos \alpha \cos \beta & (\sec \phi-1) \cos \alpha \cos \gamma \\ \tan \phi \cos \beta & (\sec \phi-1) \cos \alpha \cos \beta & 1+(\sec \phi-1) \cos ^{2} \beta & (\sec \phi-1) \cos \beta \cos \gamma \\ \tan \phi \cos \gamma & (\sec \phi-1) \cos \alpha \cos \gamma & (\sec \phi-1) \cos \beta \cos \gamma & 1+(\sec \phi-1) \cos ^{2} \gamma\end{array}\right]$
implies
$c^{2} d t^{2}-d x^{2}-d y^{2}-d z^{2} \equiv c^{2} d t^{\prime 2}-d x^{\prime 2}-d y^{\prime 2}-d z^{\prime 2} \equiv c^{2} d \tau^{2}$.
By letting
(i) $\boldsymbol{v}_{0}=v_{0}(\boldsymbol{i} \cos \alpha+\boldsymbol{j} \cos \beta+\boldsymbol{k} \cos \gamma)$
$=v_{0}\left(\boldsymbol{i} \cos \omega \tau \sin \omega_{0} \tau+\boldsymbol{j} \sin \omega \tau \sin \omega_{0} \tau+\boldsymbol{k} \cos \omega_{0} \tau\right)$
(ii) $v_{0}=a+b \tau+\ldots=v_{0}(\tau)$ and
(iii) $\tan \phi=v_{0} c^{-1}$ or $\sin \phi=v_{0} c^{-1}$, (two distinct cases) we see that L can handle accelerated motion of $\mathrm{O}^{\prime} / \mathrm{O}$ relative to $\mathrm{O}^{\prime} / \mathrm{O}$ and the metric is pseudo-Euclidean but not non-Euclidean as in GTR. Clearly τ is the best estimate of the absolute time.

The GTR excludes the possibility of a parallel theory for the motion of mass particles and charged particles by highlighting the observation that the energy momentum tensor of EM field has a vanishing trace [5, 6]. On the other hand, the vector fields can be generalized by means of contracted tensor fields.

We have the constitutive relations $\mathbf{D}_{1}=\epsilon_{1} \mathbf{E}_{1}$ and $\mathbf{B}_{1}=\mu \mathbf{H}_{1}$ for gravitational fields. We shall modify the vectors E1 and H1 by means of contracted tensor fields. We know that the metric in tensor calculus [7] is given by $(d s)^{2}=g_{i j} d x^{i} d x^{j}=\left(g_{i j} d x^{i}\right) d x^{j}=d x_{j} d x^{j}$ where $g_{i j}$ is a $(0,2)$ tensor and $d x_{j}, d x^{j}$ are the covariant and contra-variant components of the same vector.

Keeping these ideas in view, let us introduce, for the gravitational field, two reciprocal/conjugate tensors $\epsilon_{i j}$ and $\epsilon^{i j}$ so that
$\epsilon^{i \alpha} \epsilon_{\alpha j}=\epsilon \delta_{j}^{i}$. We define $E_{i}=\epsilon_{i \alpha} E^{\alpha}$ and $E^{i}=\epsilon^{i \alpha} E_{\alpha}$ as the covariant
and contra-variant components of E .
Now $\epsilon_{i j} E^{i} E^{j}=\left(\epsilon_{i j} E^{i}\right) E^{j}=E_{i} E^{j}=|\mathbf{E}|^{2}$ and $\epsilon^{i j} E_{i} E_{j}=\left(\epsilon^{i j} E_{i}\right) E_{j}=E^{j} E_{j}=|\mathbf{E}|^{2}$
Hence $|\mathbf{E}|^{2}=\epsilon_{i j} E^{i} E^{j}=\epsilon^{i j} E_{i} E_{j}$.

Similarly we introduce two reciprocal/conjugate tensors $\mu_{i j}$ and $\mu^{i j}$ so that $\mu^{i \alpha} \mu_{\alpha j}=\mu \delta_{j}^{i}$ we define $H_{i}=\mu_{i a} H^{\alpha}$ and $H^{i}=\mu^{i} H_{j}$ as the covariant and contra-variant components of H where ϵ, μ stands for ϵ_{1}, μ_{1} in the gravitational case and ϵ_{2}, μ_{2} for the EM fields, such that $\epsilon \mu c^{2}=1$ where c is the maximum signal velocity of the gravitational/ EM fields.

Also $\mu_{i j} H^{i} H^{j}=\left(\mu_{i j} H^{i}\right) H^{j}=H_{j} H^{j}=|\mathbf{H}|^{2}$ and
$\mu^{i j} H_{i} H_{j}=\left(\mu^{i j} H_{j}\right) H_{j}=H^{j} H_{j}=|\mathbf{H}|^{2}$.

Therefore $|\mathbf{H}|^{2}=\mu_{i j} H^{i} H^{j}=\mu^{i j} H_{i} H_{j}$. Hence our tensors have the properties that
(i) $\epsilon_{i j}$ and $\epsilon^{i j}$ are reciprocal tensors dependent on $\epsilon_{1} / \epsilon_{2}$
(ii) $\mu_{i j}$ and $\mu^{i j}$ are reciprocal tensors dependent on μ_{1} / μ_{2}
(iii) ϵ 's and μ 's are dependent on the dielectric parameter ϵ_{1} and the gravitational susceptibility μ_{1}, for gravitational fields and ϵ_{2}, μ^{2} for EM fields, such that $\epsilon \mu c^{2}=1$.

Thus, for an infinitesimal region, it is possible to replace vectorfields by means of contracted tensor fields and the metric $d E^{2}-d H^{2}($ with $\mathrm{c}=1)$ is a metric for the gravitational field. Similarly, we can form the metric $d E^{2}-d H^{2}$ with
$(c=1)=\epsilon_{i j} d E^{i} d E^{j}-\mu_{i j} d H^{i} d H^{j}$ for the EM field by changing ϵ_{1} and μ_{1} to ϵ_{2} and μ_{2} with corresponding definitions given above.

An Anomolous Characteristic of LT

The LT equations satisfy
$c^{2} \tau^{2}=c^{2} t^{\prime 2}-x^{\prime 2}$
$c^{2} \tau^{2}=c^{2} t^{2}-x^{2}$
Both (1) and (2) represent rectangular hyperbolas (RH). A question arises at this stage: do they represent (i) two different RH's or (ii) $\left(c t^{\prime}, x^{\prime}\right)$ and $(c t, x)$ are on the same RH. Relativistic arguments support (i). Let us examine the situation

Figure 1
In the figure 1 the upper RH represents equation (2.1) and it is questionable to represent equation (2.2) by the lower one RH or any other RH with axis along $c t$-axis. By using the substitution

$$
\begin{equation*}
c t^{\prime}=c t \cos h \varphi-x \sin h \varphi \tag{2.3}
\end{equation*}
$$

(x^{\prime} axis)
$x^{\prime}=x \cos h \varphi-c t \sin h \varphi$
(ct axis)
the equation (2.1) becomes (2.2). But the problem is: does P' and Prepresent points on two different RH as shown in the figure 1 or are they represent two points on the same RH and have the same time-axis as in figure 2.

Figure 2
By substituting $c t^{\prime}$ by $c t$ and x^{\prime} by x in (2.1) this equation (2.1) turns to equation (2.2). But this substitution is not allowed if P $(c t, x)$ and $P^{\prime}\left(c t^{\prime}, x^{\prime}\right)$ lies on the same RH as in figure 2 or at least on two nearby RH's with their time axis distinct but inclined to each other at a 'small' angle and intersecting at the common world point $(0,0)$, since $c t^{\prime}$-axis is not perpendicular to x^{\prime}-axis (see Figure 3).

This conclusion follows from the following fact (see Figure 3). Equation (2.3) represents the x^{\prime} - axis and (2.4) represents the $c t^{\prime}$-axis. The slope of these lines is $\frac{1}{e}$ and e respectively where $e=\frac{v_{0}}{c}=\tan h \varphi$ If θ is inclination of $c t^{\prime}$-axis with $c t$-axis, then $\tan \theta=e$ and slope of x-axis $=\frac{1}{e}=\cot \theta=\tan \left(\frac{\pi}{2}-\theta\right)$

Figure 3
Figure 3
$\therefore x^{\prime}$-axis has inclination $\frac{\pi}{2}-\theta$ and hence x^{\prime}-axis and $c t^{\prime}$-axis are inclined at $\frac{\pi}{2}-2 \theta$. Since $\sin \left(\frac{\pi}{2}-2 \theta\right)=\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=\frac{1-e^{2}}{1+e^{2}}$. We have the relation between the areal elements: $c d t d x=|J| c d t^{\prime} d x^{\prime} \sin \left(\frac{\pi}{2}-2 \theta\right)=\left(\frac{1-e^{2}}{1+e^{2}}\right) c d t^{\prime} d x^{\prime}$ where we used $|J|=1$ and $\sin \left(\frac{\pi}{2}-2 \theta\right)=\left(\frac{1-e^{2}}{1+e^{2}}\right)$ i.e.

$$
\begin{equation*}
d t d x=\left(\frac{1-e^{2}}{1+e^{2}}\right) d t^{\prime} d x^{\prime} \tag{2.5}
\end{equation*}
$$

This equation depicts the asymmetric nature of LT. As an approximation if we write $d t d x \cong d t^{\prime} d x^{\prime}$, then

$$
\begin{equation*}
2 c d t d x \cong 2 c d t^{\prime} d x \tag{2.6}
\end{equation*}
$$

Also, we have

$$
\begin{equation*}
c^{2} d t^{2}-d x^{2}=c^{2} d t^{\prime 2}-d x^{\prime 2} \tag{2.7}
\end{equation*}
$$

Equations (2.6) and (2.7) imply $(c d t+i d x)^{2}=\left(c d t^{\prime}+i d x^{\prime}\right)^{2}$
so that $c d t=c d t^{\prime}$ and $d x=d x^{\prime}$ or $t=t^{\prime}$ and $x=x^{\prime}$, except for an additive constant. The asymmetric nature of equation (2.5) reveals that there is no logic in stipulating that the LT represents the motion of O^{\prime} relatively to O along a common x-axis. Figure 3 indicates that ($c t, x$) world point is a preferred representation to ($c t^{\prime}, x^{\prime}$); the converse is true by re-drawing the figure and considering the inverse transformation. Thus, the LT implies that one or the other frame of reference is a preferred one justifying the Lorentzian interpretation of a preferred frame. Hence the relativistic conclusion that there is no preferred frame of reference, is logically invalid; so is the assumption of a common x / x^{\prime}-axis. Hence figure 2 and 4 give true representation of P and P^{\prime} whereas figure 1 does not.

The presence of a preferred frame indicates that we can use the proper coordinates $\left(c \tau, x_{\tau}\right)$. Next, we attempt to find the relation between the proper coordinates and the local coordinates
$(c t, x) /\left(c t^{\prime}, x^{\prime}\right)$ SinceOO $=v_{0} t$ and $\mathrm{O}^{\prime} \mathrm{O}=-v_{0} t^{\prime}$ their sum is not
equal to zero; this is a strange situation $[8,9]$. So, we seek to find the required transformation to satisfy $\mathrm{OO}^{\prime}=v_{0} \tau$ and $\mathrm{O}^{\prime} \mathrm{O}=-v_{0} \tau$

Equation (2.2) can be re-written as

$$
c \tau=c t \sqrt{1-\frac{x^{2}}{c^{2} t^{2}}}
$$

which can be re-written as

$$
c \tau=c t \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

where $_{v=} \frac{x}{t}$. This is the formula time-dilation [10-12]. Also, the formula of Fitzgerald-Larmor-Lorenz contraction [2, 13-16] is

$$
L_{0}=\frac{L}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

In this equation, replace L_{0} by x_{τ}, L by x and $v=\frac{x}{t}$, Thus we get

$$
x_{\tau}=\frac{x}{\sqrt{1-\frac{x^{2}}{c^{2} t^{2}}}}
$$

Hence the transformation we sought is

$$
\begin{align*}
& c \tau=\sqrt{\left|c^{2} t^{2}-x^{2}\right|} \tag{2.8}\\
& x_{\tau}=\frac{x t}{\sqrt{\left|c^{2} t^{2}-x^{2}\right|}} \tag{2.9}
\end{align*}
$$

The inverse transformation is given by

$$
\begin{equation*}
c^{2} t^{2}=\frac{1}{2} c^{2} \tau^{2}\left[\sqrt{1+\frac{4 x_{\tau}^{2}}{c^{2} \tau^{2}}}+1\right] \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
x^{2}=\frac{1}{2} c^{2} \tau^{2}\left[\sqrt{1+\frac{4 x_{\tau}^{2}}{c^{2} \tau^{2}}}-1\right] \tag{2.11}
\end{equation*}
$$

Equations (2.8) to (2.11) represent the transformation between the proper system $\left(c \tau, x_{\tau}\right)$ and the local system $(c t, x)$. This can be generalised to four-dimensional case by including $y_{\tau}=y, z_{\tau}=z$.

The geometrical representation of $\left(c \tau, x_{\tau}\right)$ is as follows:

Figure 4
In figure 4 we represent the RH of equation (2.2) in the $c t-x$ plane. Its vertex is $V(c \tau, 0)$; erect the vertical at $V(c \tau, 0)$, cutting the conjugate/orthogonal RH $2 x c t=2 x_{\tau} c \tau$ at the point $\mathrm{W}\left(c \tau, x_{\tau}\right)$.
Thus, $V W$ represents x_{τ} and OV represents $c \tau$. If we consider another point $P^{\prime}\left(c t^{\prime}, x^{\prime}\right)$ on the hyperbola of equation (2.2) we get
another point $W^{\prime}\left(c \tau, x_{\tau}^{\prime}\right)$. Now $V W^{\prime}$ represents x_{τ}^{\prime} and
$W^{\prime} W=x_{\tau}-x_{\tau}^{\prime}=\frac{x t-x^{\prime} t^{\prime}}{\tau}$. We define this quantity as $v_{0} \tau$ or $v_{0}=\frac{x t-x^{\prime} t^{\prime}}{\tau^{2}}$ is the relative speed of O wrt O^{\prime} or vice versa.

Conclusion

It is possible to introduce field dependent contracted tensors from $\epsilon_{i j}, \mu^{i j}$ to define filed vectors $\mathbf{E}|\mathbf{D}, \mathbf{B}| \mathbf{H}$ and the metric $d \mathbf{E}^{2}-d \mathbf{H}^{2}$ for Gravitational/EM fields. The linear LT can be considered as a relationship between two local frames of references, whereas equations (2.8) to (2.11) give the relationship among true/proper values and their observed values in the local frames. These equations justify a general principle of fuzziness of measurements as well as the existence of a unique preferred frame viz, the proper frame of reference as suggested by H.A. Lorentz.

References

1. Chandramohanan M R (2010) On Maxwell-Lorentz Equations (for a gravitational mass particle), Proceedings of the 17th NPA Annual conference at California State University, Long Beach, USA 7: 1-32.
2. Feynman RP, Leighton RB (1989) Feynman Lectures on physics, Addison-Wesley, New York 2: 1-566.
3. Griffith David J (2009) Introduction to Electro Dynamics, PHI Learning Pvt. Ltd., New Delhi 1-623.
4. Landau LD, Lifshitz E M (1975) The classical theory of fields, Pergamon Press, Oxford 1-387.
5. Schute Bernard F (2002) A First Course in General Relativity, Cambridge University Press, U.K https://www.if.ufrgs.br/oei/ santiago/fis02012/FirstCourseGR.pdf
6. Weinberg Steven (2008) Gravitation and Cosmology, Wiley Student Edition, India, New Delhi http://lib.ysu.am/ disciplines_bk/1e79c894ea57086081172d4988a8a3ce.pdf
7. Sokolnikoff I S (1964) Tensor Analysis, John Wiley \& Sons Inc., New York https://www.scirp.org/reference/References Papers?ReferenceID=1642514
8. Dingle Herbert (1971) Science at the Cross Roads, Martin Brian \& O’Keefe, Lon-don 4: 358-362.
9. Nordenson Harold (1969) Relativity, Time and Reality, George Allen and Unwin Ltd, Ruskin House, London https:// philpapers.org/rec/NORRTA
10. Hughes W M L (2005) Michelson-Morley Revisited or Can the Fitzgerald-Lorentz contraction be real. Proceedings of the Natural Philosophy Alliance (NPA), STORRS, USA 2: 63-66.
11. Muller, Francisco J (2005) A Demand for a Greater Historical Justice, Proceedings of the Natural Philosophy Alliance (NPA), STORRS, USA 2: 19-20.
12. Shtyrkov, Eugene I (2005) Observation of Ether Drift in Experiments with Geo-stationary Satellites, Proceedings of the Natural Philosophy Alliance (NPA), STORRS, USA 2: 201-205.
13. Lorentz HA (1992) Theory of Electrons. Dover Publications Inc., New York.
14. Lorentz H A, Einstein A, Minkowski H, Weyl H (1952) The Principle of Relativity, Dover Publications, New York 1-254.
15. Pauli Wolfgang (1958) Theory of Relativity, Pergamon Press, London https://philpapers.org/rec/PAUTOR
16. Whittaker E T (1960) A History of the Theories of Aether and Electricity, Nelson, London, Reprinted by Harper, New York https://www.abebooks.com/book- search/title/history-theories-aether-electricity/used/book/.

Copyright: ©2024 Chandramohanan MR. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

